递归神经网络英文课件-Chapter 9 Optimization of training
深度学习RNN循环神经网络ppt课件

RNN—LSTM
ft (Wfx xt Wfhht1 bf ) (a) C 't tanh(WCx xt WChht1 bC ) (b) it (Wix xt Wihht1 bi ) (c) Ct ft *Ct1 it *C 't (d ) ot (Wox xt Wohht1 bo ) (e) ht ot * tanh(Ct ) ( f )
右图中的网络是seq2vec模型,可以 用于情感识别,文本分类等,主要 针对输入为序列信号,输出为向量 的模型建模
右图中的网络包含三个权值,分别 是U,W和V,最后损失函数采用的 是标签和输出的softmax交叉熵,其 实和最大似然函数最终推倒结果是 一致的。
RNN—vec2seq
右图是一个vec2seq模型,它的输入是 一个固定长度的向量,而输出是一个 序列化的信号,比如文本数据。这个 模型的输入x可以当作是循环神经网络 的额外输入,添加到每个隐藏神经元 中,同时每个时间步的输出y也会输入 到隐藏神经元。 在训练期间,下一个时间步的标签和 上一个时间步的输出构成交叉熵损失 函数,最终依旧采用BPTT算法进行训 练。 这样的模型可以用作image captioning 也就是看图说话。
每一个时间步计算都是用相同的激活函数和输入连接权以及循环连接权
RNN—Synced seq2seq
a(t) b Wh(t1) Ux(t) h(t) tanh(a(t) ) 2015-ReLU o(t) c Vh(t) y(t) soft max(o(t) )
L({x(1) ,..., x( )},{y(1) ,..., y( )}) 上图是隐藏神经元之间有循环连接,并且每一个
神经网络专题ppt课件

(4)Connections Science
(5)Neurocomputing
(6)Neural Computation
(7)International Journal of Neural Systems
7
3.2 神经元与网络结构
人脑大约由1012个神经元组成,而其中的每个神经元又与约102~ 104个其他神经元相连接,如此构成一个庞大而复杂的神经元网络。 神经元是大脑处理信息的基本单元,它的结构如图所示。它是以细胞 体为主体,由许多向周围延伸的不规则树枝状纤维构成的神经细胞, 其形状很像一棵枯树的枝干。它主要由细胞体、树突、轴突和突触 (Synapse,又称神经键)组成。
15
4.互连网络
互连网络有局部互连和全互连 两种。 全互连网络中的每个神经元都 与其他神经元相连。 局部互连是指互连只是局部的, 有些神经元之间没有连接关系。 Hopfield 网 络 和 Boltzmann 机 属于互连网络的类型。
16
人工神经网络的学习
学习方法就是网络连接权的调整方法。 人工神经网络连接权的确定通常有两种方法:
4
5. 20世纪70年代 代表人物有Amari, Anderson, Fukushima, Grossberg, Kohonen
经过一段时间的沉寂后,研究继续进行
▪ 1972年,芬兰的T.Kohonen提出了一个与感知机等神经 网络不同的自组织映射理论(SOM)。 ▪ 1975年,福岛提出了一个自组织识别神经网络模型。 ▪ 1976年C.V.Malsburg et al发表了“地形图”的自形成
6
关于神经网络的国际交流
第一届神经网络国际会议于1987年6月21至24日在美国加州圣地亚哥 召开,标志着神经网络研究在世界范围内已形成了新的热点。
Hopfield神经网络ppt课件

2)保证所有要求记忆的稳定平衡点都能收敛 到自己;
3)使伪稳定点的数目尽可能的少; 4)使稳定点的吸引域尽可能的大。 MATLAB函数
[w,b]=solvehop(T);
.
23
连续性的Hopfield网络
CHNN是在DHNN的基础上提出的,它的原理
.
34
几点说明:
1)能量函数为反馈网络的重要概念。 根据能量函数可以方便的判断系统的稳 定性;
2)能量函数与李雅普诺夫函数的区 别在于:李氏被限定在大于零的范围内, 且要求在零点值为零;
3)Hopfield选择的能量函数,只是 保证系统稳定和渐进稳定的充分条件, 而不是必要条件,其能量函数也不是唯 一的。
1、激活函数为线性函数时
2、激活函数为非线性函数时
.
29
当激活函数为线性函数时,即
vi ui 此时系统的状态方程为:
U AU B 其中A 1 WB。
R 此系统的特征方程为:
A I 0 其中I为单位对角阵。通过对解出的特征值1, 2,, r 的不同情况,可以得到不同的系统解的情况。
.
霍普菲尔德(Hopfield) 神经网络
1、网络结构形式 2、非线性系统状态演变的形式 3、离散型的霍普菲尔德网络(DHNN) 4、连续性的霍普菲尔德网络(CHNN)
.
1
网络结构形式
Hopfield网络是单层对称全反馈网络,根据激 活函数选取的不同,可分为离散型和连续性两种 ( DHNN,CHNN)。 DHNN:作用函数为hadlim,主要用于联想记忆。 CHNN:作用函数为S型函数,主要用于优化计算。
.
19
权值修正的其它方法
Preview Work for Chapter 9

Unit 5 HumanitiesHumanities —the study of human constructs and concerns (such as philosophy, language, and the arts) rather than natural processes or social relations.Chapter 9 The Story of Fairy Tales1. CHAPTER GOALSLearn about the reasons that fairy tales developed and continue to existLearn a Listening Strategy: Recognize lecture language that signals when information is importantLearn a Note-taking Strategy: Highlight key ideas in your notes2. Think about the topicRead this section from a psychology textbook about the themes found in fairy tales.Common Themes in Fairy TalesA child’s world is rich with stories. The tales they see in movies, read in books, or that their parents and grandparents tell them take them on magical journeys. They take them to many different places, where they meet many strange and wonderful people, animals, or creatures. When we take a step back, however, it becomes clear that the stories are not quite as different from each other as they might first appear.Fairy tales —these first magical stories told to children —contain many similar main ideas, or themes. These themes are also similar across cultures. No matter where a child is born, his fairy tales probably have characters like a poor servant girl who marries a prince, starving children who find a new home, or a young peasant boy who discovers that he is actually a lost king. In fact, the most popular theme in fairy tales involves a person rising above his or her low position in life.Another very common theme is caution. The main character, or protagonist, often receives a warning: “Be home before midnight,” says the godmother to Cinderella. Fairy tales teach the young listener the terrible consequences of ignoring warnings. The message is predictable and clear: if you ignore the warning, you will pay the penalty.The plots, or story lines, of fairy tales vary, but they usually follow the same sort of progression:• The protagonist does not obey a warning or is unfairly treated. He is sent away or runs away.•He must complete a difficult or dangerous task, or must suffer in some other way, in order to make everything right again.• He returns home in a better condition than before.At some point in the fairy tale, something magical happens. The protagonist meets mysterious creatures. Perhaps he rubs a lamp and a genie appears to grant his wishes. The creatures sometimes give him helpful magical gifts with special powers, like a cape that makes him invisible.There is danger and drama, but most fairy tales end happily. The protagonist is successful and rewarded with marriage, money, survival, and wisdom. And the audience learns an important lesson about life without ever leaving home.Check your comprehension3. Answer the questions about the reading on page 91. Then discuss your answers with a partner.1. What is the definition of a fairy tale?2. What are two of the most popular themes in fairy tales?3. What is one of the lessons that children learn from fairy tales?Expand your vocabulary4. Match the words from the reading with their definitions. These words will also be in the lecture. Look back at the reading on page 91 to checkyour answers.1. magical a. the people listening to a story2. creature b. one of the players in a story3. theme c. a living thing in a fantasy story that is not a person4. character d. strange and removed from everyday life5. protagonist e. the main subject or idea in a story6. consequence f. the events that form the main action of a story7. plot g. something that happens as result of an action8. audience h. the main player in a story5. Circle the phrase that best completes the meaning of the underlined idiom.We know that fairy tales from different cultures have different characters and settings, but when we take a step back we understand things _________.a. in a new wayb. in a better wayc. in the wrong wayDiscuss the reading6. Discuss these questions in a small group. Share your answers with the class.1. What are some of the lessons that you remember learning from fairy tales?2. What are some of the magical objects and creatures that you remember from fairy tales? As a child, which of these things did you wish could have or meet?7. Study the meaning of these general academic words. Then fill in the blanks below with the correct words in the correct form. These words will be used in the lecture.purpose: the reason for doing or making somethingassume: to think that something is true although there is no proofPeople _________ many things about fairy tales without really thinking about them. Let’s look at the ________ of fairy tales from an educational point of view.8. Read this transcript from a lecture on fairy tales. Take notes and highlight key points and important information.I’d like to focus on one of the common themes that we see in fairy tales, ... one idea that runs throughout every story —we must be cautious… Let me repeat that idea,… we must live cautiously. In these tales, peace and happiness can only exist if warnings are obeyed. This idea is key to fairy tales.Let’s look at a few examples. Cinderella may have a magical dress, but she must be back when the clock strikes twelve. The king may invite fairies to the party for the new princess, but he must invite ALL the fairies or terrible results will follow.This idea that we see in every story is very important,. . . the idea that all happiness depends on one action. All will be lost if one bad thing happens.。
神经网络方法-PPT课件精选全文完整版

信号和导师信号构成,分别对应网络的输入层和输出层。输
入层信号 INPi (i 1,根2,3据) 多传感器对标准试验火和各种环境条件
下的测试信号经预处理整合后确定,导师信号
Tk (k 1,2)
即上述已知条件下定义的明火和阴燃火判决结果,由此我们
确定了54个训练模式对,判决表1为其中的示例。
15
基于神经网络的融合算法
11
局部决策
局部决策采用单传感器探测的分析算法,如速率持续 法,即通过检测信号的变化速率是否持续超过一定数值来 判别火情。 设采样信号原始序列为
X(n) x1 (n), x2 (n), x3 (n)
式中,xi (n) (i 1,2,3) 分别为温度、烟雾和温度采样信号。
12
局部决策
定义一累加函数 ai (m为) 多次累加相邻采样值 的xi (差n) 值之和
样板和对应的应识别的结果输入人工神经网络,网络就会通过
自学习功能,慢慢学会识别类似的图像。
第二,具有联想存储功能。人的大脑是具有联想功能的。用人
工神经网络的反馈网络就可以实现这种联想。
第三,具有容错性。神经网络可以从不完善的数据图形进行学
习和作出决定。由于知识存在于整个系统而不是一个存储单元
中,一些结点不参与运算,对整个系统性能不会产生重大影响。
18
仿真结果
19
仿真结果
20
2
7.2 人工神经元模型—神经组织的基本特征
3
7.2 人工神经元模型—MP模型
从全局看,多个神经元构成一个网络,因此神经元模型的定义 要考虑整体,包含如下要素: (1)对单个人工神经元给出某种形式定义; (2)决定网络中神经元的数量及彼此间的联结方式; (3)元与元之间的联结强度(加权值)。
深度学习之神经网络(CNN-RNN-GAN)算法原理+实战课件PPT模板可编辑全文

8-5showandtell模型
8-2图像生成文本评测指标
8-4multi-modalrnn模型
8-6showattendandtell模型
8-10图像特征抽取(1)-文本描述文件解析
8-8图像生成文本模型对比与总结
8-9数据介绍,词表生成
8-7bottom-uptop-downattention模型
第6章图像风格转换
06
6-1卷积神经网络的应用
6-2卷积神经网络的能力
6-3图像风格转换v1算法
6-4vgg16预训练模型格式
6-5vgg16预训练模型读取函数封装
6-6vgg16模型搭建与载入类的封装
第6章图像风格转换
单击此处添加文本具体内容,简明扼要的阐述您的观点。根据需要可酌情增减文字,与类别封装
06
7-12数据集封装
第7章循环神经网络
7-13计算图输入定义
7-14计算图实现
7-15指标计算与梯度算子实现
7-18textcnn实现
7-17lstm单元内部结构实现
7-16训练流程实现
第7章循环神经网络
7-19循环神经网络总结
第8章图像生成文本
08
第8章图像生成文本
02
9-9文本生成图像text2img
03
9-10对抗生成网络总结
04
9-11dcgan实战引入
05
9-12数据生成器实现
06
第9章对抗神经网络
9-13dcgan生成器器实现
9-14dcgan判别器实现
9-15dcgan计算图构建实现与损失函数实现
9-16dcgan训练算子实现
9-17训练流程实现与效果展示9-14DCGAN判别器实现9-15DCGAN计算图构建实现与损失函数实现9-16DCGAN训练算子实现9-17训练流程实现与效果展示
Feed-forward Networks-神经网络算法

into subset 1, 2, …, N, respectively. If a linear machine can classify the pattern from i , as belonging to class i, for i = 1, …, N, then the pattern sets are
x1 x2 y -1 -1 -1 -1 1 1 1 -1 1 1 1 -1
It is impotssible for finding such W and T that satisfying y = sgn(W X - T):
If (-1)w1 + (-1)w2 < T, then (+1)w1 + (+1)w2 > T If (-1)w1 + (+1)w2 > T, then (+1)w1 + (-1)w2 < T
x1 x2 xn
Pattern
i 0(X) Classifier
1 or 2 or … or R Class
Geometric Explanation of Classification
Pattern -- an n-dimensional vector.
All n-dimensional patterns constitute an n-dimensional Euclidean space E n and is called pattern space.
gi-ti h(iXc)laasrseisffcaglia(rXv)a>lugesj(aXn)d, it,jh=e
《神经网络优化计算》PPT课件

l k
1
y
l j
y
l j
l j
f
' (v)
k k
k
l k
1
[(dk Ok ) f '(vk )]
f '(vk )
O
d O d
前向计算
反向传播
智能优化计算
3.3 反馈型神经网络
一般结构 各神经元之间存在相互联系
分类 连续系统:激活函数为连续函数 离散系统:激活函数为阶跃函数
3.2 多层前向神经网络
3.2.1 一般结构 3.2.2 反向传播算法
3.3 反馈型神经网络
3.3.1 离散Hopfield神经网络 3.3.2 连续Hopfield神经网络 3.3.3 Hopfield神经网络在TSP中的应用
智能优化计算
3.1 人工神经网络的基本概念
3.1.1 发展历史
“神经网络”与“人工神经网络” 1943年,Warren McCulloch和Walter Pitts建立了
ym 输出层
智能优化计算
3.1 人工神经网络的基本概念
3.1.3 网络结构的确定
网络的拓扑结构
前向型、反馈型等
神经元激活函数
阶跃函数
线性函数
f (x) ax b
Sigmoid函数
f
(
x)
1
1 e
x
f(x)
+1
0
x
智能优化计算
3.1 人工神经网络的基本概念
3.1.4 关联权值的确定
智能优化计算
第三章 神经网络优化计算
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Minimize the cost function on the training set
θ∗ = arg min J(X(train), θ) θ
Gradient descent
θ = θ − η∇J(θ)
Xiaogang Wang
Optimization for Training Deep Models
Xiaogang Wang
Optimization for Training Deep Models
cuhk
Optimization Basics Optimization of training deep neural networks
Multi-GPU Training
Jacobian matrix and Hessian matrix
cuhk
Optimization Basics Optimization of training deep neural networks
Multi-GPU Training
Local minimum, local maximum, and saddle points
When ∇J(θ) = 0, the gradient provides no information about which direction to move Points at ∇J(θ) = 0 are known as critical points or stationary points A local minimum is a point where J(θ) is lower than at all neighboring points, so it is no longer possible to decrease J(θ) by making infinitesimal steps A local maximum is a point where J(θ) is higher than at all neighboring points, so it is no longer possible to increase J(θ) by making infinitesimal steps Some critical points are neither maxima nor minima. These are known as saddle points
Jacobian matrix contains all of the partial derivatives of all the elements of a vector-valued function
Function f : Rm → Rn, then the Jacobian matrix J ∈ Rn×m of f is
defined
such
that
Ji ,j
=
∂ ∂xj
f
(x)i
The
second
derivative
f ∂2
∂xi ∂xj
tells
us
how
the
first
derivative
will
change
as we vary the input. It is useful for determining whether a critical point
Xiaogang Wang
Optimization for Training Deep Models
cHale Waihona Puke hkOptimization Basics Optimization of training deep neural networks
Multi-GPU Training
Local minimum, local maximum, and saddle points
cuhk
Optimization Basics Optimization of training deep neural networks
Multi-GPU Training
Outline
1 Optimization Basics 2 Optimization of training deep neural networks 3 Multi-GPU Training
Xiaogang Wang
Optimization for Training Deep Models
cuhk
Optimization Basics Optimization of training deep neural networks
Multi-GPU Training
Training neural networks
In the context of deep learning, we optimize functions that may have many local minima that are not optimal, and many saddle points surrounded by very flat regions. All of this makes optimization very difficult, especially when the input to the function is multidimensional. We therefore usually settle for finding a value of J that is very low, but not necessarily minimal in any formal sense.
Optimization Basics Optimization of training deep neural networks
Multi-GPU Training
Optimization for Training Deep Models
Xiaogang Wang
Optimization for Training Deep Models
is a local maximum, local minimum, or saddle point.
f (x) = 0 and f (x) > 0: local minimum f (x) = 0 and f (x) < 0: local maximum f (x) = 0 and f (x) = 0: saddle point or a part of a flat region