热工专业外语第三版第八章翻译
综合英语教程(第三版)BOOK1-课文译文08.第八单元

第八单元TEXT微笑背后的信息人人都会微笑,可是你能分辩出一个人的微笑是真情流露还是虚情假意吗?儿童心理学家研究发现,婴儿很早就开始微笑了(通常可早到出生后3个星期时),可见这种行为不可能是从父母那儿学来的。
很显然,撇起小嘴巴微笑起到了存活机制的作用:微笑使婴儿显得招人喜欢,也减少了它被母亲抛弃的可能性。
微笑最初可能是人的本能反应,但它很快就受到了社会环境的影响。
4岁时,微笑已不再是公开表露喜悦心情的标记,人们也可以为了取悦他人而强颜欢笑。
根据牛津大学洛格·雷姆教授所言:“会话信号已成为一种习惯,就像人们的情绪表露一样,会自动发生。
在聆听他人说话时,成年人总是颔首和微笑,不这样做都很难。
”在不同年龄、性别以及不同文化背景的人们试图以微笑来相互鼓励时,问题随之而生,因为尽管人们已经普遍认同这种基本表情,但每一社会组织都形成了本组织的交流信号系统。
以典型的英国人“苦笑”为例,嘴角的一边向上翘,另一边则向下耷拉着,其它国家的人则对此难以理解。
说到面部表情,日本人对他们自己亦有一定之规。
在传统的日本行为规范之下,诸如生气、悲伤以及厌恶等消极情绪不应公开表露,于是日本人便代之以笑容可掬。
不同性别间的微笑也有显著的差别。
例如,女士比男士笑得频繁。
这并不是因为女士们高兴,而是因为人们总是希望女士们看起来心情舒畅;其实女士更多的时候是在感到不适或紧张时才去微笑。
爱笑的男士自诩为“善于交际”,而爱笑的女士们则自称是“很有女人味儿”。
无论出于什么原因,微笑的人总比板着面孔的人更具吸引力。
这也正是一些不懂微笑的孩子经常被同伴们冷在落操场一边的原因。
在美国,社交技能课程更侧重教授不善交际的孩子如何把握尺度面带微笑。
据说效果甚佳。
(高全孝译,张校勤校)READ MORE眉目传情眼部动作,包括各种目光对视,可以传递人们在日常生活中能捕捉到的许多微妙的信息。
热切的目光或是冷漠的盯视胜过千言万语。
目光相迎或是目光相避会产生独特的效果。
工业设计专业英语-第3版 第八课翻译

第八课画家——梵高1887年,在巴黎,梵高刚刚设法以极低的价格卖掉了他的一幅画,他为此得到了五法郎的报酬。
高更在他的回忆录《爱娃和阿普雷斯》(Ava nt et Apres)中写道:“硬币在柜台上响了起来。
”梵高毫无怨言地接过画,谢过画商后离开了。
他吃力地走着。
在他的公寓附近,一个刚从圣拉扎尔出院的可怜女人对画家微笑了一下,希望能有一位顾客。
梵高是那些博学多才的人之一。
他飞快地跑开了,好像对自己的慈善行为感到羞愧似的,肚子里还是空空的。
“从这段情节中,有两件事清晰地显现出来:一是文森特内心的彻底善良,我们一次又一次地发现这种品质得到了证实;另一种是高更倾向于创造传奇,积极地迫使艺术家与圣人进行比较;当然,梵高为此提供了无与伦比的素材。
在他们的小说《爱莉莎》(La FiLle Elisa)中,冈考特兄弟讲述了一个善良善良的女人的生活故事。
在提到这本书的时候,高更暗示文森特想把他在街上遇到的妓女从类似的命运中拯救出来。
他是个有同情心的人,宁愿饿死也不愿为残忍的死亡负责。
我们可以说,他干预了女孩们的未来,因为他看到了伊丽莎和她的命运就在他面前:对梵高来说,事实和虚构融为一体,他看到的这个人只是一个想法的化身(图8 - 1)。
在这一冲突时刻,我们可以看出他的宗教狂热。
模仿基督的高贵传统是与生俱来的,是一个充满想象力的寓言真理王国。
“如果一个人渴望真理,生命真的是,”他写道,他的妹妹”的GoncourtsLa少女Elisa,例如,和左拉的生活乐趣,和很多其他的杰作的生活告诉我们体验它自己,从而满足我们希望被告知真相。
圣经够吗?我相信耶稣今天会亲自告诉那些终日愁苦的人:他不在这里。
他又复活了。
你为何在死人中寻找活人呢?正因为我发现了旧的美,我才有更多的理由去发现新的美。
更重要的是,因为在我们自己的时代,我们自己能够行动。
在这里,梵高再次提出了他的《圣经》静物画的论点。
佐拉和冈古尔夫妇为他提供了与时俱进的生活准则。
热能与动力工程专业外文翻译、中英对照、英汉互译

毕业设计外文翻译原文标题:Proposal for a high efficiency LNGpower-generation System utilizing wasteheat from the combined cycle中文标题:一个高效的利用液化天然气联合循环余热的发电系统学院名称:能源与动力工程学院专业名称:热能与动力工程Proposal for a high efficiency LNG power-generation system utilizing waste heat from the combined cycleY. Hisazumi*, Y. Yamasaki, S. SugiyamaEngineering Department, Osaka Gas Co., 1-2 Hiranomachi 4-chome Chuo-ku, Osaka 541, Japan Accepted 9 September 1998AbstractHigh-efficiency power-generation with an LNG vaporizing system isproposed: it utilizesthe LNG's cold energy to the best potential limit. This system can be applied to LNG vaporizers in gas companies or electric power companies and recovers the LNG's cold energy as electric power. The system consists of a Rankine cycle using a Freon mixture, natural-gas. Rankine cycle and a combined cycle with gas and steam turbines. The heat sources for this system are the latent heat from the steam-turbine's condenser and the sensible heat of exhaust gas from the waste-heat recovery boiler. In order to find out the optimal condition of the system, several factors, such as gas turbine combustion pressure, steam pressure, condensing temperature in combined cycle, composition of mixture Freon, and natural gas vaporizing pressure are evaluated by simulation. The results of these studies show that in the total system, about 400 kWh can be generated by vaporizing 1 ton of LNG, including about 60 kWh/LNG ton recovered from the LNG cold energy when supplying NG in 3.6 MPa.. About 8.2MWh can be produced by using 1 ton of LNG as fuel, compared with about 7 MWh by the conventional combined system. A net efficiency of over 53%HHV could be achieved by the proposed system. In the case of the LNG terminal receiving 5 million tons of LNG per year, this system can generate 240 MW and reduce the power of the sea water pump by more than 2MW. 1998 Elsevier Science Ltd. All rights reserved.1. IntroductionIn the fiscal year 1994, the amount of LNG imported to Japan reached about 43 million tons; of this 31 million tons were used as fuel for power generation. As shown in Fig. 1, about 20% of the LNG imported was used for power generation [2]. Fig. 2 shows the major LNG power generation systems now in operation and their outputs. Several commercial LNG power generation plants have been constructed since 1979, and their total output has reached approximately 73 MW. Among the new power-generation plants without CO2 emission, this value of 73 MW is second to the 450 MW input of geo-thermal power generation plants in Japan, with the exception of power generation by refuse incinerators, and is much larger compared with the 35 MW output of solar-power plants and the 14 MW output of wind-power stations.Table 1 shows the LNG power generation plants constructed in Japan. The economics of LNG power generation became worse as the appreciation of the yen madethe cost of energy kept constant but while raising the construction cost; the adoption of the combined cycle utilizing gas-turbine and steam turbine (hereafter called combined cycle) increased the gas send-out pressure and lowered the power output per ton of LNG. Therefore, no LNG powergeneration plants were constructed in the 1990s due to lower cost effectiveness of the systems.As for the thermal power plant using natural gas as fuel, the steam turbine produced only about 6 MWh of power output per ton of LNG. But recently, improvement in blade-cooling technology and materials of the gas turbine enabled a 1400℃class turbine to be designed and increased the combustion pressure up to 3 MPa. Therefore, as shown in Fig. 3, the heat efficiency of the combined cycle has been improved and the electrical output from 1 ton of LNG has reached about 7MWh.In this paper, a proposal is made for the high-efficiency LNG power generation system based on a new concept which fully utilizes the cold energy without discarding it into the sea. The system is composed of the combined cycle and the LNG power-generation plant.2. High-efficiency LNG power-generation system2.1. Basic componentsFig.4 shows the process flow diagram of the high-efficiency LNG power-generation system. This complex system consists of the combined cycle and the LNG power generation cycle. The combined cycle is composed of a gas turbine (GAS-T) and a steam turbine (ST-T) using natural gas (NG) as fuel, while the LNG power generation cycle is composed of a Freon (uorocarbon) mixture turbine (FR-T) and a natural-gas turbine (NG-HT, NG-LT) using the latent heat of condensation from the exhaust steam and the sensible heat of the exhaust gas as heat sources. The plate fin type heat exchanger can be used for the LNG/natural gas (LNG-CON) and LNG/ Freon mixture (FR-CON). The shell-and-tube type can be selected as exchangers for exhaust steam/natural gas (LNG-VAP),exhaust steam/Freon mixture(FR-VAP), and exhaust gas/natural gas (NG-SH) applications according to the operating conditions.Ice thickness on the surface of the heat-exchanger tubes becomes a problem as heat is exchanged between exhaust gas and cold natural gas or Freon mixture. The ice thickness can be estimated by the technology of heat transfer between LNG and sea water, thus enabling one to avoid blockages due to ice inside the tubes.In addition, stable and continuous send-out of gas is made possible by using a bypass system, even if turbines and pumps for the Freon mixture and natural gas circulating systems (FR-RP, LNG-RP) stop.2.2. Features of the systemThe practical use of the following existing technologies in combination shows the high feasibility of the proposed system:. Power generation using Freon or hydrocarbon type Rankine cycle,. Power generation by natural-gas direct expansion],. TRI-EX type vaporizer which vaporizes LNG by using an intermediate medium or vacuum type LNG vaporizer.The Freon mixture is made up of the HFC type, which is a fluorocarbon consisting of H, F, and C and has no adverse influence on the ozone layer; it enables reduction in exergy loss at the heat exchanger and increases itscirculating flow rate to be achieved.The effective recovery of cold exergy and pressure exergy is made possible by the combined system using natural gas and Freon mixture Rankine cycle.Fig. 5 shows the temperature-heat duty relation when vaporizing 1 kg of LNG in the system shown in Fig. 4. Separation of the condensed natural-gas in two sections enables an increase in the heat duty between Freon (FR) and LNG, and a reduction of difference in temperature of LNG and natural gas between the inlet and outlet of the heat exchanger.3. Evaluation of the characteristics of the proposed system3.1. Process simulationThe characteristics of this system were evaluated by using process simulator. The followings are the conditions used for the calculation:Effciencies of rotating machines LNG compositionGas turbine (GAS-T) 88% CH4 89.39%Steam turbine (ST-T) 85% C2H6 8.65%Natural-gas turbine (NG-HT, LT) 88% C3H8 1.55%Freon turbine (FR-T) 88% iC4H10 0.20%Air compressor (AIR-C) 85% nC4H10 0.15%LNG pump (LNG-MP, RP) 70% iC5H12 0.01%Freon pump (FR-RP) 70% N2 0.05%Natural gas gross heat-value: 10,510 kcal/Nm3AIR/NG flow ratio of gas turbine: 323.2. Effects of send-out pressure of the natural gasWhen natural-gas is sent out at 3.5 or 1.8 MPa, evaluations were made of the effects of send-out pressure of the LNG and change in superheating temperature of the natural gas on the total output of the high pressure (NG-HT) and the low pressure (NG-LT) natural-gas expansion-turbines. Fig. 6 shows the results of this calculation, where self consumption of power is calculated from the power, raising the pressure of the LNG up to the inlet pressure of the turbine minus the power required for the original send-out pressure. In both cases, the inlet pressure rise for the turbine causes an increase of self consumption power, but brings about a greater out-put. About 7 MPa of the inlet pressure of the turbine is appropriate considering the pressure tolerance of the heat exchangers.When the superheating temperature of the natural gas at the inlet to the turbine becomes high, the recovery of power increases, but the temperature of the exhaust gas from the outlet of the natural-gas super heater (NG-SH) declines, thus indicating that there is a limitation to superheating gas.3.3. Effects of combustion pressure of the gas turbineThe outputs of the gas turbine and the steam turbine, and the efficiency per gross heating value were evaluated by changing the combustion pressure of the gas turbine operating at 1300℃turbine-inlet temperature - see Fig. 7.If the combustion pressure of the gas turbine becomes high, the output of the gas turbine increases, but the output of the steam turbine decreases because the rise in combustion pressure causes a lowering of the exhaust-gas temperature at the outlet of the gas turbine and consequently a decline in the steam temperature at the inlet of the steam turbine. However, the overall efficiency of the turbines increases upon increasing the combustion pressure because the increment of gas-turbine output exceeds the decrement of steam turbine output. As a result, taking the pressure loss into account, it is appropriate to set the send-out pressure of the natural gas at the LNG terminal at 3.5 MPa.(FR-vap),3.4. Effects of Inlet pressure of the steam turbineFig. 8 shows the relations between the steam-turbines output and exhaust gas temperatures by changing the steam pressure in the range of 3-7 MPa. As the steam pressure increases, the output of the steam turbine rises and the temperature of the exhaust gases also increase. Besides, the power required for the water-supply pump increases with a rise in the steam pressure. Therefore, the current combined cycles operate at steam pressure of 7 MPa or more because the increment of the output of steam turbine exceeds the additional power required for the water-supply pump.3.5. Rankine cycle using a Freon-mixture refrigerant.The Freon refrigerant was selected from the HFC refrigerants on the basis of marketability, boiling point and freezing-point. Table 2 shows the physical properties of HFC Freon.When only HFC-23 is used as the medium, because of its low freezing-point it never freezes even if heat is exchanged between the LNG and HFC-23. But if HFC-23 is heated by the exhaust steam of the steam turbine, the pressure rises approximately up to the critical pressure. Therefore, the use of HFC-23 is not cost effective, because it is then necessary to set a high design pressure. To cope with this problem, we evaluated the compound refrigerant composed of HFC-134a (with high boiling point) and HFC-23.Fig. 9 shows saturated vapor pressure at various temperatures, the boiling point and the dew point at atmospheric pressure for mixtures of HFC-23 andHFC-134a of various compositions. The saturated pressure at each temperature rises with the increasing mole ratio of HFC-23: Hence, 40-45% of the mole ratio of HFC-23 is the optimal value considering the design pressure of the equipment.Fig. 10 shows the plots of the output of the Freon turbine versus the condensing temperature of the steam turbine when changing the composition of the HFC-23. In this figure, the turbine outlet pressure is determined in such a way that thedifference in temperature between the LNG and Freon mixture is not less than 5℃in the Freon condenser (FR-CON). The Freon turbine's inlet-pressure is set to the saturatedtemperature of the Freon mixture, i.e. less than 2℃from the steam-condensing temperature.This figure indicates that the output of the turbine scarcely correlates with the mole ratio of HFC-23. The higher the steam-condensing temperature becomes, the greater the output per ton of LNG the turbine produces, but in such a case, it is necessary to evaluate the system as a whole because more fuel is required, as described below. The result indicates that the optimal mole composition of HFC-23 and HFC-134a is 40%/60% considering both design pressure and the output of the turbine.3.6. Comprehensive evaluation from the viewpoint of the steam-condensing Temperature.As the dew point of the exhaust gas is 42℃, it is wise to set the exit temperature of the exhaust gas from the natural-gas super heater (NG-SH) to 80℃or more in order to prevent white smoke from the smoke stack. Table 3 shows the effect of the steam-condensing temperature on the generated output of the total system. The lower steam-condensing temperature brings about a higher efficiency of the total system, but also causes a lowering in the inlet temperature of natural-gas turbine. Therefore, it is appropriate to set the steam-condensing temperature at approximately 30℃.When the condensing temperature is 30C, the generated outputs per ton of LNG of the combined cycle and LNG power generation plant are 342.83 and67.55 kWh, respectively, resulting in 402.64 kWh of total generated output aftersubtracting the self-use power. As 48.94 kg of fuel is used for operating the system, the generated outputs of the combined cycle and the total system reach about 7 and 8.2 MWh, per ton of fuel respectively.3.7. Evaluation of exergyNatural-gas is liquefied at an LNG liquefaction terminal, with the consumption of about 380 kWh/LNG-ton: 1 ton of LNG having about 250 kWh of physical exergy as cold exergy and 13.5 MWh of chemical exergy. Fig. 11 shows the result of evaluating the exergy of the system shown in Fig. 4 under the optimal condition. The total output of Freon and natural gas turbines is 67.5 kWh, and the effective recovery percentage of cold exergy is 56%. As 90 kWh out of the pressure exergy can be recovered as output, about 157 kWh of net recovery can be obtained, which indicates the recovery percentage reaches about 63% for 250 kWh of LNG cold exergy. This conversion efficiency is higher than that achieved from chemical exergy to electric power.Most of the exergy loss occurs in the heat exchanger and the turbine, and in mixing with re-condensed LNG. As for the turbines, the loss of energy may be improved by using high-efficiency turbines. On the other hand, modification of the heat exchanger to reduce the energy loss may cause increased complexity of the system and is difficult to be done from the economic viewpoint. Though the recovery.percentage of cold energy in this system is low compared with the 80% in air-separation equipment, this system has the advantage of recovering a large amount of the available cold energy.4. ConclusionThe paper has proposed a high-efficiency LNG power generation system in combination with a combined-cycle power generation system fueled by natural-gas. The system utilizes LNG cold energy and it requires no sea water as a heat source.This system can be applied to LNG vaporization and send-out processes of gas companies or electric-power companies. The system recovers LNG coldenergy as an electric-power output without wasting it into sea water. The system consists of Rankine cycle with Freon mixture and a natural-gas Rankine cycle using the latent heat of exhaust steam from the steam turbine and the sensible heat of exhaust gas from the waste-heat recovery boiler. To improve the total efficiency of the system, a simulation was conducted to evaluate several factors, such as the composition of the Freon mixture, natural gas send-out pressure, as well as the combustion pressure steam inlet pressure, and steam-condensing temperature of the combined cycle. As a result, not less than 60 kWh/LNG-ton of output was generated even at a high natural-gas send-out pressure of 3.5 MPa. This value is considerably higher than the output generated at a LNG send-out pressure of 3 or 4 MPa, as given in Table 2.The system can produce about 400 kWh of net output when vaporizing 1 ton of LNG. While the conventional combined-cycle system in operation generates about 7 MWh when 1 ton of LNG is used as fuel, the system using the same amount of fuel generates about 8.2 MWh with a high degree of efficiency: a not-less-than 53% conversion efficiency was achieved per gross heat value.In the case of an LNG terminal receiving 5 million tons of LNG per year, this system can generate a power of about 240 MW when 600 t of LNG is used in an hour. With the elimination of about 24,000 tons per hour of sea water, which has been used for vaporizing 600 t/h of LNG in the conventional system, no less than 2 MW of electric power for operating sea water pumps can be saved.The proposed system emits no CO2, and can generate a large amount of electricity with high cost efficiency when incorporated into a combined cycle, with no use of sea water. Therefore, we consider that installation of this system is the one of the most favorable means of investment to put a new energy source or energy-saving equipment to practical use.To realize the full potential of this system, it is necessary to understand the heat characteristics of the Freon mixture, the icing and heat transfer characteristics of exhaust steam, the controllability of total system and the characteristics against partial load.References[1] The Center for Promotion of Natural gas Foundation. Research and development report of cold energy utilizing system, 1994[2] Japan's Energy and Economy Research Center. Energy and economy statistical data in 1995[3] Abe. Operating results and future prospect of a recent combined-cycle power generation plant. Thermal and Nuclear Power 1995;46(6):33-41[4] Maertens J. Design of Rankine cycles for power generation. Int. Refrig. 1986;9:137-43[5] Terada, Nakamoto. Power generation utilizing LNG cold. Thermal and Nuclear Power Generation 1986;37(10):66-71[6] Ooka, Ueda, Akasaka. Advanced LNG vaporizer and power generation utilizing LNG cold. Chemical Engineering 1981;45(3):187-90[7] Miura. The development of LNG vaporizer using vacuum steam heat (VSV). Journal of Japan Gas Society 1992;45:34-6[8] Nagai. Software-package and the usage. Chemical Equipment1994;August:31-7[9] Daikin Co. Ltd. Freon Data Sheet of HFC23一个高效的利用液化天然气联合循环余热的发电系统日本大阪541燃气有限公司工程部1-2平野町4肖梅中央谷,1998年9月概述本文提出了一个高效液化天然气气化发电系统,它是利用液化天然气冷能的最佳潜能极限。
专业英语第八章课文翻译1

Chiguo Chapter 8 Section 1 Coal-Fired Power Plants燃煤发电站第一段:在化石燃料发电厂中,煤,石油或者天然气在燃烧室中燃烧,燃烧产生高温的水,然后转换成水蒸气,高温的水蒸气将驱动汽轮机,汽轮机与发电机机械地连接在一起。
图8.1展示了一个典型的图表示意图。
发电厂的运行用一下简洁的语言概述。
从仓库取出煤块放入粉煤机(或者磨粉机)中粉碎,然后与预热的空气混合,最后充入燃烧室中燃烧。
燃烧室包含一个复杂的管道,抽上的水灌输到一个叫锅炉的设备中,锅炉里面水的温度逐渐上升直至它们成为水蒸气。
水蒸气被送至汽轮机中,与此同时,燃烧的废气(烟道气体)通过物理和静电除尘装置除掉99%以上的固体颗粒(灰尘)在通过烟囱或烟囱体排放出去之前。
第二段:刚刚描述的单元,是输入煤粉,空气和水输出水蒸气的单元,这几个方面的系统被统称为蒸汽发电机组,或燃烧室,或者蒸汽发生器。
当考虑根据是燃烧过程的时候常用“燃烧室”这个术语,同时当考虑因素是水汽循环时,“蒸汽发生器”这个术语被更频繁的使用。
水蒸气的3500磅/平方英寸的典型气压和华氏零下1050度的条件,是通过控制和停止(关闭)汽轮机阀门来提供的。
整齐的热能转化为水轮机的机械能。
从排气机中排出的蒸汽在热交换器中成为冷凝器中冷却形成水,再次被泵抽回锅炉里。
通过调节蒸汽的流量变化来控制涡轮发电机的输出。
截止阀具有保护作用,它通常是完全开放的,但可以“跳闸”关闭,以防止汽轮机发电机组超速,使电力输出突然下贱(由于断路器的行动)和控制阀不关闭。
第三段:图8-1表明的是一个单阶段汽轮机,但在实际中一个更加复杂的多级排列被使用以便能实现相对较高的热效率。
一个典型的多级排列如图8-2所示。
它包括四个有着不同蒸汽气压的汽轮机机械地耦合串联在一起。
用常规的概述就是高压蒸汽来自锅炉然后进入高压汽轮机。
在之前离开高压汽轮机的水蒸气回到锅炉(再热器)地区,然后送往中压汽轮机。
热能英语第三版哈工大部分翻译

热能英语第三版哈工大部分翻译Heat transfer involving motion in a fluid caused by the difference in density and the action of gravity is called natural or free convection. Heat transfer coefficients for natural convection are generally much lower than for forced convection ,and it is therefore important not to ignore radiation in calculating the total heat loss or gain. Radiant transfer may be of the same order of magnitude as natural convection, even at room temperatures, since wall temperatures in a room can affect human comfort.传热涉及流体中密度差异和重力的作用引起的流体运动称为自然或自由对流。
自然对流传热系数通常要低于强制对流,因此,重要的是计算总热量损失或增加时不要忽略辐射。
即使在室温条件下,辐射传热可能和自然对流是同一个数量级的,因为在一个房间里壁温度会影响人类生活的舒适度。
Water vapor is one of the products of combustion for all fuels which contain hydrogen. The heat content of a fuel depends on whether this water vapor is allowed to remain in the vapor state or is condensed to liquid. In the bomb calorimeter the products of combustion are cooled to the initial temperature and all of the water vapor formed during combustion is condensed to liquid. This gives the high, or gross, hest content of the fuel with the heat of vaporization included in the reported value. For the low, or net heat of combustion, it is assumed that all products of combustion remain in the gaseous state.水蒸气是所有含有氢的燃料燃烧产物之一。
Lg Points_unit 8 新编英语教程第三版 重点知识

Text II. Writing SkillsThe text is a short narrative piece of writing which vividly and amusingly relates how a young inexperienced stand-in teacher attempts to control a class that has frightened away a succession of substitutes for their own teachers. The writer is particularly successful in his effective use of comic exaggeration. The narrative is convincing due to the writer’s keen observation of the behaviour of a young and inexperienced teacher when his authority is threatened.1.The various ways in which comic exaggeration is achieved.A.The use of vivid similes.A simile is a direct comparison of one thing to another by using the word like or as.e.g. To make this clear, he showed me his thumb, a huge thing, like a pocket cudgel.B.The use of appropriate metaphors.A metaphor is a phrase which describes one thing in terms of another thing with which it can becompared without using the word like or as.e.g. I was inwardly all white flag.C.The use of striking contrast.One thing is put in sharp contrast with another so that a strong effect is produced.e.g. Enormous boys were everywhere,…Was I really so puny?D.The use of parallelisms to intensify the meaning.I was toying inwardly with ideas of thunderbolts, earthquakes, and mass executions.E.The use of vocabulary which emphasizes not the normal order in a classroom but that offighting and war.2.An excellent description of a situation which is totally out of control.3.A keen observation of the behaviour of a young , weak, inexperienced teacher.II. Language Points1.keep sb/sth under one’s thumb: control sb/stheg:--- What should a teacher do?--- He should keep his students under his thumb.--- What should a father do?--- He should keep his children under his thumb.2. cudgel: n. short thick stick or club 短棒take up the cudgel for: fight for, support strongly 为… 而奋斗;极力支持eg: People in that country are taking up the cudgels for freedom.--- What are you taking up the cudgels for now?--- We are taking up the cudgels for a good future.3. pale: adj. bloodless, upsetfeel pale at sth.eg: He felt / turned pale at the news/failure.4.startle①startle (v.)ck of surprise to; cause to move or jumpeg: What he said startled me.②startling (adj.)eg: What he said was startling.③startled (adj.)eg: He was startled to hear what he said.5.substitute7. duck (v.)①to push under water 潜入水里eg: He ducked his head in the stream to get cool.②try to escape by hiding quickly 闪躲eg: He saw a police and ducked behind a car.③try to avoid a difficulty or an unpleasant situationeg: When he came across difficulties, he ducked.8. placate①placate (v.) soothe, pacify; make calm, quiet and satisfiedto placate sbeg: The boy is crying, his mother is trying to placate him.②placatory (adj.)eg: He is placatory. ( trying to placate )9. inward①inward (adj.) situated within; turned towards the inside在内部的,内部的,内向的eg: inward happiness/ inward vision / inward fears / an inward existencethe inward parts of the body/ an inward slant of the eyeHe has achieved inward peace.The explorers discovered an inward passage.②inward/inwards: adv 向内地,向内(心)eg: The door opened inward into the room.Fold the paper inward.To turn one’s thoughts inward.Nostalgia turned his reflections inward.③inwardly (adv.) from the inside of the hearteg: Inwardly, he was seething with rage.He was inwardly assured by her sincerity.10. get nowhere: accomplish nothing; make no progress; have no resulteg: I am sure you’ll get nowhere if you change schools consta ntly.This kind of criticism will get you nowhere.( will not do you any good / youwon’t get any result if you use this kind of criticism. )11. what is the worst of it----the most unfortunate thing is that …eg: I did not buy anything that day. What was the worst of it was that I lost my purse.I could not get on the bus. What was the worst of it was that I was hurt seriously.12 . nail down①nail down say clearly 说清楚a) ( often ) (sth) be nailed down.eg: The matter could be nailed down.This theory can’t be nailed down.b) to nail sth downeg: He at last nailed the sale down.②nail sb down to stha) make sb. express his ideas 使说出明确的意见eg: I can’t nail him down to anything.Par. Nobody can make him express his opinion towards this matter.We tried to make him express his opinion about this agreement.b) make sb. keep his promise. 使遵守诺言,使肯定eg: I intend to nail him down to his promise.13. inverted sentence:eg: I managed to make out that mixed up with these giants was a certain amount of furniture= … that a certain amount of furniture was mixed up with these giants.Note:When a participle or an adverb or an adjective or a prepositional phrase or a negative word is put at the beginning, we can reverse the order of the sentence.eg: Facing me are 24 young boys and girls.In front of me stands a tall boy.In the middle of the room sat an old man.14. negligent15. indignation①indignation (n.) anger caused by injustice, misconduct etc.eg: They felt strong indignation against their teachers.An indignation meeting will be held. ( a meeting to express public indignation ).②indignant (adj.) angryeg: be indignant at sth. / be indignant with sb.16. plead/pleaded/pleadedplead/plead/plead17. toy with①think not very seriously about 不太认真地思考eg: He toyed with the idea of buying a yacht.He is toying with the matter mentioned by the students.He could still go to Australia. That was something he’d often toyed with but never done anything positive about.②handle carelessly or absent-mindedly 玩(某物),玩弄eg: H e wasn’t hungry and sat toying with his food.He is toying with a pencil.Some boys have developed a habit of toying with a pen in class.③(fig.) 玩弄eg: He’s just toying with her affections/ feelings.18. wry (adj.) pulled or twisted out of shapeeg: make a wry face 做鬼脸a wry smile: a forced smile 苦笑19. blush①blush (v.) become red in the face from shame or confusionblush for/witheg: She blushed for / with shame. 因羞愧而脸红I blush for you. ( because of what you have done or said. )blush ateg: She blushed at the thought of what she did. 想到... 就脸红②blush (n.) reddening of the faceeg: She turned away to hide her blushes.20. strike: v. attract the attention of ; have a strong effect upon the mind.sth. strike sb.: sth comes to sb’s mind / occurs to sb 造成...的印象,吸引..注意eg: How did the idea strike you?The plan strikes me as ridiculous.An idea struck me that I should do it at once.Par. An idea suddenly came to his mind.It occurred to him that she was not telling the truth.It occurred to me that I should finish the work earlier.Sudden fear came to my mind.21. mount①vt.a)to go up ( a hill, a ladder etc. )eg: I have to mount the ladder to reach the top shelf.He mounted the stairs slowly.Par. They are going up the hill.It’s difficult for the old man to go up the stairs.b) get on a horse etc.eg: The man mounted the camel and rode away.Par. He got on his horse,She got on her bicycle with difficulty.②vi.a)become greater in amounteg: The cost of living mounts steadily.Par. The expenses are becoming more and more.b) (of blood) rise into the cheekseg: A blush mounted to the girl’s face. (脸红了) Translation (unit 10)1.一个好的老师应该想尽办法管好自己所教的班。
热工术语英文对照

热工术语英文对照3 热工术语英文3.1 自动化automation采用检测与控制系统,对生产过程进行生产作业,以代替人工直接操作的措施。
对火力发电厂而言,是热力生产过程与电力发供电过程控制的总称。
在一些国家中称“仪表与控制”3.1.1 热工自动化thermopower automation采用检测与控制系统对火力发电厂的热力生产过程进行生产作业,以代替人工直接操作的措施.3.1.2 电气自动化electric automation采用检测与控制系统对火力发电厂的发供电过程进行生产作业,以代替人工操作的措施二次回路(secondarycircuit)。
3.1.3 过程自动化process automation采用检测与控制系统对生产过程进行生产作业,以代替人工直接操作的措施。
3.1.4 全过程自动化whole process automation整个生产过程包括启动、调整、停机与故障处理及其后的重新启动等操作都能自动实现3.1.5 监视monitoring观察工艺系统及设备的运行参数及状态,以确认正确参数和状态,检出不正确参数和状态。
主要是通过测量系统的一个或多个变量并将被测值与规定值比较来完成的。
3.1.6 监控supervision对生产过程的监视和控制。
需要时,还包括保证可靠生产的安全保护操作。
3.1.7 集中监视系统centralized monitoring system集中监视系统由传感器、变送器及计算机与必要的外部设备组成,是把一个车间或整个工厂的所有必要的参数集中到控制盘(台)上的仪表或CRT(参见3.4.4.7)上进行集中显示,以便于值班员进行分析处理或对生产过程进行控制。
3.1.8 系统工程system engineering系统工程是为了最好地实现系统的目的,而对系统对象及其构成要素、组织结构、信息流、控制机构等进行分析和设计的技术。
一般常把极其复杂的研制对象称为系统,它是由相互作用并相互依赖的许多组成部分结合而成的具有特定功能的有机整体。
热工专业外语第三版第八章翻译

第八章空调与制冷8.1 空调空调是一个可以同时进行多种处理的组合过程。
它可以处理空气、输送空气并把空气送入被调空间中。
空调可以从中央设备或屋顶单元提供热与冷。
为了被调空间居住者的健康和舒适度,或者为了工业生产的目的,它还可以控制并保持预先设定的温度、湿度、空气流动、空气洁净度、噪音级别和压差。
HV AC&R是供热(Heating)、通风(Ventilating)、空调(Air Conditioning)和制冷(Refrigerating)的缩写。
在通常采纳的术语中,这些组合过程与现在定义的“空调”是相同的。
由于所有这些单个过程的发展要要比其完整概念的“空调”要早,所以业内也普遍使用HV AC&R这个词。
8.1.1 空调系统的分类根据其结构与运行特性,空调系统可分类如下:(1)独立型房间空调系统独立型房间空调系统或简单的独立空调系统采用一个单独、完全的房间空调器、一个整体式末端、一个独立的室内-室外分体机或一个热泵装置。
热泵可以从一个热源吸收热量,在较高的温度上,将这些热量排放给水或空气,用于供热目的。
与其他系统不同的是,这些系统通常在每个房间都采用一个完全独立的装置。
独立型空调系统可分为两类:1)房间空调器(安装在窗户上);2)整体式末端空调器(PTAC),安装时与外墙有套管连接。
在工厂已组装的、准备使用的房间空调器包括以下重要部件:一个将处理好的空气增压并供给被调空间的蒸发器风扇。
在肋管式盘管中,制冷剂蒸发,在管内直接膨胀,并在制冷季节从周围空气中吸收热量,这也称为直膨式(DX)盘管,在采暖季节时,当热的制冷剂向被调节空间释放热量时,它的作用就相当于热泵。
一个用于清除空气中微粒的空气过滤器。
一个用来把制冷剂从较低蒸发压力压缩到较高冷凝压力的压缩机。
一个使制冷剂从高温气态液化为液态的冷凝器,并通过盘管和冷凝器风扇来释放热量。
一个能感知被调空间的空气温度,并采用温度调节装置,通过压缩机的起停,以控制制冷或供热能力的温度控制系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章空调与制冷8.1 空调空调是一个可以同时进行多种处理的组合过程。
它可以处理空气、输送空气并把空气送入被调空间中。
空调可以从中央设备或屋顶单元提供热与冷。
为了被调空间居住者的健康和舒适度,或者为了工业生产的目的,它还可以控制并保持预先设定的温度、湿度、空气流动、空气洁净度、噪音级别和压差。
HV AC&R是供热(Heating)、通风(Ventilating)、空调(Air Conditioning)和制冷(Refrigerating)的缩写。
在通常采纳的术语中,这些组合过程与现在定义的“空调”是相同的。
由于所有这些单个过程的发展要要比其完整概念的“空调”要早,所以业内也普遍使用HV AC&R这个词。
8.1.1 空调系统的分类根据其结构与运行特性,空调系统可分类如下:(1)独立型房间空调系统独立型房间空调系统或简单的独立空调系统采用一个单独、完全的房间空调器、一个整体式末端、一个独立的室内-室外分体机或一个热泵装置。
热泵可以从一个热源吸收热量,在较高的温度上,将这些热量排放给水或空气,用于供热目的。
与其他系统不同的是,这些系统通常在每个房间都采用一个完全独立的装置。
独立型空调系统可分为两类:1)房间空调器(安装在窗户上);2)整体式末端空调器(PTAC),安装时与外墙有套管连接。
在工厂已组装的、准备使用的房间空调器包括以下重要部件:一个将处理好的空气增压并供给被调空间的蒸发器风扇。
在肋管式盘管中,制冷剂蒸发,在管内直接膨胀,并在制冷季节从周围空气中吸收热量,这也称为直膨式(DX)盘管,在采暖季节时,当热的制冷剂向被调节空间释放热量时,它的作用就相当于热泵。
一个用于清除空气中微粒的空气过滤器。
一个用来把制冷剂从较低蒸发压力压缩到较高冷凝压力的压缩机。
一个使制冷剂从高温气态液化为液态的冷凝器,并通过盘管和冷凝器风扇来释放热量。
一个能感知被调空间的空气温度,并采用温度调节装置,通过压缩机的起停,以控制制冷或供热能力的温度控制系统。
房间空调器与热泵型、整体式末端和整体式末端热泵型空调器的区别是:所有热泵型房间空调器都增加了四通换向阀。
有时房间空调器被分为两个分离部分:一个是包含着压缩机和冷凝器的室外冷凝机组;一个是室内空气处理器,它可以在更恰当的位置安装空气处理器,并减小室内压缩机的噪音。
可以采用单独房间的直膨式(DX)盘管来体现独立型空调系统的特性。
这是一种最简单和最直接的空气冷却方法。
大多数独立型系统都没有风道连接。
室外空气通过窗孔或一个小的挡风板引入室内。
独立型系统经常仅用在建筑物的围护区域。
(2)蒸发冷却式空调系统蒸发冷却式空调系统利用液态水蒸发的冷却效应来直接或间接地冷却空气气流。
它可以是工厂整体组合机组,也可以在现场安装。
当蒸发冷却器只提供冷却效应的其中一部分冷量时,它也可以作为中央液体循环系统或整体式机组系统的一个部件。
一个蒸发冷却系统由以下组成:进水室、过滤器、进气风机、直接接触或间接接触热交换器、排气风机、喷水室、再循环水泵和水池。
蒸发冷却系统与制冷剂冷却系统相比具有耗能低的特点。
它可以产生湿冷空气,并被广泛应用在美国西南干旱地区。
(3)除湿空调系统在除湿空调系统中,潜热制冷是由干燥剂除湿完成,显热制冷通过蒸发冷却或蒸发制冷进行。
因此,有相当部分的昂贵的蒸气压缩式制冷装置可用廉价的蒸发冷却装置代替。
除湿空调通常是除湿、蒸发冷却、制冷和干燥剂再生的组合系统。
在除湿空调系统中有两股气流:一股是工作气流,一股是再生气流。
工作气流可以是全新风气流,也可以是室外新风和室内循环空气的混合气流。
工作气流是经过处理的空气,它可以直接输送给被调空间或封闭的生产过程,也可以送往空气处理单元(AHU)、整体式机组(PU)或末端进行进一步的处理。
再生气流是一种高温气流,用于干燥剂的再生。
除湿空调系统通常由以下部件组成:旋转除湿装置、热管换热器、直接或间接蒸发制冷器、DX盘管和蒸气压缩式机组或水冷盘管和机组、风机、泵、换向器、控制装置、风道和管道。
(4)蓄冷空调系统在蓄冷空调系统或简易的蓄冷系统中,电驱动的制冷压缩机是在非尖峰时段工作的。
储箱内的冷冻水或储冰在尖峰时段用来给建筑提供冷却,在这段时间电力需求负荷和电能费用高。
蓄冷系统可以降低HV AC&R系统高的用电需求,并部分或全部地将高电能费用从尖峰时段转移到非尖峰时段。
蓄冷空调系统通常是一个集中式空调系统,采用冷冻水作为冷却介质。
除了空气、水和制冷控制系统外,该系统还有冷冻水箱或蓄冰槽、蓄冷循环泵及调节装置。
(5)洁净室空调系统洁净室或洁净空间空调系统适合于那些需要严格控制颗粒、温度、相对湿度、通风、噪音度、振动和空间压力的空间。
在洁净空间空调系统中,室内环境控制的质量直接影响着洁净空间内生产的产品。
洁净空间空调系统由空气再循环机组和补气机组组成,他们都包括调节风门、预过滤盘管、风机、高效颗粒空气(HEPA)过滤器、风道、管道工程、泵、制冷系统和除补气机组中的加湿器以外的相关控制。
(6)空间处理空调系统空间处理空调系统也称作空间空调系统。
该系统通过风机盘管、水源热泵或一些其他设备,它们在处理空间内或上面或靠近处理空间,实现冷却、除湿、加热和过滤。
风机盘管由一个小风机和一个盘管构成。
水源热泵通常由一个风机和一个翅片盘管来处理空气,一个水盘管在冷却时将热量排放到水回路,或在供热时从同一水回路吸收热量。
一个被调房间可运行一个或多个风机盘管。
通常,在建筑周边区域(外区)的各个控制区域采用小型的托架式水源热泵。
在建筑中心(内区),大型水源热泵利用风道为几个房间服务。
空间空调系统在被调空间中,进气风道通常很短,并且除了内区的大型水源热泵外,没有回气风道。
用来循环被调空间空气的压降,通常等于或小于0.6英尺水柱(WC)(150Pa)。
和单元式整体机组或中央水冷空调系统相比,空间空调系统节约了大部分用于输运回气和再循环空气的能量。
空间空调系统通常用作专用(独立)的室外通风系统,为被调空间的居住者提供室外空气。
空间空调系统通常具有比较高的噪音级别,并且在被调空间中,需要更多的定期维修。
(7)单元式整体空调系统单元式整体空调系统可以简称为单元式空调系统或整体式空调系统。
这些系统可以采用一个独立整体机组或两个分体装置。
独立整体机组包括风机、过滤器、DX盘管、压缩机、冷凝器和其他配件。
分体系统的室内空气处理单元由控制系统和空气系统组成,主要包括风机、过滤器和DX盘管,室外冷凝单元是制冷系统,由压缩机和冷凝器组成。
屋顶安装的整体式系统是最广泛应用的。
整体式空调系统可用于一个房间或多个房间。
进气风通常用来分配处理好的空气,采用DX 盘管冷却。
也可增加其它部件,使其按热泵运行,也就是一个集中式系统在供冷季节排除热量,在供热季节凝结热量用于供热。
有时在建筑周边区域,增加踢脚板式散热器或单元式加热器,作为整体式空调系统的一部分给周边区域供热。
由于具有集中式空气分配风道或集中式排热系统,所以采用大型单元整体式机组的整体式空调系统本质上是集中式系统。
整体式空调系统根据使用分为集成式、工厂装配的和作为准备使用整体式机组的主要设备,与中央水冷空调系统的冷冻水相比,采用DX盘管来冷却。
现代大型屋顶安装的整体式机组有许多复杂的部件和调节装置,在许多应用场合,它们也可以完成中央水冷空调系统的相似功能。
8.1.2 完整的系统在全空气供热和制冷系统中,能量和通风气流是通过风道在锅炉或空气处理器与被调空间之间传输。
全空气系统可适用于所有类型的舒适性和工艺性空调。
它应用于环境需要单独控制的建筑,以及有多种需求的区域,比如写字楼、学校和大学、实验室、医院、商场、酒店和轮船。
全空气系统也可用于任何要求精确控制温度和湿度的特殊场合,包括洁净室、计算机房、医院手术室和工厂。
通过一个独立的周边空气系统,或使用一个独立的周边踢脚板、再热辐射系统或热水、蒸汽和电阻加热的辐射系统,可以采用系统原先用来供冷的风道完成供热。
很多商业建筑内部不需要加热,而是只有一个周边供热系统来补偿建筑围护的热损失。
在那些仅在周边区域有供热需求,并由踢脚板散热器系统提供供热的时候,空气系统只提供室外空气必要的通风和加热。
图8-1是典型的商用全空气中央HV AC系统,图示了给通过空气处理器的气流增加能量或移除能量的主要设备。
右上部分的空气处理系统是下文将要提到的几种形式的一种。
系统的这部分通常能对空气进行加热、冷却、加湿、减湿、净化(可选)和将空气分配到一个或多个不同的被调空间。
空气处理系统还具有根据需要,吸入室外空气和排出室内空气的功能。
如图8-1所示,一种流体,通常是水,从空气处理器的冷却盘管将热量带走,再到一个或多个制冷机。
制冷机移除那种流体的能量,并使其温度降低,这样它就能返回到空气处理器,进行空气气流的再次冷却。
通过制冷机移除的热量用管内的水送到冷却塔,或内部制冷机,或远处的空冷冷凝器。
由于水能够经济地输运相对巨大的能量,制冷机和冷却塔可位于距独立的空气处理器较远的地方。
离心泵常常用于使流体在管内循环。
冷却塔和冷凝器位于室外、地面上或楼顶上,这样能量最终排放到大气中去。
可见冷却某一空间的净能流,从空间经回风风道送至空气处理器,再到制冷机,最后送至冷却塔,并被排放到大气中。
在需要空间供热时,流体将锅炉产生的能量送入空气处理器的加热盘管中。
这种流体通常是热水或蒸汽。
空气处理器循环的水,也可以选择采用锅炉产生的蒸汽来加热。
如图8-1所示,所采用的蒸汽-水换热器就是基于这个目的,它被称作换流器。
锅炉的燃料可以是天然气、液化石油气(LPG)、燃料油或者煤和木材等固体燃料。
图8-1 典型商用全空气HV AC系统中给空气处理器提供冷或热流体的设备示意图8.1.3 测试、调节、平衡测试、调节和平衡(TAB)是校核和调节建筑内所有环境系统的过程,以达到设计目的。
这个过程包括:(1)平衡空气和水的分配系统;(2)调节整个系统,以达到设计要求;(3)电气测量;(4)定量确定所有设备的性能;(5)验证自动控制系统的运转及操作顺序;(6)测量噪音和振动。
这些程序通过以下完成的:检验实际安装与设计是否一致,测量和确定系统流体流量是否达到设计要求,记录并报告结果。
有效的和高效的TAB工作需要有系统和详细的计划程序,并由有经验和有资格的人员来执行。
所有的工作,包括组织、设备校准和工作执行,都必须按计划进行。
空气侧的工作必须要和水侧与控制侧的工作相协调。
准备工作包括计划编制和编制所有程序进度、收集必要的数据(包括所有的变数)、数据评估、对所工作系统的学习、准备表格和展开初步的实地考察。
管道(风道)系统的空气泄露会严重降低性能,所以管道(风道)必须要设计、建造和安装,以减少和控制泄露。
在建造期间,所有的风道系统应密封,并进行空气泄露测试。