概率论与数理统计模拟试题(十)
概率论与数理统计测试题及答案

概率论与数理统计测试题一、填空题(每小题3分,共15分)1.将3个小球随机地放到3个盒子中去,每个盒子都有1个小球的概率为__________. 2.设A ,B 是两事件,()1/4,(|)1/3P A P B A ==,则()P AB =__________.3.掷两颗骰子,已知两颗骰子点数之和是5,则其中有一颗是1点的概率是__________.4.设随机变量X 的分布函数为0,1()ln ,11,x F x x x e x e <⎧⎪=≤<⎨⎪≥⎩,则X 的概率密度为__________.5.设总体X~U[0,1],123,,X X X 是其一个样本,则123{max(,,)1/2}P X X X <=__________. 二、单项选择题(每小题3分,共15分)1.设两事件A 与B 互不相容,且P(A)>0,P(B)>0,则( )正确. (A )A B 与互不相容; (B )()()()P AB P A P B =; (C )()()()P AB P A P B =; (D )()().P A B P A -=2.一种零件的加工由两道工序完成,第一道工序、第二道工序的废品率分别为p ,q ,设两道工序的工作是独立的,则该零件的合格品率是 ( )(A )1p q --;(B) 1pq -; (C) 1p q pq --+;(D) (1)(1)p q -+-. 3.设~(),X t n 则2X 服从 ( )分布 (A)2()n χ; (B )(1,)F n ; (C )(,1)F n ; (D )(1,1)F n -.4.设随机变量X 与Y 的协方差(,)0,Cov X Y =则下列结论正确的是 ( ) (A) X 与Y 独立; (B )()()()D X Y D X D Y +=+; (C )()()()D X Y D X D Y -=-; (D) ()()()D XY D X D Y =5.设12,,,n X X X 为来自正态总体2(,)N μσ的一个样本,2211,(())1ni i X S X X n ==--∑分别为样本均值和样本方差,则下面结论中不正确的是 ( ) (A)2~(,);X N nσμ(B)22();E S σ=(C)22();1nE S n σ=- (D)222(1)/~(1).n S n σχ--三、解答题(6个小题,共60分) 1.(10分)设一仓库中有10箱同样规格产品,其中由甲、乙、丙三厂生产的分别为5箱、3箱、2箱,三厂产品的废品率依次为0.1、0.2、0.3,从这10箱产品中任取一箱,再从该箱中任取一件产品.(1)求取到的产品为废品的概率;(2)若已知取到的产品为废品,求该废品是由甲厂生产的概率. 2.(10分)对一批次品率为0.1的产品进行重复抽样检查,现抽取3件产品,以X 表示抽取的3件产品中次品的件数,试求(1)X 的分布律;(2)至少有一件是次品的概率. 3.(12分)设连续型随机变量X 的概率密度为sin ,0()0,a x x f x π<<⎧=⎨⎩,其它求:(1)系数a ; (2) 分布函数();(3){/4/2}F x P X ππ<<. 4.(8分)设二维随机变量(,)X Y 的分布律为求X 与Y 的协方差Cov (X ,Y )及P{X +Y ≥1}. 5.(10分)设随机变量(X,Y)的概率密度为6,01(,)0,y y x f x y <<<⎧=⎨⎩其它 (1)试求关于X 及Y 的边缘概率密度;(2)判断X 与Y 是否相互独立,并说明理由.6.(10分)设总体X 的概率密度为(1),01(;)0,x x f x θθθ⎧+<<=⎨⎩其它,其中(1)θθ>-是未知参数,12,,,n X X X 是X 的样本,求参数θ 的矩估计量与最大似然估计量.四、证明题(2个小题,共10分)1. (5分)设随机变量X ~N (0,1),证明随机变量(0)Y X σμσ=+>~2(,)N μσ.2.(5分)设4321,,,X X X X 是来自总体N(μ,2σ)的样本,证明2212342()()2X X X X Y σ-+-= 服从2χ分布,并写出自由度. 一、填空题(每小题3分,共15分)1.2/9;2.1/12;3.1/2;4. 1/,1()0,x x ef x <<⎧=⎨⎩其它;5.1/8.二、单项选择题(每小题3分,共15分)1.(D )2. (C);3.(B );4.(B );5. (C). 三、解答题(6个小题,共60分)1.(10分)解: 123,,A A A 分别表示取得产品是甲、乙、丙厂生产的,B 表示取出的产品为废品,P(A 1)=0.5,P(A 2)=0.3,P(A 3)=0.2,P(B|A 1)=0.1,P(B|A 2)=0.2,P(B|A 3)=0.3 (3)分(1) P(B)=P(A 1)P(B|A 1)+P(A 2)P(B|A 2)+P(A 3)P(B|A 3) (5)分=0.5⨯0.1+0.3⨯0.2+0.2⨯0.3=0.17 (7)分(2)111()(|)0.50.15(|)0.29()0.1717P A P B A P A B P B ⨯==== (1)0分2.(10分)解:(1) X ~b(3,0.1), 33{}0.10.9(0,1,2,3)k k k P X k C k -=== (3)分………7分(2)P{X ≥1}=1-P{X=0}=0.271 ………10分 3.(12分)解:(1)01sin 1;2a xdx a π=⇒=⎰………3分(2)()()xF x f t dt -∞=⎰ (6)分00,01sin ,02x x tdt x x ππ≤⎧⎪⎪=<≤⎨⎪>⎪⎩⎰1,0,01cos ,02x x x x ππ≤⎧⎪-⎪=<≤⎨⎪>⎪⎩1, ………10分241(3){/4/2}sin 2P X xdx ππππ<<==⎰ (12)分4.(8分)解: E (X )=0.5,E (Y )=0.3,E (XY )=0.1 (4)分Cov (X ,Y )=E (XY )-E (X )E (Y )=-0.05 (6)分P{X +Y ≥1}=0.2+0.4+0.1=0.7 ………8分5.(10分)解: (1)()(,)X f x f x y dy ∞-∞=⎰06,010,xydy x ⎧<<⎪=⎨⎪⎩⎰其它23,010,x x ⎧<<=⎨⎩其它 ………4分 ()(,)Y f y f x y dx ∞-∞=⎰16,010,y ydx y ⎧<<⎪=⎨⎪⎩⎰其它6(1),010,y y y -<<⎧=⎨⎩其它 ………8分 (2)X 与Y 不相互独立,因为(,)()()X Y f x y f x f y ≠ ………10分 6.(10分)解 (1)矩估计量1101()(1)2E X x x dx θθμθθ+==⋅+=+⎰ ………3分 11121μθμ-⇒=-12ˆ1X X θ-⇒=- ………5分 (2) 最大似然估计量 对于给定样本值12,,,,n x x x 似然函数为11()(;)(1)nni i i i L f x x θθθθ====+∏∏12(1)(),01n n i x x x x θθ=+<< ………7分1()ln(1)ln ni i lnL n x θθθ==++∑,1()ln 01ni i d nlnL x d θθθ==+=+∑ ………8分11ln ˆln nii nii n x xθ==+⇒=-∑∑,最大似然估计量为11ln ˆln nii nii n X Xθ==+=-∑∑ ………10分四、证明题(2个小题,共10分)1.证明 :X的概率密度为22(),x X f x -= ………1分函数,0,(,)y x y y σμσ'=+=>∈-∞∞,1(),(),y x h y h y μσσ-'===………3分2()22()[()]|()|~(,).y u Y X f y f h y h y Y N σμσ--'==⇒ ………5分2.证明:212~(0,2)~(0,1),X X N N σ-⇒~(0,1),N ………2分 两者独立 ………4分因此 22212342()()~(2)2X X X X Y χσ-+-= ………5分。
概率论与数理统计

概率论与数理统计模拟题一、填空题1、已知,7.0)B (P 4.0)A (P ==,B (A P )=0.2,则B)P(A += 0.5 。
2、已知,7.0)(,3.0)(=⋃=B A p B p 则B A P ()= 0.4 。
3、已知随机事件A 的概率0.5P(A)=,随机事件B 的概率P(B)=0.6,及条件概率 P(A|B)=0.8,则事件A B 的概率P(A B)= 0.7 。
4、已知事件A ,B ,C 相互独立,且P(A)=0.5,P(B)=0.9,P(C)=0.4。
则{}B C A )(P += 0.9 。
5、某射手每射击一枪击中目标的概率为0.8,今他对靶独立重复射击10枪,则至少有一枪击中目标的概率是__________________。
6、一口袋中装有4只白球,3只黑球,从中陆续不放回地取出三只球,则取出的三只球恰好有二只黑球的概率是 12/35 。
7、袋中有4个白球,10个红球。
甲先从袋中任取一个球,取后不放回,再放入一个与所取的颜色相反的球,然后乙再从袋中任取一球。
则甲取出的是白球,乙取出的是红球的概率是__________________。
8、某居民小区有45%住户订甲种报纸,有30%住户订乙种报纸,有60%住户至少订甲、乙两种报中的一种,则同时订甲、乙两种报的住户的百分比(概率)是 15% 。
9、某居民小区有45%住户订甲种报纸,有30%住户订乙种报纸,有2%住户同时订两种报纸。
则住户至少订甲、乙两种报纸中的一种报纸的百分比(概率)是____________。
10、若某居民小区有60%住户订甲报,有30%住户订乙报,有25%住户同时订甲、乙两种报纸。
则订甲报而不订乙报的住户的百分比(概率)是________。
11、已知事件A 与B 相互独立,又知A 发生且B 不发生的概率与B 发生且A不发生的概率相等即P(A B )=B)A P(。
又已知95)B A P(=。
则)(A P =__________。
江西理工大学概率论与数理统计考试模拟试题

江西理工大学概率论与数理统计考试模拟试题第一部分:选择题1. 某班级有60名学生,其中30人喜欢蓝色,25人喜欢红色,20人既喜欢蓝色又喜欢红色。
则该班级中至少喜欢蓝色或红色的学生人数是多少?A. 35人B. 45人C. 50人D. 55人2. 随机变量X服从均匀分布U(4, 8),则P(X ≤ 5)的值是多少?A. 1/2B. 1/4C. 3/8D. 1/83. 一批共100件产品,其中有10件次品。
从中任取两件进行检验,设X为两件中次品的件数,X服从的概率分布是:A. 二项分布B(2, 0.1)B. 二项分布B(2, 0.9)C. 泊松分布P(10)D. 正态分布N(2, 10)4. 已知随机变量X的概率密度函数为f(x) = { kx, 0 < x < 1; 0, 其他若P(X < 0.25) = 0.0625,则常数k的值是多少?A. 1B. 4C. 8D. 165. 设二维随机变量(X, Y)服从联合概率密度函数f(x, y) = { c(x^2 +y^2), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1; 0, 其他则常数c的值是多少?A. 1/4B. 1/3C. 1/2D. 1第二部分:计算题1. 设A,B是两个相互独立的事件,已知P(A) = 0.4,P(B) = 0.6,请计算P(A ∪ B)。
2. 设X为随机变量,服从正态分布N(48, 16^2),求P(44 ≤ X ≤ 52)。
3. 设随机变量X的概率密度函数为f(x) = { cx^2, 0 < x < 2; 0, 其他请计算常数c的值。
4. 一批钢筋的长度服从均值为10cm,标准差为0.2cm的正态分布。
若随机抽取10根钢筋,求其平均长度大于10.1cm的概率。
5. 已知随机变量X和Y相互独立,X为正态分布N(4, 1),Y为正态分布N(5, 4)。
求X + Y的概率密度函数。
第三部分:证明题证明:二项分布的期望值和方差分别为np和npq,其中p为成功概率,q为失败概率,n为试验次数。
概率论与数理统计模拟试题及答案

概率论与数理统计试题 考试时间:120分钟 试卷总分100分 题号 一 二 三 四 五 六 七 八 九 十 总分 得分 评卷教师一、填空题(满分15分)1.已知3.0)(=B P ,7.0)(=⋃B A P ,且A 与B 相互独立,则=)(A P 。
2.设随机变量X 服从参数为二项分布,且21}0{==X P ,则=p 。
3.设),3(~2σN X ,且1.0}0{=<X P ,则=<<}63{X P4.已知DX=1,DY=2,且X 和Y 相互独立,则D(2X-Y)=5.已知随机变量X 服从自由度为n 的t 分布,则随机变量2X 服从的分布是 。
二、选择题(满分15分)1.抛掷3枚均匀对称的硬币,恰好有两枚正面向上的概率是 。
装订线(A )0.125, (B )0.25, (C )0.375, (D )0.5 2.有γ个球,随机地放在n 个盒子中(γ≤n),则某指定的γ个盒子中各有一球的概率为 。
(A )γγn ! (B )γγn C r n ! (C )nn γ! (D) n n n C γγ! 3.设随机变量X 的概率密度为||)(x ce x f -=,则c = 。
(A )-21(B )0 (C )21 (D )14.掷一颗骰子600次,求“一点” 出现次数的均值为 。
(A )50 (B )100 (C )120 (D )1505.设总体X 在),(ρμρμ+-上服从均匀分布,则参数μ的矩估计量为 。
(A )x 1 (B )∑=-n i i X n 111 (C )∑=-n i i X n 1211 (D )x 三、计算题(满分60分)1.某商店拥有某产品共计12件,其中4件次品,已经售出2件,现从剩下的10件产品中任取一件,求这件是正品的概率。
2.设某种电子元件的寿命服从正态分布N (40,100),随机地取5个元件,求恰有两个元件寿命小于50的概率。
(8413.0)1(=Φ,9772.0)2(=Φ)3.在区间(0,1)中随机地取两个数,求事件“两数之和小于56”的概率。
概率论与数理统计模拟试卷和答案

北京语言大学网络教育学院《概率论与数理统计》模拟试卷一注意:1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。
请监考老师负责监督。
2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。
3.本试卷满分100分,答题时间为90分钟。
4.本试卷分为试题卷和答题卷,所有答案必须答在答题卷上,答在试题卷上不给分。
一、【单项选择题】(本大题共5小题,每小题3分,共15分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。
1、设A,B是两个互不相容的事件,P(A)>0 ,P(B)>0,则()一定成立。
[A]P(A)=1-P(B)[B]P(A│B)=0[C]P(A│B)=1 [D]P(AB)=02、设A,B是两个事件,P(A)>0,P(B)>0,当下面条件()成立时,A 与B一定相互独立。
[A]P( AB)=P(A)P(B)[B]P(AB)=P(A)P(B)[C]P(A│B)=P(B)[D]P(A│B)=P(A)3、若A、B相互独立,则下列式子成立的为()。
[A] P(AB) P(A)P(B) [B] P(AB)0[C] P(AB) P(BA) [D]P(AB) P(B)4、下面的函数中,()可以是离散型随机变量的概率函数。
[A] P 1 k e1(k 0,1,2 ) k![B] P 2 k e1(k 1,2 )k![C]P 3 k 1(k0,1,2 ) 2k[D] P 4 k1(k 1, 2, 3) k25、设F1(x)与F2(x)分别为随机变量X1与X2的分布函数,为了使F(x) aF1(x)bF2(x)是某一随机变量的分布函数,则下列个组中应取()。
[A] a 1 3 [B] a2 2 ,b2,b3 2 3[C a 3,b 2[D a 1,b 3] ]5 5 2 2二、【判断题】(本大题共5小题,每小题3分,共15分)正确的填T,错误的填F,填在答题卷相应题号处。
概率论与数理统计试题共九套有答案

概率论与数理统计试题(2)1.已知P(A)= 0.4,P(B)= 0.3,则(1)当A、B互不相容时,P(A∪B)= ;P(AB)= 。
(2)当A、B相互独立时,P(A∪B)= ;P(AB)= 。
2.三个人独立破译密码,他们能够单独译出的概率分别是则此密码被译出的概率是。
3.已知P(A)=0.5,P(B)=0.6,P(B|A)=0.8,则P(A∪B)= 。
4.掷两枚骰子,其点数之和为8的概率为。
5.X为一随机变量,若存在非负可积函数 f (x) (-∞<x <+∞),使得对任意实数x,都有F(x) = ,则称X为,称f (x)为X的。
6.泊松分布的概率分布是P(X = k)= ,它的数学期望E( X )= ,方差D(X) = 。
均匀分布的概率密度函数是f (x) = ,它的数学期望E( X ) = ,方差D(X) = 。
7.设随机变量X的概率密度函度为则A= ;P{| X |<= 。
8.设随机变量X服从二项分布B(4,),则P{ X = 1 }= 。
9.设X~N(100,σ2),且P{X≥110}=0.16,Φ(1)=0.84,则σ=。
二.选择题:(每小题2分,共10分)1.设A、B为任意两个事件,且AB,P(B)>0,则下列选项必然成立的是()。
(A)P(A)<P(A | B)(B)P(A)≤P(A | B)(C)P(A)>P(A | B)(D)P(A)≥P(A | B)2.设X~N(0,),则服从自由度为n-1的t分布的随机变量是()。
(A)(B)(C)(D)3.掷两枚均匀硬币,出现“一正一反”的概率是()。
(A)(B)(C)(D)4.设总体X~N(),其中已知,未知,是取自总体的一个样本,则非统计量是()。
(A)( B )(C)max() ( D )()5.在假设检验中,原假设H0,备择假设H1,则称()为犯第二类错误。
A、H0为真,接受H1B、H0不真,接受H0C、H0为真,拒绝H1D、H0不真,拒绝H0三.(10分) 已知男人中有5%是色盲患者,女人中有0.25%是色盲患者。
《概率论与数理统计》试题库

《概率论与数理统计》试题库陇南师范⾼等专科学校数信学院《概率论与数理统计》试题库⼆〇⼀四年⼋⽉⼗⼆⽇整理题库⽬录《概率论与数理统计》题库(⼀) (3)《概率论与数理统计》题库(⼆) (5)《概率论与数理统计》题库(三) (6)《概率论与数理统计》题库(四) (8)《概率论与数理统计》题库(五) (10)《概率论与数理统计》题库(六) (11)《概率论与数理统计》题库(七) (13)《概率论与数理统计》题库(⼋) (15)《概率论与数理统计》题库(九) (17)《概率论与数理统计》题库(⼗) (19)《概率论与数理统计》题库(⼗⼀) (21)《概率论与数理统计》题库(⼗⼆) (23)《概率论与数理统计》题库(⼗三) (25)《概率论与数理统计》题库(⼗四) (27)概率论与数理统计模拟试题1 (29)概率论与数理统计模拟试题2 (31)《概率论与数理统计》题库(⼀)⼀、填空题(10×3=30分)1、随机变量相互独⽴,且~P(2.3),~P(2.7),,则,。
2、随机变量ξ~N(0,4),则ξ的密度函数f(x)=,D(2ξ+1)= 。
3、随机变量~N(0,4;2,9;0),则,。
4、随机变量ξ~b(10,0.5),则E(ξ)= ,D(ξ)= 。
5、随机变量ξ的密度函数是,则C= ,。
⼆、设事件,P(A)=0.5,P(B)=0.3,P(AB)=0.2,试计算的值。
三、已知离散型随机变量的分布列为:求的分布列。
四、设随机变量相互独⽴,且~U[0,2],~,求的联合密度函数五、掷20个骰⼦,求这20个骰⼦出现的点数之和的数学期望。
六、设相互独⽴,且,,试求:的数学期望和⽅差。
七、两名⼤学⽣约定在时间12时和13时之间于预定地点见⾯,先到者等⼀刻钟后离去,假定每个⼤学⽣可以在12时到13时之间的任意时刻到达,求他们相遇的概率。
⼋、设与的分布列为试问:为何值时,与相互独⽴?《概率论与数理统计》题库(⼆)⼀、填空题1、随机变量相互独⽴,且~P(0.27),~P(1.73),,则,。
概率论与数理统计模拟试题

选择题1.设h⑴,卩2。
)为两个分布函数,苴相应的概率密度/i(X),/2(尤〕是连续函数,则必为概率密度的是(D)A /1U)/2WB 2f2W F lWD fiMF2W + /2(尤)耳002.设随机变量X飞(0,1), Y~N (1,4)且相关系数二1,则(D)A P(Y=-2X-1)=1B P(Y=2X-1)=1C P(Y=-2X+1)=1D P(Y=2X+1)=13.已知概率论的期末考试成绩服从正态分布,从这个总体中随机抽取n二36的样本,并计算得英平均分为79,标准差为9,那么下列成绩不在这次考试中全体考生成绩均值卩的的宜信区间之内的有(),并且当置信度增大时,置信区间长度()。
已知:Z005 = 1.645,减小,减小,增大,增大答案:D解析:由题知,cr=9, n=36, X =79当 & 二时,1-—=2所以Z% 二Z。
®二—(J9X- — S =79 _ -— xl.645 = 76.5325yjn 亠J36—c9X+ —Za/9 =79 +^=x 1.645 =81.4675yjn〜J36即卩的的置信区间为(,)且当u的置信度1-a增大时,置信区间的长度也增大。
故,答案为D.4・下列选项中可以正确表示为分布函数F(x)或连续性随机变量的概率密度函数f(x)的是答案:B.解析:考点1.分布函数要满足右连续。
A 不满足右连续考点2.连续性随机变量的概率密度函数的X 范I 期为(-8,*0),且在这个范|刑上积分和为.为,D 为(-1)。
故C, D 错误5.设随机变MX,r 服从正态分布N(—1,2),“(1,2),并且X, Y 不相关,aX + Y 与X +bY 亦不相关,则().(A) a — b = 1(B) a —b = 0 (C) a + b = 1 (D) a+b = 0应选(D).解 X~N(—1,2),厂N(l,2),于是D (X )= 2,D (K )=2. 又 Cov(X,Y) = 0.Cov(aX + Y^X+bY) = 0. 由协方差的性质有Cov(aX + Y,X +aY)=aCov(X, X) + Cov(Y, X) + abCov(X, Y) + bCov(Y 、Y) = aD(X)+bD(Y) = 2a + 2b =0故a + b = 0•故选(D)・&设X 为禽散性随机变量,且p = P[X=ad(i = l,2……),则X 的期望EX 存在的充分 条件是()0,x <0 0,x<0-,0 < x < 2A. F(x) = 33—,2 < x<5 4 B. F(x)=l,x> 57tx.— < x< 1 4 l,x>lC. f(x) = <,x>0 0,x<0D ・ f(x)=sinsK 竺20,其它limmslim n t s答案:D解析:EX 存在o 习伽|/川收敛,所以是EX 存在的必要条件并不一泄是充分条件.而Bn=l不能保证收敛,因而正确选项是D期望和级数知识的综合考察。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计模拟试题(十)学 院专业班号 考 试 日 期 年 月 日 姓 名 学 号 期末 题号 一 二 三 四 五 六 七 八 得分一、填空题 (每小题3分,共24分)1.设事件A ,B 互不相容,且3.0)(=A P ,6.0)(=B P ,则=)(A B P 2.若在区间(0,1)内任取两个数,则事件“两数之和小于12”的概率为3. 设随机变量X 服从均值为2、方差为2σ的正态分布,且(24)0.3P X <<=,则(0)P X <=4. 随机变量,X Y 相互独立且服从同一分布,3/)1()()(+====k k Y P k X P ,1,0=k ,则()P X Y ==5.设随机变量X 的密度函数为(),X f x 则Y=X e 的密度函数是6.设随机变量,X Y 的相关系数0.5,XY ρ=()()E X E Y==,22()()2E X E Y ==,则2[()]E X Y +=7. 设1234(,,,)X X X X 为总体(0,1)X N 的样本,则342212~X X X X-+8.设129(,,)X X X 是来自正态总体2(,0.9)N μ的样本,已知,5=x 则μ的置信度为0.95的置信区间为二、(10分)某卡车为乡村小学运送书籍,共装有10个纸箱,其中√5箱英语书、2箱数学书、3箱语文书. 到目的地时发现丢失一箱,但不知丢失哪一箱. 现从剩下9箱中任意打开两箱,结果都是英语书,求丢失的一箱也是英语书的概率.三、(12分)某设备由n 个部件构成。
在设备运转中第i 个部件需要调整的概率为(01)i i p p <<,1,2,,i n = .设各部件的状态相互独立,以X 表示在设备运转中同时需要调整的部件数,求()E X 和()D X .四、(12分)设二维随机变量(,)X Y 的联合密度函数,01(,)0,cx x y f x y <<<⎧=⎨⎩其他, 求(1)常数c ; (2),X Y 的边缘密度函数; (3)(1)P X Y +≤. 五、(10分)某种商品各周的需求量是相互独立的随机变量。
已知该商品第一周的需求量服从参数为λ的指数分布,第二周的需求量服从参数为μ的指数分布(λμ≠),试求两周总需求量的分布函数和密度函数.六、(10分)某供电站供应本地区一万户居民用电,已知每户每天用电量(单位:度)均匀分布于区间[ 0,12]上。
现要求以99%的概率保证本地区居民的正常用电,问供电站每天至少要向居民供应多少度电?(用中心极限定理近似计算,已知(2.33)0.99Φ=.) 七、(12分)已知总体X 的分布函数为()1()()0x e x F x R x μμμμ--⎧->=∈⎨≤⎩,其中μ为未知参数. 12(,,)n X X X 是来自总体的一组样本.(1)求μ的矩估计量ˆμ,它是否是μ的无偏估计? (2)求μ的极大似然估计量*μ,它是否是μ的无偏估计?八、(10分) 机器自动包装食盐,设每袋盐的净重服从正态分布,规定每袋盐的标准重量为500克,标准差不能超过10克. 某天开工后,为了检验机器是否正常工作,从已经包装好的食盐中随机取9袋,测得22499,16.03x s ==. 问这天自动包装机工作是否正常.(0.05α=)?(附表:0.05(8) 1.8595,t =0.025(8) 2.306t =,20.05(8)15.507, χ=20.025(8)17.535χ=)参考答案; 一、1.47 ; 2. 18 ; 3. 0.2 ; 4. 59; 5. 1(ln ),0f y y y≠ ;6. 6 ;7. (2)t ;8. 0.0250.025(50.3,50.3)u u -+或(4.815,5.585) 二、解 用A 表示丢失一箱后任取两箱是英语书,用k B 表示丢失的一箱为第k 箱, 3,2,1=k 分别表示英语书,数学书,语文书.3685110321)()()(29252925292431=⋅+⋅+⋅==∑=C C C C C C B A P B P A P k k k(5分).83368363)(/21)(/)()()(2924111=÷=⋅==A P C C A P B A P B P A B P(5分)三、解 引入随机变量 1 0i i X i ⎧=⎨⎩第个部件需调整第个部件不需调整1,2,i n = ,则1ni i X X ==∑12,,,n X X X 相互独立, (), ()(i i i i i E X p DX p p ==-, 1,2,i n = (6分)故 111()()()nnni i i i i i E X E X E X p ======∑∑∑111()()()(1)nnni i i i i i i D X D X D X p p ======-∑∑∑(6分)四、解: (1) 1101(,)1xx y f x y dxdy cxdx dy <<<==⎰⎰⎰⎰ , c=6(3分)(2)01x <<时1()66(1)X x f x xdy x x ==-⎰,故6(1)01()0X x x x f x -<<⎧=⎨⎩其他(3分)当01y <<时,20()63yY f y x d x y ==⎰, 故2301()0Y y y f y ⎧<<=⎨⎩其他(3分) (3)1/211/21(1)66(12)4xxP X Y xdx dy x x dx -+≤==-=⎰⎰⎰(3分)五、解 设第一周和第二周的需求量分别是,X Y ,则(,)X Y 联合密度函数是()0,0(,)0x y e x y f x y λμλμ-+⎧>>=⎨⎩其它当0≤z 时,0)(=z F Z ,当0>z 时, ()00()()zz x x y Z F z P X Y z e dx e dyλμλμ---=+≤=⎰⎰1z ze e μλλμμλμλ--=+---(7分)所以两周需求量的分布密度为(),0()()0,0z z Z Z e e z f z F z z λμλμμλ--⎧->⎪'-==⎨⎪≤⎩(3分)六、解 设 i X 为第i 户居民每天的用电量, 1210000,,,X X X 独立同分布,i X ~(0,12)U ,()6i E X =,()12i D X =,1,2,,10000i = .设供电站每天要向居民供电的量为N, 居民每天用电量为100001ii Y X==∑,则由题意有()0.99P Y N ≤≥ (5分)由独立同分布的中心极限定理,所求概率为 100006100006100006()100121001210012Y N N P Y N P -⨯-⨯-⨯⎛⎫⎛⎫≤=≤≈Φ ⎪ ⎪⎝⎭⎝⎭即 1000060.9910012N -⨯⎛⎫Φ≥⎪⎝⎭1000062.3310012N -⨯= .故 N=60403.6(度) (5分)七、解 总体X 的密度函数为()()()0x e x f x R x μμμμ--⎧>=∈⎨≤⎩(1)()1x EX xe dx μμμ+∞--==+⎰ ,故μ的矩估计量为 ˆ1X μ=- 因 ˆ()(1)E E X μμ=-= ,所以ˆμ是μ的无偏估计. (4分)(2)似然函数为 1()()11()(;) ni i i n nx x i i i i L f x eex μμμμμ=----==∑===>∏∏,1,2,i n =因()0dL d μμ>,所以()L μ单调增加,注意到i x μ>,1,2,i n = ,因此当μ取12(,,)n x x x 中最小值时,()L μ取最大,所以μ的极大似然估计量为*12min{,,}n X X X μ=(4分)12min{,,}n Z X X X = 分布函数是()1(1())n X F z F z =--,分布密度是()()()0n x Z ne x f z R x μμμμ--⎧>=∈⎨≤⎩因()1n x EZ nxedx nμμμ+∞--==+⎰,故*12min{,,}n X X X μ= 不是μ的无偏估计(4分)八、解: (1) 01:500:500H H μμ=≠. 若0H 成立, 统计量500~(8)/3X T t S -=.拒绝域为2500{||(8)}/3X t S α->,0.025(8) 2.306t =. 代入数据得T 的观察值030.18716.03T =-=-故接受H .(5分)(2)2201:100,:100H H σσ≤>.由1H 知,拒绝域为228{}100S αχ>.由22228~(8)S χχσ=知,取20.05(8)15.507χ=,代入数据得2816.0320.56100⨯=,故应拒绝0H (5分)(或先做(2),则(1)可不必做。
)。