相交线对顶角教案
七年级数学上册5.1相交线5.1.1对顶角教案华东师大版(new)

《对顶角》[教学目标]1。
通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力2.在具体情境中了解对顶角,能找出图形中的一个角的对顶角,理解对顶角相等,并能运用它解决一些简单问题[教学重点与难点]重点:对顶角的概念。
对顶角性质与应用难点:理解对顶角相等的性质的探索[教学过程]一、创设情境激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。
观察剪刀剪布的过程,引入两条相交直线所成的角.学生观察、思考、回答问题教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,二、小组交流认识对顶角,探索对顶角性质1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?根据不同的位置怎么将它们分类?学生思考并在小组内交流,全班交流。
当学生直观地感知角有“对顶”关系时,教师引导学生用几何语言准确表达AOD∠;AOC∠有一条公共边与OA,延长线它们的另一边互为反向∠与有公共的顶点O,而且AOCBODAOC∠∠两边的反向延长线∠的两边分别是BOD2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?(学生得出结论:对顶的两个角相等)3.学生根据观察和度量完成下表:两条直线相交所形成的角分类位置关系数量关系4.概括对顶角概念和对顶角的性质三、展示提升练习:下列说法对不对(1)对顶角可以看成是平角被过它顶点的一条射线分成的两个角(2)对顶角相等,相等的两个角是对顶角四、反馈拓展1、如图,直线a,b相交,401=∠,求432∠∠∠,,的度数.2、已知,如图,8035=∠=∠COFAOC,,求:DOFAOD∠∠和的度数[作业]填空题1、如图,直线AB、CD、EF相交于点O,AOE∠的对顶角是,COF∠的邻补角是若AOC∠=2:3,∠=∠:AOE130∠EOD,则BOC=2、如图,直线AB、CD相交于点O30∠EOF=COE,则=FOB∠AOC∠∠90==尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
相交线对顶角教学设计

相交线教学设计(一)教学设计思路由于本节课的内容在理解上较为容易,因此在本教案的内容安排上,尝试利用“发现法”教学,引导学生自己观察,分析特征猜想结论,然后推理论证。
由于学生的年龄较小,学习几何的时间太短,理论性的证明,往往使他们觉得枯燥无味,因此根据教材的特点,创设问题情境,让他们自己去发现事物的特性,尝试数学家发现问题的思维过程,会使学生充满极大的乐趣去参与教学活动,课堂的效果将会很好。
教学目标知识与技能表述对顶角、邻补角的概念、性质,并能利用它进行简单的推理和计算;通过对顶角性质的推理过程,提高推理和逻辑思维能力;通过变式图形的识图训练,提高识图能力。
过程与方法经历实际操作,通过观察讨论等活动,能在具体的情境中认识对顶角、邻补角。
情感态度价值观从图形变化过程中,树立正确的辩证唯物主义观点;认识几何图形的位置美。
教学重点和难点重点是对顶角的概念和性质;难点是对顶角的概念,关键是掌握对顶角的特征,以及对顶角与邻补角的区别与联系。
解决办法:引导学生讨论归纳,并以练习加以巩固。
教学方法教具直观演示法、启发引导、尝试研讨、变式练习课时安排2课时教具学具准备投影仪或电脑、三角板、自制复合胶片、木条制成的相交直线的模型教学过程设计(一)创设情境,引入课题观察图5.1-1,注意剪刀剪开布片过程中有关角的变化。
让学生自己带一把剪刀,通过实践、观察得出:握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角也相应变小,直到剪开布片。
如果把剪刀的构造看作两条相交的直线,这就关系到两条相交直线(intersection lines)所成的角的问题。
说明:图中的剪刀是有宽度的,是有限长的,当我们把它们看成直线时,这就是两条相交直线。
相交线有许多重要性质,并且在生产和生活中有广泛应用。
它就是我们本节要研究的课题:【教法说明】以剪刀为实例引出本章内容,目的是①通过实例,让学生了解相交线、是我们日常生活中经常见到的;②通过画面,培养学生的空间想象能力;③通过画面,启发学生广泛地联想,让学生知道,相交线的概念是从实物中抽象出来的;④通过学生熟悉的事物,激发学生的学习兴趣。
对顶角初中教案

对顶角初中教案课程目标:1. 理解对顶角的定义和性质;2. 能够识别和判断对顶角;3. 能够运用对顶角解决实际问题。
教学重点:1. 对顶角的定义和性质;2. 对顶角的识别和判断。
教学难点:1. 对顶角的性质的理解和应用;2. 解决实际问题时的思维转换。
教学准备:1. 教学课件或黑板;2. 几何图形工具;3. 练习题。
教学过程:一、导入(5分钟)1. 引入新课:介绍对顶角的定义和性质;2. 举例说明:展示一些几何图形,让学生观察并指出对顶角;3. 学生尝试:让学生自己画出两个交叉的直线,并标出对顶角。
二、新课讲解(15分钟)1. 讲解对顶角的定义:对顶角是指两条交叉直线上的两对相对角,它们的度数相等;2. 讲解对顶角的性质:对顶角相等,即它们的度数相等;3. 示例讲解:通过几何图形,解释对顶角的性质,并让学生进行观察和理解;4. 应用讲解:讲解如何运用对顶角解决实际问题,如在几何题中找到对顶角等。
三、课堂练习(15分钟)1. 练习题:给出一些几何图形,让学生找出对顶角,并计算它们的度数;2. 学生独立完成练习题,老师进行解答和讲解;3. 练习题:给出一些实际问题,让学生运用对顶角进行解决;4. 学生独立完成练习题,老师进行解答和讲解。
四、课堂小结(5分钟)1. 回顾本节课的内容:对顶角的定义和性质;2. 学生总结:让学生自己总结对顶角的性质和应用;3. 提问回答:老师提问,学生回答,巩固对顶角的理解。
五、作业布置(5分钟)1. 布置作业:让学生回家后做一些关于对顶角的练习题,巩固所学知识;2. 作业要求:认真完成,正确解答,如有疑惑可以请教家长或同学。
教学反思:本节课通过讲解和练习,让学生掌握了对顶角的定义和性质,并能够识别和判断对顶角。
在教学过程中,要注意让学生充分理解对顶角的性质,并能够运用对顶角解决实际问题。
同时,也要注重学生的课堂参与和思考,培养他们的几何思维和解决问题的能力。
初中数学对顶角的技巧教案

初中数学对顶角的技巧教案教学目标:1. 让学生理解对顶角的定义和性质;2. 培养学生运用对顶角解决实际问题的能力;3. 提高学生对几何图形的观察和分析能力。
教学内容:1. 对顶角的定义和性质;2. 对顶角的运用和解决实际问题。
教学过程:一、导入(5分钟)1. 利用图片或实物展示对顶角的实例,引导学生观察和思考;2. 提问:什么是对顶角?它们有什么特点?二、新课讲解(15分钟)1. 讲解对顶角的定义:在两个相交的直线之间,位于同一顶点的两个角互称为对顶角;2. 讲解对顶角的性质:对顶角相等;3. 通过示例和练习,让学生理解和掌握对顶角的性质。
三、课堂练习(15分钟)1. 出示练习题,让学生独立完成;2. 讲解练习题,引导学生运用对顶角解决实际问题;3. 学生互相交流解题思路和方法。
四、拓展与应用(15分钟)1. 出示拓展题目,让学生思考和讨论;2. 引导学生运用对顶角解决实际问题,如在建筑设计、道路规划等方面应用;3. 学生展示自己的解题成果,互相学习和借鉴。
五、总结与反思(5分钟)1. 让学生回顾本节课所学内容,总结对顶角的定义、性质和运用;2. 引导学生反思自己在学习过程中的优点和不足,提出改进措施;3. 鼓励学生积极参与课堂讨论,提出问题和疑问。
教学评价:1. 课堂讲解的清晰度和连贯性;2. 学生练习的正确率和解题思路;3. 学生对拓展应用的参与度和解决问题能力;4. 学生对课堂总结和反思的深度。
教学资源:1. 图片或实物展示对顶角的实例;2. 练习题和拓展题目;3. 几何画板或黑板等教学工具。
教学建议:1. 在导入环节,可以利用生活中的实例,如道路交叉口、建筑物等,引导学生观察和思考对顶角;2. 在新课讲解环节,可以通过示例和练习,让学生理解和掌握对顶角的性质;3. 在课堂练习环节,可以给出不同难度的练习题,让学生独立完成,提高解题能力;4. 在拓展与应用环节,可以引导学生运用对顶角解决实际问题,提高学生的应用能力;5. 在总结与反思环节,可以让学生回顾所学内容,反思自己的学习过程,提出问题和疑问。
初中对顶角教案

初中对顶角教案课程类型:数学年级:初中八年级教学目标:1. 让学生理解对顶角的定义,掌握对顶角的特点。
2. 培养学生观察、思考、交流的能力,提高解决问题的能力。
3. 通过对顶角的概念,培养学生推理、论证的能力。
教学重点:1. 对顶角的定义及特点。
2. 对顶角的性质及应用。
教学难点:1. 对顶角的性质的理解和应用。
教学准备:1. 教师准备PPT,内容包括对顶角的定义、性质和应用。
2. 学生准备笔记本,用于记录知识点和练习。
教学过程:一、导入(5分钟)1. 教师通过PPT展示两个交叉的直线,引导学生观察直线交叉处的角。
2. 提问学生:这些角有什么特点?它们之间有什么关系?二、新课讲解(15分钟)1. 教师介绍对顶角的定义:在两条交叉直线上,位于同一位置的两个角互称为对顶角。
2. 教师通过PPT展示对顶角的示意图,引导学生观察对顶角的特点。
3. 教师讲解对顶角的性质:对顶角相等。
4. 教师通过PPT展示对顶角的性质的证明过程,引导学生理解和掌握。
三、课堂练习(10分钟)1. 教师布置练习题,让学生独立完成。
2. 教师选取部分学生的作业进行讲解和点评。
四、拓展与应用(10分钟)1. 教师通过PPT展示对顶角在实际问题中的应用,引导学生运用对顶角的性质解决问题。
2. 学生分组讨论,提出问题并解决。
五、总结与反思(5分钟)1. 教师引导学生总结对顶角的定义、性质和应用。
2. 学生分享自己的学习心得和体会。
教学评价:1. 课堂讲解的清晰度和连贯性。
2. 学生练习的正确率和理解程度。
3. 学生应用对顶角解决实际问题的能力。
教学反思:本节课通过引导学生观察、思考、交流,让学生理解和掌握对顶角的定义、性质和应用。
在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,提高学生的学习兴趣和自信心。
同时,要加强对学生的启发和引导,培养学生的推理和论证能力。
在今后的教学中,可以结合更多的实际例子,让学生更好地理解和应用对顶角的知识。
七年级数学上册 5.1 相交线 1《对顶角》教案 (新版)华东师大版

对顶角的性质: 对顶角相等.
1、如图,直线a、b相交,∠1=30°,求∠
2、∠
3、∠4的度数。
解:由邻补角的定义,可得
2=180°-∠1 =180°-30°a
12
2
本文档仅供文库使用。
百度文库是百度发布的供网友在线分享文档的平台。
百度文库的文档由百度用户上传,需要经过百度的审核才能发布,百度自身不编辑或修改用户上传的文档内容。
网友可以在线阅读和下载这些文档。
百度文库的文档包括教学资料、考试题库、专业资料、公文写作、法律文件等多个领域的资料。
百度用户上传文档可以得到一定的积分,下载有标价的文档则需要消耗积分。
当前平台支持主流的doc(.docx)、.ppt(.pptx)、.xls(.xlsx)、.pot、.pps、.vsd、.rtf、.wps、.et、.dps、.pdf、.txt 文件格式。
4。
初中数学对顶角图解教案

初中数学对顶角图解教案教学目标:1. 理解对顶角的定义和性质;2. 能够识别和应用对顶角;3. 掌握对顶角的证明方法。
教学重点:对顶角的定义和性质,对顶角的证明方法。
教学难点:对顶角的证明方法。
教学准备:几何画板,直尺,圆规。
教学过程:一、导入(5分钟)1. 利用几何画板,展示一个三角形ABC,其中AC和BD是交叉线,交点为E。
2. 引导学生观察三角形ABC中的角A和角C,角B和角D。
3. 提问:角A和角C有什么特殊的关系?角B和角D呢?二、新课讲解(15分钟)1. 引入对顶角的定义:在两条交叉直线上,位于同一侧的两个相对角互称为对顶角。
2. 利用几何画板,展示不同形状的图形,让学生观察并找出对顶角。
3. 讲解对顶角的性质:对顶角相等。
4. 通过几何画板,演示对顶角的证明过程。
三、课堂练习(10分钟)1. 让学生自主完成课本上的练习题,巩固对顶角的概念和性质。
2. 引导学生运用对顶角解决实际问题。
四、课堂小结(5分钟)1. 回顾本节课所学内容,让学生总结对顶角的定义、性质和证明方法。
2. 强调对顶角在几何学中的重要性。
五、课后作业(课后自主完成)1. 完成课本上的课后习题;2. 结合生活实际,寻找对顶角的应用实例,下节课分享。
教学反思:本节课通过几何画板的演示,让学生直观地理解了对顶角的定义和性质,通过课堂练习,使学生能够熟练地应用对顶角解决实际问题。
在教学过程中,要注意引导学生主动观察、思考,培养学生的几何思维能力。
同时,加强对学生的个别辅导,帮助其克服对顶角证明方法的难点。
2.1第1课时对顶角、补角和余角(教案)

一、教学内容
本节课选自教材第二章第一节,主要教学内容包括:
1.对顶角的定义及性质;
2.补角的定义及性质;
3.余角的定义及性质;
4.判断和证明对顶角、补角、余角;
5.运用对顶角、补角、余角解决实际问题。
二、核心素养目标
1.培养学生几何直观和空间想象能力,通过对顶角、补角和余角的识别与运用,深化对几何图形的认识;
3.重点难点解析:在讲授过程中,我会特别强调对顶角的识别和补角、余角的计算这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与对顶角、补角和余角相关的实际问题。
2.实验操张或使用量角器来演示对顶角相等和补角、余角的计算。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“对顶角、补角和余角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了对顶角、补角和余角的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些概念的理解。我希望大家能够掌握这些知识点,并在解决几何问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相交线对顶角教案1.知识结构2.重点和难点分析(1)本节课的重点是对顶角的概念和性质,这些是重要的基础知识,在以后的学习中常常要用到,要求学生掌握.对顶角的概念是结合图形描述的,这样描述,便于学生在图形中辨认.教学中不必让学生背这些词句,而是让学生抓住概念的本质,教给学生在图形中如何辨认它们.辨认对顶角的要领是:首先要有两条直线相交构成四个角的前提条件,再找其中有公共顶点没有公共边(或不相邻)的两个角,就是对顶角.(2)本节课的难点是对顶角性质的证明和书写格式.要证明两角相等,这对于刚学习推理证明的学生来说并非易事.教学时要引导学生回忆至今为止已经学过的关于两个角相等的定理,使学生自己联想到“同角的补角相等”这个定理,从而受到启发获得证明的思路.可先结合图形用文字语言叙述推理过程,然后再“翻译”成符号语言的几何推理格式.要特别注意使学生明确每一步推理的根据.3.教法建议(1)因为本节是由相交线的模型――用钉子固定的两根木条来引入的.所以教师要事先准备好教具,先让学生观察模型,对相交线建立感性认识,然后在从模型抽象出两条相交直线.或用我们提供的课件来引入本节课,激发学生的学习兴趣.(2)教师讲完了对顶角的定义后,可以用以下方法让学生感受对顶角的特征,探索其性质.老师拿出提前准备好的剪刀,在讲台上演示.老师不停地变换剪刀的边所成的角,让学生思考,在剪刀的边所在的角中,哪些角是对顶角,哪些角是邻补角?让学生在变化中理解对顶角和邻补角的意义.(3)本节课的内容适合启发式教学,教师可以先拿出相交线的模型,转动木条,观察角的变化,然后抽象出两条相交直线,再让学生观察四个角的特征,这四个角根据位置关系可以分几类,这两类角各有有什么特征?这些问题都要由老师设问、启发,学生经过观察、分析、归纳总结出来,让学生自己亲历一次发现的过程,有利于学生对对顶角、邻补角的概念和性质的理解.教学设计示例一、素质教育目标(一)知识教学点1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.会用对顶角的性质进行有关的推理和计算.(二)能力训练点1.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.2.通过对顶角件质的推理过程,培养学生的推理和逻辑思维能力.(三)德育渗透点从复杂图形分解为若干个基本图形的过程中,渗透化难为易的化归思想方法和方程思想.(四)美育渗透点通过实例,培养和提高学生的审美能力和审美标准;通过相交线,使学生进一步体会几何图形的简单美、对称美.二、学法引导1.教师教法:教具直观演示法启发引导、尝试研讨.2.学生学法:动手动脑、积极参与、认真研讨、学会概括.三、重点、难点及解决办法(一)重点(二)难点在较复杂的图形中准确辨认对顶角和邻补角.(三)疑点对顶角、邻补角的图形识别.(四)解决办法强调图形的基本特征,指导学生逐步学会分解复杂图形、找出基本图形的方法.四、课时安排1课时五、教具学具准备投影仪或电脑、三角尺、自制复合胶片、木条制成的相交直线的模型.六、师生互动活动设计1.通过实例创设情境,引导学生进入课题.2.通过演示实验和学生讨论、总结对顶角、邻补角两个概念.3.通过学生研讨、练习巩固完成性质的讲解.4.通过学生总结完成课堂小结.5.通过随堂练习,检测学生学习情况.七、教学步骤(一)明确目标能在图形中正确辨认对顶角和邻补角,理解其概念,掌握其性质,并运用其进行推理计算.(二)整体感知通过对较复杂图形的认识和学习,逐步加深几何知识,培养学生逻辑思维能力和逻辑推理、表达能力.(三)教学过程创设情境,引入课题投影打出本章的章前图(投影片1),然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.它们就是我们本章要研究的课题:【板书】第二章相交线、平行线【教法说明】以立交桥为实例引出本章内容,目的是①通过实例,让学生了解相交线、平行线是我们日常生活中经常见到的;②通过画面,培养学生的空间想像能力;③通过画面,启发学生广泛地联想,让学生知道,相交线、平行线的概念是从实物中抽象出来的;④通过学生熟悉的事物,激发学生的学习兴趣.学生活动:请学生举出现实空间里相交线、平行线的一些实例.教师导入:相交线、平行线在日常生活中经常见到,有着广泛应用,所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,从而引入本节课题.【板制】2.1相交线、对顶角探究新知,讲授新课教师演示:取两根木条a、b,用钉子将它们钉在一起,并且能随意张开.固定水条a,绕钉子转动b,可以看到,b的位置变化了,a、b所成的角a也随着变化.这说明两条直线相交的不同位置情况,与它们的交角大小有关.可以用它们所成的角来说明相对位置的各种情况.所以研究两条直线相交问题首先来研究两条直线相交得到的有公共顶点的四个角.这四个角都有一个公共顶点,其中有些有公共边,有些没有公共边,故我们把这些角分成两类:对顶角和邻补角.【教法说明】演示相交线的模型,目的是使学生领会研究相交线为什么要研究它们相交所成的角.1.对顶角和邻补角的概念学生活动:观察右图,同桌讨论if与Z3有什么特点,然后,举手回答,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找右图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.反馈练习:投影显示(投影片2)下列各图中,∠l和∠2是对顶角吗?为什么?(射线OA是活动的)【教法说明】本组题目是巩固对顶角概念的,通过练习,使学生掌握在图形中辨认对顶角的要领,同时又用反例印证概念,使学生加深印象,最后一个图形为下面讲部补角做铺垫。
学生活动:观察图2-l,∠1和∠2与对顶角相比,有什么相同点和不同点,从而得出邻补角的定义.【板书】∠l和∠2也是直线AB、CD相交得到的,它们不仅有一个公共顶点O,还有一条公共边OA,像这样的两个角叫做邻补角.学生活动:让学生找一找图2-1中还有没有其他邻补角,如果有,是哪些角.学生口答:∠1和∠4,∠2和∠3,∠3和∠4都是邻补角.【教法说明】把邻补角的概念与对顶角概念对比着讲解,便于掌握概念之间的联系与区别,加深对概念的理解.提出问题:如右图,∠1和∠2还是邻补角吗?为什么?师:邻补角也可以看成是一条直线与端点在这条直线上的一条射线组成的两个角,由此可知,邻补角是有特殊位置关系的两个互补的角.右图这样的邻补角在图形中也是常见的.在这种情况下,只存在一对邻补角,而不存在对顶角,与两条直线相交所得的角不同.教师演示:图中射线OC固定在一个位置不动,把∠1和∠2拉开,并且保持角的大小不变,如右图(投影片3).提出问题:∠l和∠2的和是多少度?∠l和∠2还是邻补角吗?为什么?学生活动:观察图形的变换,回答教师提出的问题,同桌可相互讨论.【教法说明】此问题意在区别互为补角和互为邻补角的概念,演示活动投影片,有助于学生抓住概念的本质,比教师单纯地强调效果更好.2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【教法说明】学生说出对顶角∠l=∠3后,启发学生再说出∠2=∠4,然后得出对顶角相等的性质.在学生理解推理思路的基础上,板书为几何符号推理的格式.对顶角的性质不难得出,放手让学生展开讨论,充分发挥学生的主动性,在活跃课堂气氛的同时,培养学生的创造思维能力【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).【教法说明】推得“对顶角相等”这个结论的过程,是课本中初次出现的一步推理,使学生了解推理可以写成“∵……∴……”的形式,并且每一步都要有根据,也就是括号里填的理由.这种推理的格式以后还要逐步渗透和训练,现在不要求自己会写推理过程,只要求学生能看明白就可以了,为以后证明打好基础。
尝试反馈,巩固练习投影显示(投影片4)【教法说明】本级统习是巩固对顶角和邻补角概念的,同时培养学生的识图能力.第1题是课本第59页练习第2题的变式,第2题是课本第59页练习第3题和“想一想”的综合.解决这类题目的关键是要善于从复杂图形中分离出基本图形.对顶角、邻补角的基本图形是两条直线相交,则三条直线相交的图形应分解为三个两条直线交于一点的图形.如:为此,对顶角有2×3=6个,邻补角的对数为4×3=12个.第3、4题是有关的概念的综合训练,其中第4题意在区别互为补角和互为邻补角的概念.投影显示(投影片5)【教法说明】第1题是直接利用对顶角相等的性质得出,第2、3题是结合图形利用对顶角相等的性质,第4题是课本59负练习第4题,是两条直线相交的一种特殊情况,为下节课讲两直线互相垂直埋下伏笔.变式训练,培养能力投影显示(投影片6)学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
解:∠3=∠1=40°(对顶角相等).∠2=180°-40°=140°(邻补角定义).∠4=∠2=140°(对顶角相等).【教法说明】例题一方面巩固了对顶角的性质;另一方面说明几何里的计算题,需要用到图形的几何性质,因此,要有根有据地计算.例题放手让学生自己解决,比教师单纯地讲解效果会更好.尽管学生书写格式不如课本上的规范,但通过集体讲评纠正后,学生印象更深刻.学生活动:让学生把例题中∠1=40°这个条件换成其他条件,而结论不变,自编几道题.变式1:把∠l=40°变为∠2-∠1=40°变式2:把∠1=40°变为∠2是∠l的3倍变式3:把∠1=40°变为∠1:∠2=2:9变式4:把∠1=40°变为∠1=平角【教法说明】学生自编开放性的题目,一是活跃课堂气氛;二是培养学生的开放思维能力和逆向思维能力.变式1、2、3均可建立方程或方程组求解,几何中计算角度和线段长度等问题常借助代数方程来解决.(四)总结、扩展角的名称特征性质相同点不同点对顶角①两条直线相交面成的角②有一个公共顶点③没有公共边对顶角相等都是两直线相交而成的角,都有一个公共顶点,它们都是成对出现。