几种典型的计量模型10经济
关于几种计量经济学模型的比较研究

关于几种计量经济学模型的比较研究作者:李福文来源:《现代经济信息》2013年第13期摘要:计量经济学模型能够对复杂的现实问题进行定量分析,从而更好的解释问题的实质。
本文简述了计量经济学模型的内涵和功能,具体介绍了横截面数据模型、时间序列数据模型和面板数据模型,并分析了三种模型的异同,从而为模型的选择提供依据。
关键词:计量经济学模型;功能;比较中图分类号:[F064.1] 文献标识码:A 文章编号:1001-828X(2013)07-0-01众所周知,计量经济学模型已经被广泛运用到理论研究和实际分析中。
作为实证研究的主要方法,计量经济学模型必须要能够很好的模拟实际现象。
因此有必要对几种具体的计量经济学模型进行研究。
本文就是以此为目的来展开分析的。
一、计量经济学模型简述1.计量经济学模型的内涵:作为现代经济学的重要分支,计量经济学的主要任务是针对现实的经济活动中与经济活动有关的数量及其变化趋势而做出定量分析。
而在研究实际经济问题时,计量经济学模型的设定是研究者首先要做的工作。
这一设定工作包括选择相关的经济变量,以及确定各变量之间的数学关系式。
其中,模型变量涉及被解释变量和解释变量,数学关系涉及线性关系和非线性关系。
不过需要注意的是,计量模型只不过是在对现实经济现象深入分析的基础上,对复杂的经济问题的简单化,因此在设计计量模型时,往往会为了突出主要经济变量的作用,而忽略其他因素对被解释变量的影响。
因此,模型的建立要遵循客观科学的原则,运用恰当的方法,务必保证计量经济学模型能够很好的拟合现实情况。
2.计量经济学模型的功能:(1)静态分析功能。
静态分析是指给定解释变量的数值就可以求得被解释变量的数值。
这可以直接由计量经济学模型所确定的数学关系式得到,只要把已知的解释变量的数值直接代入数学关系式即可。
(2)比较静态分析功能。
比较静态分析是指在其他变量的数值保持不变的情况下,一个或多个解释变量的变化会引起被解释变量的变化大小。
计量经济学10(1)

l 方差分析模型(Analysis of variance models,ANOVA):仅包含定性变量或 虚拟变量的回归模型,其形式如下:
Yi=B1+B2Di+ui l 假定Y:每年食品支出(美元);Di=1表示
女性;Di=0表示男性,则: l 男性食品支出的期望:E(Yi|Di=0)=B0 l 女性食品支出的期望: E(Yi|Di=0)=B0+B1
• D2=1表东北和中北部地区,D2=0为其它地区; • D3=1表南部地区,D3=0为其它地区
Ÿ 这是将西部地区看成是基准类。
计量经济学10(1)
¡ 再考虑政府机构用于每个学生的花费和地区对 教师平均年薪水的影响: AASi=B1+B2D2i+B3D3i+B4PPSi
¡ 对模型的解释:
l D2显著,而D3不显著,表明原模型存在设定误差; l PPS的系数的含义
计量经济学10(1)
l 上述模型的含义: l 截距B1表示男性平均食品支出,斜率系数
B2表示女性平均食品支出与男性的差异, B1 + B2表示女性平均食品支出。 l 对这类模型,零假设为:H0:B2=0
¡ 表示男女平均食品支出没有差异。我们可根据t 检验判定是否统计显著。
计量经济学10(1)
l 例10-1(P213):性别差异对食品消费支出 的影响
X 0.0803
5.54
DX -0.065
-4.096
1970-1995 C 62.423
4.89
X 0.0376
8.89
1970-1981 C 1.016
X 0.0803
1982-1995 C 153.49(1.016+152.479)
计量经济学--几种常用的回归模型课件

计量经济学--几种常用的回归模型
18
• 半对数模型的斜率系数度量了解释变量一个单位 的绝对变化,对应的因变量的相对变化量。
• P166例6.4
计量经济学--几种常用的回归模型
19
对数到线性模型(解释变量对数形式)
计量经济学--几种常用的回归模型
20
Yi 1 2 ln X i i
计量经济学--几种常用的回归模型
9
半对数模型
• 只有一个变量以对数形式出现
计量经济学--几种常用的回归模型
10
2. 半对数模型
• 线性到对数模型(因变量对数形式) • 对数到线性模型(解释变量对数形式)
计量经济学--几种常用的回归模型
11
• 线性到对数模型(因变量对数形式)
计量经济学--几种常用的回归模型
12
Yt Y0(1 r )t
ln Yi 2 ln X i i
计量经济学--几种常用的回归模型
4
2的含义?
• 其测度了Y对X的弹性,即X变动百分之一引起Y变 动的百分数。
• 例如,Y为某一商品的需求量,X为该商品的价格, 那么斜率系数为需求的价格弹性。
计量经济学--几种常用的回归模型
5
证明:
d(ln Y ) dY Y 2 d(ln X ) dX X
计量经济学--几种常用的回归模型
8
ห้องสมุดไป่ตู้意
• 是产出对资本投入的(偏)弹性,度量
在保持劳动力投入不变的情况下资本投入 变化1%时的产出变动百分比;
• 是产出对劳动投入的(偏)弹性,度量
在保持资本投入不变的情况下劳动力投入 变化1%时的产出变动百分比;
• 给出了规模报酬信息
经济计量模型

经济计量模型经济计量模型是经济学中应用计量方法对经济现象进行建模和研究的工具。
它通过运用统计学和数学等方法来分析经济数据,从而对经济变量之间的关系进行定量描述和预测。
经济计量模型在经济学研究和政策分析中起着重要的作用,能够解释经济现象背后的规律和因果关系。
一、经济计量模型的类型经济计量模型可以分为线性模型和非线性模型两大类。
1. 线性模型线性模型假设经济变量之间的关系是线性的,通过线性代数的方法进行建模和推导。
它的最常见形式是多元线性回归模型,其中一个因变量由若干个自变量线性组合构成。
例如,经济学家常用的哈里斯-塔克(Harris-Todaro)模型和Cobb-Douglas生产函数都是线性模型的典型例子。
2. 非线性模型非线性模型则假设经济变量之间的关系是非线性的。
非线性模型在描述复杂的经济现象和行为方面往往更为准确。
例如,具有阈值效应的门槛模型和考虑非线性效应的VAR模型都是非线性模型的代表。
二、经济计量模型的建立经济计量模型的建立过程通常包括以下几个步骤:1. 数据收集构建经济计量模型首先需要收集与模型相关的经济数据。
数据的准确性和完整性对模型的建立和研究结果的可信度起到决定性的作用。
2. 模型设定模型设定是在理论和实证研究的基础上,根据经济变量之间的逻辑关系和经验判断,选择适当的变量和函数形式进行设定。
模型设定的合理性对模型的有效性有着重要影响。
3. 参数估计参数估计是指利用收集到的经济数据对模型中的未知参数进行估计。
常见的估计方法包括最小二乘法、极大似然法等。
参数估计的精确性和统计性质对模型的可靠性和可解释性至关重要。
4. 模型检验模型检验是对建立的模型进行严格检验,包括统计检验、经济意义检验和灵敏度分析等。
通过模型检验,可以评估模型的拟合度和稳健性,确保模型的有效性和合理性。
三、经济计量模型的应用经济计量模型的应用范围广泛,涵盖了宏观经济、微观经济、产业经济等多个领域。
1. 宏观经济领域宏观经济计量模型用于分析全球、国家或地区的宏观经济变量之间的关系,如国内生产总值、通货膨胀率、利率等。
经济效用模型

经济效用模型是一个用于描述和分析经济活动和消费行为的理论模型。
它基于对个体行为和决策的理性假设,通过数学方法来量化经济活动的效用和影响。
这个模型的主要观点是,经济活动和消费行为会对个体的效用产生影响。
效用是一个衡量满足或改善需求的度量标准,通常被定义为一种商品或服务被消费后的满足感。
经济效用模型通常包括以下要素:1. 资源:资源是经济活动的物质基础,如货币、物品和劳动力。
2. 消费选择:个体根据其目标和偏好,在各种商品和服务之间进行选择。
3. 决策规则:个体的决策规则反映了他们的理性假设,即他们会在各种可能的结果中,选择预期效用最大的选项。
4. 成本和收益:个体评估各种选项的成本和收益,并选择能够最大化预期效用的选项。
5. 市场环境:市场环境对个体的决策产生影响,包括价格、供需关系等。
通过数学方法和经济学原理,经济效用模型可以量化各种因素对经济活动和消费行为的影响。
常见的经济效用模型包括消费者均衡模型、生产者均衡模型、福利经济学和福利指数等。
消费者均衡模型描述了个体如何在各种商品和服务之间进行选择,以达到预期的效用水平。
生产者均衡模型则用于分析生产者的最优生产决策,包括资源配置、成本效益和利润最大化等。
福利经济学关注社会福利的衡量和改善方法,福利指数则用于评估不同政策或经济变化对整体经济福利的影响。
经济效用模型的应用非常广泛,包括政策分析、市场分析和经济预测等。
通过应用经济效用模型,可以更准确地评估政策措施的效果、市场趋势和消费者行为,从而为企业和市场决策提供有力的支持。
然而,经济效用模型也存在一定的局限性。
首先,它基于理性假设,但现实生活中个体的行为往往受到许多非理性因素的影响。
其次,经济效用模型通常只关注个体的短期决策,而忽略了长期影响和世代间的关系。
此外,模型的数学性质可能导致一些复杂的问题难以得到直观的解释。
总之,经济效用模型是一个重要的经济学工具,它可以帮助我们更好地理解和分析经济活动和消费行为。
计量经济学分析模型

计量经济学分析模型摘要改革开放以来,我国经济呈迅速而稳定的增长趋势,由于分配机制和收入水平的变化,城镇居民生活水平在达到稳定小康之后,消费结构和消费水平都出现了一些新的特点。
本文旨在对近几年,我国城镇年人均收入变动对年人均各种消费变动的影响进行实证分析。
首先,我们综合了几种关于收入和消费的主要理论观点;本文根据相关的数据统计数据,运用一定的计量经济学的研究方法,进而我们建立了理论模型。
然后,收集了相关的数据,利用EVIEWS软件对计量模型进行了参数估计和检验,并加以修正。
最后,我们对所得的分析结果和影响消费的一些因素作了经济意义的分析,并相应提出一些政策建议。
并找到影响居民消费的主要因素。
关键词:居民消费;城镇居民;回归;Eviews目录摘要 (II)前言 (1)1 问题的提出 (2)2 经济理论陈述 (3)2.1西方经济学中有关理论假说 (3)2.2有关消费结构对居民消费影响的理论 (4)3 相关数据收集 (6)4 计量经济模型的建立 (9)5 模型的求解和检验 (10)5.1计量经济的检验 (10)5.1.1模型的回归分析 (10)5.1.2拟合优度检验: (11)5.1.3 F检验 (11)5.1.4 T检验 (12)5.2 计量修正模型检验: (12)5.2.1 Y与的一元回归 (13)5.2.2拟合优度的检验 (13)5.2.3 F检验 (14)5.2.4 T检验: (15)5.3经济意义的分析: (15)6 政策建议 (16)结论 (17)参考文献 (19)城镇居民消费模型分析前言近年来,改革开放的影响不断加大,人民的物质文化生活水平日益提高,消费水平和消费结构都有了一定的调整,随着城镇化程度的提高,城镇居民消费在整个国民经济中的地位日益重要,因此,对其进行计量经济分析的十分有必要的。
本文旨在对近15年我国城镇年人均收入变动对年人均各种消费变动的影响进行实证分析。
人均收入和消费支出的有关数据进行了计量经济的检验,通过两者之间的动态关系研究发现,居民人均收入与消费支出有长期的均衡关系,据此建立了居民人均收入和消费支出之间的长期均衡模型。
几种典型的计量模型经济课件 (一)

几种典型的计量模型经济课件 (一)随着社会向数字化转型,计量模型在经济领域发挥着越来越重要的作用。
为了帮助学生更好地理解计量模型,许多教师提供了一系列的课件。
这篇文章将介绍几种典型的计量模型经济课件。
一、线性回归模型线性回归模型是计量经济学中最基础的模型,也是最常用的模型之一。
线性回归模型的优点是它易于理解和实现。
除此之外,该模型还能够通过拟合数据来获得有关变量之间关系的信息。
因此,许多教师在教授计量经济学的时候都会选择线性回归模型来进行介绍。
二、时间序列模型时间序列模型是一种用于分析时间序列数据的模型。
与线性回归模型不同的是,时间序列模型不仅考虑了因变量与自变量之间的关系,还考虑了时间因素的影响。
时间序列经济课件通常会涵盖以下主题:趋势分析、季节性调整和时间序列分解。
这些主题能够帮助学生理解如何处理时间序列数据以及如何预测未来的趋势。
三、面板数据模型面板数据模型是一种经济计量模型,用于分析涉及多个时间和多个单位的数据。
面板数据模型在金融、管理和劳动经济学中得到了广泛应用。
由于面板数据模型具有更优的数据利用率,常常被用于处理多个样本的情况。
面板数据模型经济课件的重点通常在于如何处理面板数据、如何分离固定效应和随机效应以及如何进行面板数据回归分析等内容。
四、识别策略识别策略是计量经济学的另一个重要内容。
与其他计量模型不同的是,识别策略更多地关注如何根据模型限制和观测数据来确定模型参数的惟一性条件。
识别策略的内容比较抽象,常常需要严谨的逻辑和数学知识作为支撑。
识别策略经济课件的重点通常在于如何理解识别策略,如何设计合适的识别策略,以及对所选策略的严格检验等内容。
综上所述,以上四种计量模型经济课件是大多数教师所推崇的经典案例。
这些课件从不同角度切入计量经济学的核心内容,为学生提供了一个结构化的学习框架,以帮助他们更好地掌握计量经济学的内容及方法。
经济学原理之经济学家常用模型

经济学原理之经济学家常用模型1. 引言经济学家通过构建和分析模型来研究经济现象和问题。
这些模型可以帮助我们理解经济领域中的各种行为和关系,从而预测和解释经济现象。
在本文中,我们将介绍经济学家常用的一些经济模型,包括供求模型、生产可能性前沿模型和理性选择模型。
2. 供求模型供求模型是经济学中最基本的模型之一,用于描述市场中商品的价格和数量的关系。
在供求模型中,供给曲线表示卖方愿意提供的商品数量与价格的关系,需求曲线表示买方愿意购买的商品数量与价格的关系。
通过分析供给曲线和需求曲线的交点,我们可以确定市场的均衡价格和数量。
供求模型的价值在于它可以帮助我们理解市场中的价格形成机制。
当供给大于需求时,价格下降,以刺激需求增加,直到市场达到均衡。
相反,当需求大于供给时,价格上升,以吸引更多的供应量,直到市场再次达到均衡。
供求模型在经济学中也被广泛应用于分析市场失衡、价格波动和政府干预等问题。
3. 生产可能性前沿模型生产可能性前沿模型是经济学家用来描述一个经济体在已有资源和技术条件下,能够生产的各种商品组合的模型。
生产可能性前沿曲线表示了经济体在资源利用效率下的最大产出组合。
生产可能性前沿模型的一个核心概念是机会成本,即当经济体决定增加一种商品的产量时,必须放弃生产另一种商品的产量。
这个决策涉及到资源的重新配置和效率的平衡。
生产可能性前沿模型可以帮助我们分析资源利用效率和效率提升的潜力,以及资源分配的问题。
4. 理性选择模型理性选择模型是一种研究人们在不完全信息和有限资源条件下作出决策的模型。
在理性选择模型中,人们被认为是理性的,即他们通过比较成本和效益来做出最佳选择。
理性选择模型的一个重要应用是研究消费者行为。
消费者在购买商品时通常会考虑价格、品质、个人喜好和预期效用等多个因素。
理性选择模型可以帮助我们解释消费者购买决策的背后动机,以及他们对不同商品的需求弹性。
理性选择模型也可以应用于生产者行为的研究。
生产者在面对多个生产要素和成本时,需要做出生产规模、生产工艺和市场定价等多个决策。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
构造如下的拉格朗日函数:
第10章 经典计量经济学应用模型
•§10.1 生产函数模型 •§10.2 需求函数模型 •§10.3 消费函数模型
§10.3 生产函数模型(Production Function Models,P.F.)
一、几个重要概念
二、以要素之间替代性质的描述为线索 的生产函数模型的发展
一、几个重要概念
⒈ 生产函数 ⑴ 定义 • 描述生产过程中投入的生产要素的某种组合同
它可能的最大产出量之间的依存关系的数学表 达式。
Y f ( A, K, L, )
• 投入的生产要素:劳动、资本、原材料、 能源等; • 最大产出量
⑵ 生产函数模型的发展
• 从20年代末,美国数学家Charles Cobb和经济 学家Paul Dauglas提出了生产函数这一名词, 并用1899-1922年的数据资料,导出了著名的 Cobb-Dauglas生产函数。
1928年 Cobb, Dauglas 1937年 Dauglas,Durand 进型 1957年 Solow 进型 1960年 Solow 生产 函数
C-D生产函数 C-D生产函数的改
C-D生产函数的改
含体现型技术进步
1967年 Arrow等
两要素CES生产函数
1967年 Sato
二级CES生产函数
Y
A(1K
2
L
)
m
d(K / L)
d ( MPL / MPK )
(K / L) ( MPL / MPK )
K d (ln( ))
L
1
1
d (ln( MPL )) MPK
§10.1需求函数
(Demand Function,D.F.)
一、几个重要概念
二、几个重要的单方程需求函数模型及 其参数估计
1968年 Sato, Hoffman VES生产函数
1968年 Aigner, Chu
边界生产函数
1971年 Revanker
VES生产函数
1973年 Christensen, Jorgenson 超越对数
生产函数
1980年
三级CES生产函数
⑶ 生产函数是经验的产物 • 生产函数是在西方国家发展起来的,作为西方经
• 由效用函数在效用最大化下导出,符合需求 行为理论
• 只包括收入和价格 • 参数有明确的经济意义
⒉ 从效用函数到需求函数
⑴ 从直接效用函数到需求函数
• 直接效用函数为:
U u(q1 , q2 , , qn )
• 预算约束为:
n
qi pi I
i 1
• 在预算约束下使效用最大,即得到需求函数模型:
• 要素的边际替代率可以表示为要素的边际产量之 比。
MRSKL MPL / MPK MRS LK MPK / MPL
• 从生产函数可以求得要素的边际产量和要素的边 际替代率。
⑶ 要素替代弹性
• 要素替代弹性定义为两种要素的比例的变化率 与边际替代率的变化率之比。
d(K / L)
d ( MPL / MPK )
d ( MPL / MPK )
(K / L) ( MPL / MPK )
K d (ln( ))
L
K d (ln( ))
L K d (ln( )) L 1
d (ln( MPL )) MPK
K d (ln( L ))
K
d (ln( ) ln( L ))
3、 CES生产函数模型(Constant Elasticity 0f Substitution)
济学理论体系的一部分,与特定的生产理论与环 境相联系。
• 西方国家发展的生产函数模型可以被我们所应用:
生产函数反应的是生产中投入要素与产出量 之间的技术关系;
生产函数模型的形式是经验的产物;不能照搬。
⒉ 要素产出弹性(Elasticity of Output) ⑴ 要素的产出弹性
• 某投入要素的产出弹性被定义为,当其他投入
⒈ 线性生产函数模型(Linear P.F.) Y 0 1K 2 L
d (K / L) d ( MPL / MPK )
(K / L) ( MPL / MPK )
2、 C-D生产函数模型
Y AK L
EK
Y K
K Y
A K 1L
K Y
EL
Y L
L Y
AK L 1
L Y
d(K / L)
三、线性支出系统需求函数模型及其参 数估计
一、几个重要概念
⒈ 需求函数 ⑴ 定义
• 需求函数是描述商品的需求量与影响因素,例 如收入、价格、其他商品的价格等之间关系的 数学表达式。
qi f (I , p1, , pi , , pn )
• 特定情况下可以引入其他因素。
(2) 需求函数模型来源于效用函数
(K / L) ( MPL / MPK )
σ称为资本K对L的替代弹性.它的经济意义是 当边际替代率增加1%时,资本与劳动的比率 增加σ%.
• 要素替代弹性是描述生产行为的重要参数,
求得要素替代弹性是生产函数的重要应用。
• 要素替代弹性不为负。 • 特殊情况:要素替代弹性为0、要素替代弹性
为∞。
二、以要素之间替代性质的描述为线索 的生产函数模型的发展
(Marginal Rate of Substitution)
• 当两种要素可以互相替代时,就可以采用不同 的要素组合生产相同数量的产出量。要素的边 际替代率指的是在产量一定的情况下,某一种 要素的增加与另一种要素的减少之间的比例。
MRSKL K / L
R称为K对L的边际替代率,即若减小一单位劳动 而增加R单位资本。
• 其他条件不变时,某一种投入要素增加一个单位 时导致的产出量的增加量。用于描述投入要素对 产出量的影响程度。
MPK f / K MPL f / L
• 边际产量不为负。
MPK 0, MPL 0,
• 边际产量递减。
( MPK ) K
2f K2
0
( MPL )
L
2f不变时,该要素增加1%所引起的产出量的
变化率。
EK
Y Y
K f * K K K Y
EL
Y Y
L f * L L L Y
⑵ 规模报酬 • 所有要素的产出弹性之和 • 规模报酬不变 • 规模报酬递增 • 规模报酬递减
⒊ 要素替代弹性(Elasticity of Substitution) ⑴ 要素的边际产量(Marginal Product)