计算机组成原理第二章11
最新《计算机组成原理》第2章习题答案

最新《计算机组成原理》第2章习题答案第⼆章习题解答1.设机器数的字长8位(含1位符号位),分别写出下列各⼆进制数的原码、补码和反码:0,-0,0.1000,-0.1000,0.1111,-0.1111,1101,-1101。
解:2.写出下列各数的原码、补码和反码:7/16,4/16,1/16,±0,-7/16,-4/16,-1/16。
解:7/16=7*2-4=0.01114/16=4*2-4=0.01001/16=1*2-4=0.0001真值原码补码反码7/16 0.0111 0.0111 0.01114/16 0.0100 0.0100 0.01001/16 0.0001 0.0001 0.0001+0 O.0OOO O.0OOO O.0OOO-0 1.0OOO O.0OOO 1.1111-1/16 1.0OO1 1.1111 1.1110-4/16 1.0100 1.1100 1.1011-7/16 1.0111 1.1001 1.10003.已知下列数的原码表⽰,分别写出它们的补码表⽰:[X1]原=O.10100,[X2]原=l.10111。
解:[X1]补=0.10100,[X2]补=1.01001。
4.已知下列数的补码表⽰,分别写出它们的真值:[X1]补=O.10100,[X2]补=1.10111。
解: X1=O.10100, X2=-0.01001。
5.设⼀个⼆进制⼩数X≥0,表⽰成X=0.a1a2a3a4a5a6,其中a1~a6取“1”或“O”:(1)若要X>1/2,a1~a6要满⾜什么条件?(2)若要X≥1/8,a1~a6要满⾜什么条件?(3)若要1/4≥X>1/16,a1~a6要满⾜什么条件?解:(1) X>1/2的代码为:0.100001~0.111111。
a1=1,a2+a3+a4+a5+a6=1。
(2) X≥1/8的代码为:0.001001~0.111111(1/8~63/64)a1+a2=0,a3=1或a1=0,a2=1,或a2=1(3)1/4≥X>1/16的代码为:0.000101~0.01000(5/64~1/4)a1+a2+a3 =0, a4=1,a5+a6=1 或a1+a2=0,a3=1 或a2=1,a1+a3+a4+a5+a6=06.设[X]原=1.a1a2a3a4a5a6(1)若要X>-1/2,a1~a6要满⾜什么条件?(2)若要-1/8≥X≥-1/4,a1~a6要满⾜什么条件?解:(1) X>-1/2的代码为:1.000001~1.011111(-1/64~-31/64)。
计算机组成原理 第2章

《计算机组成原理与实验》 冶金工业出版社
计算机组成原理——第 2章
原码、反码与补码
• 例2:已知[x]补=11101110,求[-x]补、[x]反、[x]原及真值x。 解:[-x]补=00010010 ([x]补取反加1) [x]反=11101101 ([x]补减1) [x]原=10010010 ([x]原低7位取反) 真值x=-0010010B=-12H=-18D
《计算机组成原理与实验》 冶金工业出版社
计算机组成原理——第 2章
补码表示法
• 对定点整数,补码的定义是: X [X]补= 2n > x 0 (mod 2n+1)
2n+1+x=2n+1-|x|
0 > x -2n
《计算机组成原理与实验》 冶金工业出版社
计算机组成原理——第 2章
补码表示法
• 利用补码可以将减法运算变成加法运算来实现。但是 根据补码定义,求负数的补码要从2减去|X|。为了用加 法代替减法,结果还得在求补码时作一次减法,这显 然是不方便的。可以利用反码的方式解决负数的求补 问题。 • 另一方面,利用补码实现减法运算,可以和常规的加 法运算使用用一加法器电路,从而简化了计算机的设 计。
移码表示法
• 移码的定义:[X]移=2n +X (-2n = <x< 2n)n为阶码数值位 (除符号位)
• 移码的计算:先求出X的补码,再对其符号位取反或直接利用定 义计算。
《计算机组成原理与实验》 冶金工业出版社
计算机组成原理——第 2章
移码的特点
(1)在移码中,最高位为“0”表示负数,最高位为“1”表示正数。 (2)移码为全0时,它所对应的真值最小,为全1时,它所对应的真 值最大。因此,移码的大小比较直观地反映了真值的大小,这有 助于比较两个浮点数阶码的大小。 ( 3 ) 真 值 0 在 移 码 中 的 表 示 形 式 是 唯 一 的 , 即 [+0] 移 =[-0] 移 = 100…0。 (4)移码把真值映射到一个正数域,所以可将移码视为无符号数, 直接按无符号数规 则比较大小。 (5)同一数值的移码和补码除最高位相反外,其他各位相同。
计算机理论基础 第二章 11.16

蓝洋专转本计算机理论基础 第二章
1.计算机的发展
早期的计算工具
算盘(中国,唐朝)
计算尺(欧洲,1622)
蓝洋专转本计算机理论基础 第二章
1.计算机的发展
1. 早期的计算工具
加减法器,(法国,1642,帕斯卡)
蓝洋专转本计算机理论基础 第二章
1.计算机的发展
1. 早期的计算工具
差分机,(英国,1812,巴贝奇)
1.主板的组成
蓝洋专转本计算机理论基础 第二章
1.主板的组成
蓝洋专转本计算机理论基础 第二章
主板的组成
1. CPU插座 2. 主存储器插槽 3. PCI总线扩展槽,(显卡、声卡、网卡);AGP总 线扩展槽。 4. 芯片组:固定在主板上,协调微机系统的正常运 转。 5. BIOS芯片:固化在主板上一块 Flash ROM 芯片中 的一组机器语言程序。 6. CMOS芯片:易失性储存器,需要电池供电,存放 着与计算机硬件相关的一些参数(配置信息)。 蓝洋专转本计算机理论基础 第二章
蓝洋专转本计算机理论基础 第二章
CPU性能指标—高速缓存(cache)
1. cache是一种小容量高速缓冲存储器,直接制作在CPU 芯片内,速度几乎与CPU一样快,分一级和二级缓存, 其容量越大,级数越多,效果越显著 2. 程序运行时,一部分指令和数据会被预先成批拷贝到 Cache中 3. 当CPU需要从主存读(写)指令或数据时,先检查 Cache,若有直接从Cache中读取,若无再访问主存储 器 4. Cache具有透明性,它的内容不能由程序直接访问(对 程序员是透明的) 5. Cache的命中率:CPU需要的指令或数据在Cache中直接 蓝洋专转本计算机理论基础 第二章 找到的概率
计算机组成原理第二章课后习题答案

第二章运算方法和运算器练习一、填空题1. 补码加减法中,(符号位)作为数的一部分参加运算,(符号位产生的进位)要丢掉。
2. 为判断溢出,可采用双符号位补码,此时正数的符号用(00)表示,负数的符号用(11)表示。
3. 采用双符号位的方法进行溢出检测时,若运算结果中两个符号位(不相同),则表明发生了溢出。
若结果的符号位为(01),表示发生正溢出;若为(10),表示发生负溢出。
4. 采用单符号位进行溢出检测时,若加数与被加数符号相同,而运算结果的符号与操作数的符号(不一致),则表示溢出;当加数与被加数符号不同时,相加运算的结果(不会产生溢出)。
5. 利用数据的数值位最高位进位C和符号位进位Cf的状况来判断溢出,则其表达式为over=(C⊕Cf)。
6. 在减法运算中,正数减(负数)可能产生溢出,此时的溢出为(正)溢出;负数减(正数)可能产生溢出,此时的溢出为(负)溢出。
7. 补码一位乘法运算法则通过判断乘数最末位Yi和Yi-1的值决定下步操作,当YiYi-1=(10)时,执行部分积加【-x】补,再右移一位;当YiYi-1=(01)时,执行部分积加【x】补,再右移一位。
8. 浮点加减运算在(阶码运算溢出)情况下会发生溢出。
9. 原码一位乘法中,符号位与数值位(分开运算),运算结果的符号位等于(两操作数符号的异或值)。
10. 一个浮点数,当其补码尾数右移一位时,为使其值不变,阶码应该(加1)。
11. 左规的规则为:尾数(左移一位),阶码(减1)。
12. 右规的规则是:尾数(右移一位),阶码(加1)。
13. 影响进位加法器速度的关键因素是(进位信号的传递问题)。
14. 当运算结果的补码尾数部分不是(11.0×××××或00.1×××××)的形式时,则应进行规格化处理。
当尾数符号位为(01)或(10)时,需要右规。
计算机组成原理(第四版)课后答案(第二章)

2.5 术语:存储元、存储单元、存储体、存储 单元地址,有何联系和区别?
存储元:存储一位二进制信息的基本单元电路。 存储单元:由若干存储元组成。一台机器的所有存储
单元长度相同,一般由8的整数倍个存储元构成。 存储体:是存储单元的集合,它由许多存储单元组成,
ห้องสมุดไป่ตู้用来存储大量的数据和程序。 存储器单元地址:计算机在存取数据时,以存储单元
访问; (4)固定存储器(ROM)中的任何一个单元不能随机访问. (5)一般情况下,ROM和RAM在存储体中是统一编址的. (6)由于半导体存储器加电后才能存储数据,断电后数
据就丢失了,因此,用EPROM做的存储器,加电后 必须重写原来的内容。
6
解:(1)F。主存是随机存储器,CPU访问任何单元的时 间都是相同的,同容量的大小没有关系。
2
2.2 存储器的带宽有何物理意义?存储器总线宽度为32 位,存取周期为250nS,这个存储器带宽是多少?
解:存储器的带宽是指每秒钟访问的二进制位的数目。 其物理意义是一个以存储器为中心的机器可以获取 的信息传输速度。 若存储周期为250ns,则工作速度=1/ 250ns , 所以,存储器带宽=工作速度×总线宽度 =1/250ns*32bit =1/250X10-9 × 32 bps =32X109 /250 bps =128X106 bps =128M bps
A15 D
A15 D
A15 D
A15 D
16片
.A14
.A14
.A14
16片64K×1 16片64K×1 16片64K×1
.A14
64K×1
A0
A0
A0
A0
10
2.9 2114是排列成64 x 64阵列的六管存储芯片,试 问组成4K x l6位的存储器,共需少片2114? 画出 逻辑框图。 解:Intel 2114芯片一片的容量为1Kx4位,要组成 4KXl6位的存储器,需要2114芯片 4K/l x l6/4=16(片)。 片内地址需要10根地址线,用A0~A9,片选需要2 位地址线,用A10~A11。
计算机组成原理第2章习题答案

第2章习题及解答2-2将下列十进制表示成二进制浮点规格化的数(尾数取12位,包括一位符号位;阶取4位,包括一位符号位),并写出它的原码、反码、补码三和阶移尾补四种码制形式;(1)7.75解:X=7.75=(111.11)2=0.11111×211[X]原=0011×0.11111000000[X]反=0011×0.11111000000[X]补=0011×0.11111000000[X]阶称,尾补=1011×0.11111000000(2) –3/64解:X=-3/64=(-11/26)2=(-0.00001)2=-0.11×2-100[X]原=1100×1.11000000000[X]反=1011×1.00111111111[X]补=1100×1.010********[X]阶称,尾补=0100×1.010********(3) 83.25解:X=-3/64=(1010011.01)2=0.101001101×2111[X]原=0111×0.101001101[X]反=[X]补=[X]原[X]阶称,尾补=1111×0.10100110(4) –0.3125解:X=(–0.3125)10=(-0.0101)2=-0.101×2-1[X]原=1001×1.10100000000[X]反=1110×1.010********[X]补=1111×1.01100000000[X]阶称,尾补=0111×1.011000000002-4 已知x和y,用变形补码计算x+y,并对结果进行讨论。
(2) x=0.11101,y=-0.10100解:[X]补=00.11101, [Y]补=11.01100, [-Y]补=00.10100[X]补+ [Y]补=00.11101+11.01100=00.01001X+Y=0.01001[X]补- [Y]补=[X]补+ [-Y]补=00.11101+00.10100=01.10001X+Y 正溢(3) x=-0.10111,y=-0.11000解: [X]补=11.01001, [Y]补=11.01000, [-Y]补=00.11000[X]补+ [Y]补=11.01001+11.01000=11.10001X+Y=-.011111[X]补- [Y]补=[X]补+ [-Y]补=11.01001+00.11000=00.00001X-Y =0.000012-5 已知x和y,用变形补码计算x-y,并对结果进行讨论。
计算机组成原理第二章参考答案

第2章 参考答案2写出下列十进制数的原码、反码、补码和移码表示(用8位二进制数)。
如果是小数,则用定点小数表示;若为整数,则用定点整数表示。
其中MSB 是最高位(符号位),LSB 是最低位。
(1)-1 (2) -38/64 解:(1)-1=(-0000001)2 原码: 10000001反码: 11111110 补码: 11111111 移码: 01111111(2)-38/64=-0.59375=(-0.1001100)2或-38/64=-(32+4+2)*2-6=-(100110)*2-6=(-0.1001100)2 原码: 1.1001100反码: 1.0110011补码: 1.0110100移码: 0.0110100注:-1如果看成小数,那么只有补码和移码能表示得到,定点小数-1的补码为:1.0000000此例类似于8位定点整数的最小值-128补码为100000003 有一字长为32位的浮点数,符号位1位;阶码8位,用移码表示;尾数23位,用补码表示;基数为2.请写出:(1)最大数的二进制表示,(2)最小数的二进制表示,(3)规格化数所能表示的数的范围。
解:(题目没有指定格式的情况下,用一般表示法做)(1)最大数的二进制表示:0 11111111 11111111111111111111111 (2)最小数的二进制表示:1 11111111 00000000000000000000000(1) 7232112*2---() (2) 7211*2--()(3)规格化最大正数:0 11111111 111111111111111111111117232112*2---()规格化最小正数:0 00000000 100000000000000000000007122*2--规格化最大负数:1 00000000 011111111111111111111117123222*2----+()规格化最小负数:1 11111111 000000000000000000000007211*2--()规格化数的表示的数的范围为:7777211232122321[1*2,22*2][2*2,12)*2]----------+- ()()(下面补充IEEE 754的规格化浮点数表示范围:IEEE 754的尾数采用1.M 的形式,原码表示;阶e=E-127 (相对于一般表示法的e=E-128,人为的加了1);并且最大的阶(11111111)和最小的阶(00000000)用去作为特殊用途。
第2章(计算机组成原理) 练习题、参考答案

第2章练习题参考答案一、判断题(正确Y,错误N)1. CPU在很大程度上决定了计算机的性能,CPU的运算速度又与CPU的工作频率密切相关。
因此,在其它配置相同时,使用主频为500MHz的Pentium4作为CPU 的PC机,比使用主频为1GHz Pentium4作为CPU的PC机速度快。
N2. 近年来,PC机中使用的1394接口比USB传输速度更快。
Y3. Cache存储器的存取速度比主存储器要快得多。
因此,为了提高程序的运行速度,在软件开发时,应尽可能多地使用Cache存储器。
N4. 主存储器在物理结构上由若干插在主板上的内存条组成。
目前,内存条上的芯片一般选用DRAM而不采用SRAM。
Y5. 在Pentium处理器中,整数ALU和浮点运算器可以分别对整数和实数同时进行运算处理。
Y6. RAM是随机存取存储器的缩写,其中“随机”的含义是:不论从(向)哪个地址读出或写入数据,所需时间都是相同的。
N7. 3.5英寸软盘的角上有一个小口,当滑动保护片将其盖住时,软盘就不能进行读写操作了。
N8. CPU工作时,它所执行的指令和处理的数据都是直接从磁盘或光盘中取出,处理结果也直接存入磁盘。
N9. 一般情况下,计算机加电后自动执行BIOS中的程序,将所需的操作系统软件装载到内存中,这个过程称为“自举”或“引导”。
Y10. 若某台PC机主板上的CMOS信息丢失,则该机器将不能正常运行,此时只要将其他计算机中的CMOS信息写入后,该机器便能正常运行。
N11. BIOS芯片和CMOS芯片实际上是一块芯片的两种叫法,是启动计算机工作的重要部件。
N12. 一个完整的计算机系统的两个基本组成部分是操作系统和数据库系统.N13. USB接口是一种高速的并行接口。
N14. 计算机中总线的重要指标之一是带宽,它指的是总线中数据线的宽度,用二进位数目来表示(如16位,32位总线)。
N15. 在BIOS中不包含扫描仪、打印机等设备的驱动程序。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16位组内成进位 传送函数和进位生成函数两个部分:
进位生成函数
进位传送函数
各组间进位的表达式:
各小组的进位生成函数和进位传递函数 的逻辑表达式:
一位全加器:
一位全加器真值表:
一位全加器的逻辑图:
1
=1
&
&
=1
2.5.1 多功能算术逻辑运算单元(ALU)
1.并行加法器及其进位链 并行加法器使用的全加器的位数与操作 数的位数相同,它能够同时对操作数的 各位进行相加,所以称为并行加法器。 将进位信号的产生与传递的逻辑结构称 为进位链。
组内各位的进位表达式为:
4位一组并行进位链逻辑图:
4位一组并行进位链示意图:
16位组内并行、组间串行进位链框图:
进位链延迟时间:
由于每一组并行进位网络都是二级门, 设每级门延迟为 td ,则 16 位组内并行组 间串行进位链的延迟时间是8td。
2)组内并行、组间并行的进位链
这种进位链又称为多重分组跳跃进位链。 组间也采用并行进位链结构,这样将会 进一步提高运算速度。
各组的 进位生 成函数
各组的 进位传 递函数
组内、组间并行进位第一组内进位链逻辑图
延迟时间:
由于每一组并行进位网络都是二级门, 设每级门延迟为 td 产生所有进位的延迟 时间为6td。
补码加减法的实现逻辑框图
(1)串行进位的并行加法器
当操作数为 n + 1 位长时,需要用 n + l 位 全加器构成加法器。 延迟时间:包括进位信号的产生和传递 所占用的时间及加法器本身求和的延迟 时间。 特点:线路简单,速度慢。
串行进位的并行加法器:
(2)并行进位的并行加法器
要提高加法器的运算速度,就必须解决进 位信号的产生和传递问题。 设 = 称为进位传递函数或进位传递 条件。 设 = 称为进位产生函数或本地进位。 由于在一位全加器中,进位信号可表示为:
将串行进位链的表达式改写成如下形式:
各进位信号的产生不再 与低位的进位信号有关, 而只与两个参加运算的 数和C0有关.
1)组内并行、组间串行的进位链
这种进位链也称为单重分组跳跃进位。 以16位加法器为例,一般可分作4个小组, 每小组4位,每组内部都采用并行进位结 构,组间采用串行进位传递结构。