外文翻译---神经网络概述
neural information processing systems介绍

neural information processing systems介绍Neural information processing systems,简称neural nets,是一种模拟人类神经系统的计算模型,用于处理和解释大量数据。
它们在许多领域都有广泛的应用,包括但不限于机器学习、人工智能、自然语言处理、图像识别等。
一、神经网络的基本原理神经网络是由多个神经元互联而成的计算系统,通过模拟人脑的工作方式,能够学习和识别复杂的数据模式。
神经元是神经网络的基本单元,它接收输入信号,通过非线性变换和权重的加权和,产生输出信号。
多个神经元的组合形成了一个复杂的网络结构,能够处理大量的输入数据,并从中提取有用的信息。
二、神经网络的类型神经网络有多种类型,包括感知机、卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆(LSTM)和Transformer等。
每种类型都有其特定的应用场景和优势,可以根据具体的问题和数据特点选择合适的网络模型。
三、神经网络的发展历程神经网络的发展经历了漫长的历程,从最初的感知机到现在的深度学习技术,经历了多次变革和优化。
在这个过程中,大量的研究者投入了大量的时间和精力,不断改进网络结构、优化训练方法、提高模型的泛化能力。
四、神经网络的应用领域神经网络的应用领域非常广泛,包括但不限于图像识别、语音识别、自然语言处理、推荐系统、机器人视觉等。
随着技术的不断发展,神经网络的应用场景也在不断扩展,为许多领域带来了革命性的变革。
五、神经网络的未来发展未来神经网络的发展将面临许多挑战和机遇。
随着数据量的不断增加和计算能力的提升,神经网络将更加深入到各个领域的应用中。
同时,如何提高模型的泛化能力、降低计算复杂度、解决过拟合问题等也是未来研究的重要方向。
此外,神经网络的算法和理论也需要不断完善和深化,为未来的应用提供更加坚实的基础。
六、结论神经信息处理系统是一种强大的计算模型,具有广泛的应用领域和巨大的发展潜力。
外文翻译---人工神经网络

英文文献英文资料:Artificial neural networks (ANNs) to ArtificialNeuralNetworks, abbreviations also referred to as the neural network (NNs) or called connection model (ConnectionistModel), it is a kind of model animals neural network behavior characteristic, distributed parallel information processing algorithm mathematical model. This network rely on the complexity of the system, through the adjustment of mutual connection between nodes internal relations, so as to achieve the purpose of processing information. Artificial neural network has since learning and adaptive ability, can provide in advance of a batch of through mutual correspond of the input/output data, analyze master the law of potential between, according to the final rule, with a new input data to calculate, this study analyzed the output of the process is called the "training". Artificial neural network is made of a number of nonlinear interconnected processing unit, adaptive information processing system. It is in the modern neuroscience research results is proposed on the basis of, trying to simulate brain neural network processing, memory information way information processing. Artificial neural network has four basic characteristics:(1) the nonlinear relationship is the nature of the nonlinear common characteristics. The wisdom of the brain is a kind of non-linear phenomena. Artificial neurons in the activation or inhibit the two different state, this kind of behavior in mathematics performance for a nonlinear relationship. Has the threshold of neurons in the network formed by the has better properties, can improve the fault tolerance and storage capacity.(2) the limitations a neural network by DuoGe neurons widely usually connected to. A system of the overall behavior depends not only on the characteristics of single neurons, and may mainly by the unit the interaction between the, connected to the. Through a large number of connection between units simulation of the brain limitations. Associative memory is a typical example of limitations.(3) very qualitative artificial neural network is adaptive, self-organizing, learning ability. Neural network not only handling information can have all sorts of change, and in the treatment of the information at the same time, the nonlinear dynamic system itself is changing. Often by iterative process description of the power system evolution.(4) the convexity a system evolution direction, in certain conditions will depend on a particular state function. For example energy function, it is corresponding to the extreme value of the system stable state. The convexity refers to the function extreme value, it has DuoGe DuoGe system has a stable equilibrium state, this will cause the system to the diversity of evolution.Artificial neural network, the unit can mean different neurons process of the object, such as characteristics, letters, concept, or some meaningful abstract model. The type of network processing unit is divided into three categories: input unit, output unit and hidden units. Input unit accept outside the world of signal and data; Output unit of output system processing results; Hidden unit is in input and output unit, not between by external observation unit. The system The connections between neurons right value reflect the connection between the unit strength, information processing and embodied in the network said the processing unit in the connections. Artificial neural network is a kind of the procedures, and adaptability, brain style of information processing, its essence is through the network of transformation and dynamic behaviors have akind of parallel distributed information processing function, and in different levels and imitate people cranial nerve system level of information processing function. It is involved in neuroscience, thinking science, artificial intelligence, computer science, etc DuoGe field cross discipline.Artificial neural network is used the parallel distributed system, with the traditional artificial intelligence and information processing technology completely different mechanism, overcome traditional based on logic of the symbols of the artificial intelligence in the processing of intuition and unstructured information of defects, with the adaptive, self-organization and real-time characteristic of the study.Development historyIn 1943, psychologists W.S.M cCulloch and mathematical logic W.P home its established the neural network and the math model, called MP model. They put forward by MP model of the neuron network structure and formal mathematical description method, and prove the individual neurons can perform the logic function, so as to create artificial neural network research era. In 1949, the psychologist put forward the idea of synaptic contact strength variable. In the s, the artificial neural network to further development, a more perfect neural network model was put forward, including perceptron and adaptive linear elements etc. M.M insky, analyzed carefully to Perceptron as a representative of the neural network system function and limitations in 1969 after the publication of the book "Perceptron, and points out that the sensor can't solve problems high order predicate. Their arguments greatly influenced the research into the neural network, and at that time serial computer and the achievement of the artificial intelligence, covering up development new computer and new ways of artificial intelligence and the necessity and urgency, make artificial neural network of research at a low. During this time, some of the artificial neural network of the researchers remains committed to this study, presented to meet resonance theory (ART nets), self-organizing mapping, cognitive machine network, but the neural network theory study mathematics. The research for neural network of research and development has laid a foundation. In 1982, the California institute of J.J.H physicists opfield Hopfield neural grid model proposed, and introduces "calculation energy" concept, gives the network stability judgment. In 1984, he again put forward the continuous time Hopfield neural network model for the neural computers, the study of the pioneering work, creating a neural network for associative memory and optimization calculation, the new way of a powerful impetus to the research into the neural network, in 1985, and scholars have proposed a wave ears, the study boltzmann model using statistical thermodynamics simulated annealing technology, guaranteed that the whole system tends to the stability of the points. In 1986 the cognitive microstructure study, puts forward the parallel distributed processing theory. Artificial neural network of research by each developed country, the congress of the United States to the attention of the resolution will be on jan. 5, 1990 started ten years as the decade of the brain, the international research organization called on its members will the decade of the brain into global behavior. In Japan's "real world computing (springboks claiming)" project, artificial intelligence research into an important component.Network modelArtificial neural network model of the main consideration network connection topological structure, the characteristics, the learning rule neurons. At present, nearly 40 kinds of neural network model, with back propagation network, sensor, self-organizing mapping, the Hopfieldnetwork.the computer, wave boltzmann machine, adapt to the ear resonance theory. According to the topology of the connection, the neural network model can be divided into:(1) prior to the network before each neuron accept input and output level to the next level, the network without feedback, can use a loop to no graph. This network realization from the input space to the output signal of the space transformation, it information processing power comes from simple nonlinear function of DuoCi compound. The network structure is simple, easy to realize. Against the network is a kind of typical prior to the network.(2) the feedback network between neurons in the network has feedback, can use a no to complete the graph. This neural network information processing is state of transformations, can use the dynamics system theory processing. The stability of the system with associative memory function has close relationship. The Hopfield network.the computer, wave ear boltzmann machine all belong to this type.Learning typeNeural network learning is an important content, it is through the adaptability of the realization of learning. According to the change of environment, adjust to weights, improve the behavior of the system. The proposed by the Hebb Hebb learning rules for neural network learning algorithm to lay the foundation. Hebb rules say that learning process finally happened between neurons in the synapse, the contact strength synapses parts with before and after the activity and synaptic neuron changes. Based on this, people put forward various learning rules and algorithm, in order to adapt to the needs of different network model. Effective learning algorithm, and makes the godThe network can through the weights between adjustment, the structure of the objective world, said the formation of inner characteristics of information processing method, information storage and processing reflected in the network connection. According to the learning environment is different, the study method of the neural network can be divided into learning supervision and unsupervised learning. In the supervision and study, will the training sample data added to the network input, and the corresponding expected output and network output, in comparison to get error signal control value connection strength adjustment, the DuoCi after training to a certain convergence weights. While the sample conditions change, the study can modify weights to adapt to the new environment. Use of neural network learning supervision model is the network, the sensor etc. The learning supervision, in a given sample, in the environment of the network directly, learning and working stages become one. At this time, the change of the rules of learning to obey the weights between evolution equation of. Unsupervised learning the most simple example is Hebb learning rules. Competition rules is a learning more complex than learning supervision example, it is according to established clustering on weights adjustment. Self-organizing mapping, adapt to the resonance theory is the network and competitive learning about the typical model.Analysis methodStudy of the neural network nonlinear dynamic properties, mainly USES the dynamics system theory and nonlinear programming theory and statistical theory to analysis of the evolution process of the neural network and the nature of the attractor, explore the synergy of neural network behavior and collective computing functions, understand neural information processing mechanism. In order to discuss the neural network and fuzzy comprehensive deal of information may, the concept of chaos theory and method will play a role. The chaos is a rather difficult toprecise definition of the math concepts. In general, "chaos" it is to point to by the dynamic system of equations describe deterministic performance of the uncertain behavior, or call it sure the randomness. "Authenticity" because it by the intrinsic reason and not outside noise or interference produced, and "random" refers to the irregular, unpredictable behavior, can only use statistics method description. Chaotic dynamics of the main features of the system is the state of the sensitive dependence on the initial conditions, the chaos reflected its inherent randomness. Chaos theory is to point to describe the nonlinear dynamic behavior with chaos theory, the system of basic concept, methods, it dynamics system complex behavior understanding for his own with the outside world and for material, energy and information exchange process of the internal structure of behavior, not foreign and accidental behavior, chaos is a stationary. Chaotic dynamics system of stationary including: still, stable quantity, the periodicity, with sex and chaos of accurate solution... Chaos rail line is overall stability and local unstable combination of results, call it strange attractor.A strange attractor has the following features: (1) some strange attractor is a attractor, but it is not a fixed point, also not periodic solution; (2) strange attractor is indivisible, and that is not divided into two and two or more to attract children. (3) it to the initial value is very sensitive, different initial value can lead to very different behavior.superiorityThe artificial neural network of characteristics and advantages, mainly in three aspects: first, self-learning. For example, only to realize image recognition that the many different image model and the corresponding should be the result of identification input artificial neural network, the network will through the self-learning function, slowly to learn to distinguish similar images. The self-learning function for the forecast has special meaning. The prospect of artificial neural network computer will provide mankind economic forecasts, market forecast, benefit forecast, the application outlook is very great. The second, with lenovo storage function. With the artificial neural network of feedback network can implement this association. Third, with high-speed looking for the optimal solution ability. Looking for a complex problem of the optimal solution, often require a lot of calculation, the use of a problem in some of the design of feedback type and artificial neural network, use the computer high-speed operation ability, may soon find the optimal solution.Research directionThe research into the neural network can be divided into the theory research and application of the two aspects of research. Theory study can be divided into the following two categories:1, neural physiological and cognitive science research on human thinking and intelligent mechanism.2, by using the neural basis theory of research results, with mathematical method to explore more functional perfect, performance more superior neural network model, the thorough research network algorithm and performance, such as: stability and convergence, fault tolerance, robustness, etc.; The development of new network mathematical theory, such as: neural network dynamics, nonlinear neural field, etc.Application study can be divided into the following two categories:1, neural network software simulation and hardware realization of research.2, the neural network in various applications in the field of research. These areas include: pattern recognition, signal processing, knowledge engineering, expert system, optimize the combination, robot control, etc. Along with the neural network theory itself and related theory, related to the development of technology, the application of neural network will further.Development trend and research hot spotArtificial neural network characteristic of nonlinear adaptive information processing power, overcome traditional artificial intelligence method for intuitive, such as mode, speech recognition, unstructured information processing of the defects in the nerve of expert system, pattern recognition and intelligent control, combinatorial optimization, and forecast areas to be successful application. Artificial neural network and other traditional method unifies, will promote the artificial intelligence and information processing technology development. In recent years, the artificial neural network is on the path of human cognitive simulation further development, and fuzzy system, genetic algorithm, evolution mechanism combined to form a computational intelligence, artificial intelligence is an important direction in practical application, will be developed. Information geometry will used in artificial neural network of research, to the study of the theory of the artificial neural network opens a new way. The development of the study neural computers soon, existing product to enter the market. With electronics neural computers for the development of artificial neural network to provide good conditions.Neural network in many fields has got a very good application, but the need to research is a lot. Among them, are distributed storage, parallel processing, since learning, the organization and nonlinear mapping the advantages of neural network and other technology and the integration of it follows that the hybrid method and hybrid systems, has become a hotspot. Since the other way have their respective advantages, so will the neural network with other method, and the combination of strong points, and then can get better application effect. At present this in a neural network and fuzzy logic, expert system, genetic algorithm, wavelet analysis, chaos, the rough set theory, fractal theory, theory of evidence and grey system and fusion.汉语翻译人工神经网络(ArtificialNeuralNetworks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(ConnectionistModel),它是一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。
电气专业毕业设计外文翻译---单一的神经网络PI控制高可靠性直线电机磁浮

单一的神经网络PI控制高可靠性直线电机磁浮摘要:本文论述了一种可以改善系统可靠性的新型线性鼠笼电机(linear induction motor, LIM)从LIM的标准电路方程考虑动力学终端效应,当制动特性同时作为影响力时,可以建立包含有大的补偿终端效应的等效电路模型。
等效电路模型可以用作LIM的二次磁场定向控制。
同时讨论了单神经网路PI单元作为LIM的辅助驱动效果,驱动控制的数学模型的有效性通过模拟实验被证实。
关键字:线性鼠笼电机(LIM),磁场定向控制,终端效应前言线性鼠笼电机是在低速磁浮系统中作为耐热系统,来驱动车辆。
LIM 之所以有终端效应取决于它独特的装置。
由动力学终端效应产生的涡流动力导致了线性电机的额外损失,从而减少了推动力。
当矢量控制策略应用于LIM时,就必须考虑终端效应的影响,并且建立更精确的数学模型来完善控制系统的整体性能。
在本文中,讨论了在考虑终端效应很大时LIM的电路方程,推导出了LIM的计算模型。
智能控制方法被用来解决人力所难以操作的问题。
而单神经PI控制单元之所以能被用于LIM的辅助驱动是由于它简单的构造。
模拟实验已经证实了这些模型在改善整体性能上的有效性和可靠性。
考虑了终端效应的LIM的电路方程在一个长的二级类型的LIM中,和一级不同的是在二级类型中连续更换了新材料,这种新材料倾向于抵制渗透通量的突然增加,且只允许空间间隙中渗透密度的逐渐积聚。
在二级板块的进口端和出口端,因为磁通量的突然转变,会产生涡流,这种感应电流可以避免气隙磁场的突然改变。
考虑到动力学终端效应,线性电机的有效长度假设为l,二级参数转化为一级参数,在二级核心的进口端,涡流迅速增加,增加速率可以由下式计算:T1 = L r1 / R r式中:L r1——由二级转化为一级的渗漏电感系数;R r ——由二级转化为一级的等效电阻。
因为T1 = L r1 / R r的值很小,故可以忽略。
二级涡流可以迅速的达到一级励磁电流,而一级电流的涡流阶段则相反。
Elman神经网络

Elman网络的构建
NET = NEWELM(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)
PR - Rx2 维矩阵,表示R个输入的范围 Si -每层有几个神经元 TFi – 每层神经元的类型 BTF – 训练算法,默认为 'traingdx'. BLF – 学习算法,默认为 'learngdm'. PF - 表现函数,默认为 'mse'
意义:演示Elman网络如何进行时间模式 识别和分类(低通滤波)
实现方法
设置输入(两种振幅的正弦波)和期望输出 建立网络并根据输入和期望输出进行训练 用原输入信号对网络进行测试 用一组新的输入信的空调负荷预测
空调系统的逐时负荷是按时间顺序排列的 数字序列,它们之间有某种统计意义上的 关系,很难用函数描述
例一:构建一个Elman网络
构建一个单输入、单输出,隐藏层有5个 神经元的Elman网络
输入网络的IW,LW1和LW2进行观察分 析(维数)
随机产生一个输入向量,观察相应输出 为输入向量指定期望输出进行训练 观察训练后网络的输出
振幅检测
检波、低通滤波
例二:应用Elman网络进行振幅检测
空调负荷预测问题:多变量、强耦合、严 重非线性、动态性
要求:根据过去的N(N≥1)个数据预测 未来M(M ≥1 )个时刻的值
预测方法的选取
神经网络方法的优势
并行、分布式、自组织
静态网络
BP网络:系统定阶困难、规模大、收敛慢
动态网络
Elman:适应时变特性
样本数据的分段方法
空调负荷数据
每天只选9~12四个小时的负荷
基于Elman网络的空调负荷预测步骤
神经网络介绍

神经网络简介神经网络简介:人工神经网络是以工程技术手段来模拟人脑神经元网络的结构和特征的系统。
利用人工神经网络可以构成各种不同拓扑结构的神经网络,他是生物神经网络的一种模拟和近似。
神经网络的主要连接形式主要有前馈型和反馈型神经网络。
常用的前馈型有感知器神经网络、BP 神经网络,常用的反馈型有Hopfield 网络。
这里介绍BP (Back Propagation )神经网络,即误差反向传播算法。
原理:BP (Back Propagation )网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。
BP 神经网络模型拓扑结构包括输入层(input )、隐层(hide layer)和输出层(output layer),其中隐层可以是一层也可以是多层。
图:三层神经网络结构图(一个隐层)任何从输入到输出的连续映射函数都可以用一个三层的非线性网络实现 BP 算法由数据流的前向计算(正向传播)和误差信号的反向传播两个过程构成。
正向传播时,传播方向为输入层→隐层→输出层,每层神经元的状态只影响下一层神经元。
若在输出层得不到期望的输出,则转向误差信号的反向传播流程。
通过这两个过程的交替进行,在权向量空间执行误差函数梯度下降策略,动态迭代搜索一组权向量,使网络误差函数达到最小值,从而完成信息提取和记忆过程。
单个神经元的计算:设12,...ni x x x 分别代表来自神经元1,2...ni 的输入;12,...i i ini w w w 则分别表示神经元1,2...ni 与下一层第j 个神经元的连接强度,即权值;j b 为阈值;()f ∙为传递函数;j y 为第j 个神经元的输出。
若记001,j j x w b ==,于是节点j 的净输入j S 可表示为:0*nij ij i i S w x ==∑;净输入j S 通过激活函数()f ∙后,便得到第j 个神经元的输出:0()(*),nij j ij i i y f S f w x ===∑激活函数:激活函数()f ∙是单调上升可微函数,除输出层激活函数外,其他层激活函数必须是有界函数,必有一最大值。
外文翻译器

外文翻译器外文翻译器外文翻译器(Machine Translation)是指使用计算机等技术对外文进行自动翻译的工具。
它利用计算机语言处理、人工智能和语言学等多个领域的知识和技术,将源语言(外文)自动转化为目标语言(母语)的过程。
外文翻译器可以帮助人们快速准确地将外文内容转化为自己熟悉的语言,提高工作效率和信息获取能力。
外文翻译器的研究和发展始于上世纪40年代,最早采用的是基于规则的翻译方法,即根据语法规则和词汇库对源语言进行分析和转换。
然而,这种方法存在很多限制,因为语法和词汇库可能无法覆盖所有的语言特点和用法,导致翻译结果不准确和不流畅。
随着计算机技术和人工智能的发展,神经网络机器翻译(Neural Network Translation)成为外文翻译器的主流方法。
这种方法利用大规模平行语料库训练神经网络模型,通过模仿人类学习语言的方式自动学习源语言和目标语言之间的映射关系。
神经网络机器翻译能够更好地处理语法结构和上下文信息,翻译结果更加准确和自然。
除了神经网络机器翻译,外文翻译器还可以采用统计机器翻译(Statistical Machine Translation)等其他方法。
统计机器翻译利用大量的双语语料进行统计分析,找到最佳的翻译候选,然后根据概率模型对其进行排序和选择。
虽然统计机器翻译在一定程度上改善了翻译质量,但由于依赖于大量的语料库,对于某些语言和领域的翻译效果仍然不理想。
当前外文翻译器的发展已经进入了深度学习时代,融合了自然语言处理、深度学习和人工智能的多种技术手段。
深度学习通过建立多层神经网络模型,能够从大规模语料中自动学习和提取特征,进一步提升了翻译质量和效率。
此外,人工智能的发展还带来了一系列辅助工具,如术语提取、句子结构分析和语音识别等,能够进一步提高翻译的准确性和流畅度。
虽然外文翻译器在很大程度上改善了翻译效率和准确性,但由于语言本身的复杂性和多义性,完全依靠机器翻译仍然存在一些局限性。
神经网络的分类方法

神经网络的分类方法
神经网络的分类方法主要有以下几种:
1.前馈神经网络(Feedforward Neural Network):也叫全连接神经网络,网络中的神经元按照一定的顺序层层连接,信号只能从输入层流入隐藏层,从隐藏层流入输出层,没有反馈。
2.循环神经网络(Recurrent Neural Network):网络中的神经元可以与自身或前面的神经元相连,实现对时间序列数据的建模和处理。
3.自编码器神经网络(Autoencoder Neural Network):用于无监督学习的一种神经网络,通过让网络尽可能地还原输入数据,来提取输入数据最重要的特征。
4.卷积神经网络(Convolutional Neural Network):主要用于图像处理、语音识别等方面,通过卷积和池化操作提取图像中的特征。
5.深度置信网络(Deep Belief Network):通过堆叠多个自编码器来构建的一种深度神经网络,用于无监督学习和特征提取。
6.长短时记忆网络(Long Short-Term Memory):一种特殊的循环神经网络,通过门控机制来解决长期依赖问题,广泛应用于语音识别、机器翻译等领域。
7.递归神经网络(Recursive Neural Network):一种特殊的循环神经网络,用于处理树形结构和序列数据,常用于自然语言处理和计算机视觉等领域。
神经网络(NeuralNetwork)

神经⽹络(NeuralNetwork)⼀、激活函数激活函数也称为响应函数,⽤于处理神经元的输出,理想的激活函数如阶跃函数,Sigmoid函数也常常作为激活函数使⽤。
在阶跃函数中,1表⽰神经元处于兴奋状态,0表⽰神经元处于抑制状态。
⼆、感知机感知机是两层神经元组成的神经⽹络,感知机的权重调整⽅式如下所⽰:按照正常思路w i+△w i是正常y的取值,w i是y'的取值,所以两者做差,增减性应当同(y-y')x i⼀致。
参数η是⼀个取值区间在(0,1)的任意数,称为学习率。
如果预测正确,感知机不发⽣变化,否则会根据错误的程度进⾏调整。
不妨这样假设⼀下,预测值不准确,说明Δw有偏差,⽆理x正负与否,w的变化应当和(y-y')x i⼀致,分情况讨论⼀下即可,x为负数,当预测值增加的时候,权值应当也增加,⽤来降低预测值,当预测值减少的时候,权值应当也减少,⽤来提⾼预测值;x为正数,当预测值增加的时候,权值应当减少,⽤来降低预测值,反之亦然。
(y-y')是出现的误差,负数对应下调,正数对应上调,乘上基数就是调整情况,因为基数的正负不影响调整情况,毕竟负数上调需要减少w的值。
感知机只有输出层神经元进⾏激活函数处理,即只拥有⼀层功能的神经元,其学习能⼒可以说是⾮常有限了。
如果对于两参数据,他们是线性可分的,那么感知机的学习过程会逐步收敛,但是对于线性不可分的问题,学习过程将会产⽣震荡,不断地左右进⾏摇摆,⽽⽆法恒定在⼀个可靠地线性准则中。
三、多层⽹络使⽤多层感知机就能够解决线性不可分的问题,输出层和输⼊层之间的成为隐层/隐含层,它和输出层⼀样都是拥有激活函数的功能神经元。
神经元之间不存在同层连接,也不存在跨层连接,这种神经⽹络结构称为多层前馈神经⽹络。
换⾔之,神经⽹络的训练重点就是链接权值和阈值当中。
四、误差逆传播算法误差逆传播算法换⾔之BP(BackPropagation)算法,BP算法不仅可以⽤于多层前馈神经⽹络,还可以⽤于其他⽅⾯,但是单单提起BP算法,训练的⾃然是多层前馈神经⽹络。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外文原文与译文外文原文Neural Network Introduction1.ObjectivesAs you read these words you are using a complex biological neural network. You have a highly interconnected set of some 1011neurons to facilitate your reading, breathing, motion and thinking. Each of your biological neurons,a rich assembly of tissue and chemistry, has the complexity, if not the speed, of a microprocessor. Some of your neural structure was with you at birth. Other parts have been established by experience.Scientists have only just begun to understand how biological neural networks operate. It is generally understood that all biological neural functions, including memory, are stored in the neurons and in the connections between them. Learning is viewed as the establishment of new connections between neurons or the modification of existing connections.This leads to the following question: Although we have only a rudimentary understanding of biological neural networks, is it possible to construct a small set of simple artificial “neurons” and perhaps train them to serve a useful function? The answer is “yes.”This book, then, is about artificial neural networks.The neurons that we consider here are not biological. They are extremely simple abstractions of biological neurons, realized as elements in a program or perhaps as circuits made of silicon. Networks of these artificial neurons do not have a fraction of the power of the human brain, but they can be trained to perform useful functions. This book is about such neurons, the networks that contain them and their training.2.HistoryThe history of artificial neural networks is filled with colorful, creative individuals from many different fields, many of whom struggled for decades todevelop concepts that we now take for granted. This history has been documented by various authors. One particularly interesting book is Neurocomputing: Foundations of Research by John Anderson and Edward Rosenfeld. They have collected and edited a set of some 43 papers of special historical interest. Each paper is preceded by an introduction that puts the paper in historical perspective.Histories of some of the main neural network contributors are included at the beginning of various chapters throughout this text and will not be repeated here. However, it seems appropriate to give a brief overview, a sample of the major developments.At least two ingredients are necessary for the advancement of a technology: concept and implementation. First, one must have a concept, a way of thinking about a topic, some view of it that gives clarity not there before. This may involve a simple idea, or it may be more specific and include a mathematical description. To illustrate this point, consider the history of the heart. It was thought to be, at various times, the center of the soul or a source of heat. In the 17th century medical practitioners finally began to view the heart as a pump, and they designed experiments to study its pumping action. These experiments revolutionized our view of the circulatory system. Without the pump concept, an understanding of the heart was out of grasp.Concepts and their accompanying mathematics are not sufficient for a technology to mature unless there is some way to implement the system. For instance, the mathematics necessary for the reconstruction of images from computer-aided topography (CAT) scans was known many years before the availability of high-speed computers and efficient algorithms finally made it practical to implement a useful CAT system.The history of neural networks has progressed through both conceptual innovations and implementation developments. These advancements, however, seem to have occurred in fits and starts rather than by steady evolution.Some of the background work for the field of neural networks occurred in the late 19th and early 20th centuries. This consisted primarily of interdisciplinary work in physics, psychology and neurophysiology by such scientists as Hermann vonHelmholtz, Ernst Much and Ivan Pavlov. This early work emphasized general theories of learning, vision, conditioning, etc.,and did not include specific mathematical models of neuron operation.The modern view of neural networks began in the 1940s with the work of Warren McCulloch and Walter Pitts [McPi43], who showed that networks of artificial neurons could, in principle, compute any arithmetic or logical function. Their work is often acknowledged as the origin of theneural network field.McCulloch and Pitts were followed by Donald Hebb [Hebb49], who proposed that classical conditioning (as discovered by Pavlov) is present because of the properties of individual neurons. He proposed a mechanism for learning in biological neurons.The first practical application of artificial neural networks came in the late 1950s, with the invention of the perception network and associated learning rule by Frank Rosenblatt [Rose58]. Rosenblatt and his colleagues built a perception network and demonstrated its ability to perform pattern recognition. This early success generated a great deal of interest in neural network research. Unfortunately, it was later shown that the basic perception network could solve only a limited class of problems. (See Chapter 4 for more on Rosenblatt and the perception learning rule.)At about the same time, Bernard Widrow and Ted Hoff [WiHo60] introduced a new learning algorithm and used it to train adaptive linear neural networks, which were similar in structure and capability to Rosenblatt’s perception. The Widrow Hoff learning rule is still in use today. (See Chapter 10 for more on Widrow-Hoff learning.) Unfortunately, both Rosenblatt's and Widrow's networks suffered from the same inherent limitations, which were widely publicized in a book by Marvin Minsky and Seymour Papert [MiPa69]. Rosenblatt and Widrow wereaware of these limitations and proposed new networks that would overcome them. However, they were not able to successfully modify their learning algorithms to train the more complex networks.Many people, influenced by Minsky and Papert, believed that further research onneural networks was a dead end. This, combined with the fact that there were no powerful digital computers on which to experiment,caused many researchers to leave the field. For a decade neural network research was largely suspended. Some important work, however, did continue during the 1970s. In 1972 Teuvo Kohonen [Koho72] and James Anderson [Ande72] independently and separately developed new neural networks that could act as memories. Stephen Grossberg [Gros76] was also very active during this period in the investigation of self-organizing networks.Interest in neural networks had faltered during the late 1960s because of the lack of new ideas and powerful computers with which to experiment. During the 1980s both of these impediments were overcome, and researchin neural networks increased dramatically. New personal computers and workstations, which rapidly grew in capability, became widely available. In addition, important new concepts were introduced.Two new concepts were most responsible for the rebirth of neural net works. The first was the use of statistical mechanics to explain the operation of a certain class of recurrent network, which could be used as an associative memory. This was described in a seminal paper by physicist John Hopfield [Hopf82].The second key development of the 1980s was the backpropagation algo rithm for training multilayer perceptron networks, which was discovered independently by several different researchers. The most influential publication of the backpropagation algorithm was by David Rumelhart and James McClelland [RuMc86]. This algorithm was the answer to the criticisms Minsky and Papert had made in the 1960s. (See Chapters 11 and 12 for a development of the backpropagation algorithm.) These new developments reinvigorated the field of neural networks. In the last ten years, thousands of papers have been written, and neural networks have found many applications. The field is buzzing with new theoretical and practical work. As noted below, it is not clear where all of this will lead US.The brief historical account given above is not intended to identify all of the major contributors, but is simply to give the reader some feel for how knowledge inthe neural network field has progressed. As one might note, the progress has not always been "slow but sure." There have been periods of dramatic progress and periods when relatively little has been accomplished.Many of the advances in neural networks have had to do with new concepts, such as innovative architectures and training. Just as important has been the availability of powerful new computers on which to test these new concepts.Well, so much for the history of neural networks to this date. The real question is, "What will happen in the next ten to twenty years?" Will neural networks take a permanent place as a mathematical/engineering tool, or will they fade away as have so many promising technologies? At present, the answer seems to be that neural networks will not only have their day but will have a permanent place, not as a solution to every problem, but as a tool to be used in appropriate situations. In addition, remember that we still know very little about how the brain works. The most important advances in neural networks almost certainly lie in the future.Although it is difficult to predict the future success of neural networks, the large number and wide variety of applications of this new technology are very encouraging. The next section describes some of these applications.3.ApplicationsA recent newspaper article described the use of neural networks in literature research by Aston University. It stated that "the network can be taught to recognize individual writing styles, and the researchers used it to compare works attributed to Shakespeare and his contemporaries." A popular science television program recently documented the use of neural networks by an Italian research institute to test the purity of olive oil. These examples are indicative of the broad range of applications that can be found for neural networks. The applications are expanding because neural networks are good at solving problems, not just in engineering, science and mathematics, but m medicine, business, finance and literature as well. Their application to a wide variety of problems in many fields makes them very attractive. Also, faster computers and faster algorithms have made it possible to use neuralnetworks to solve complex industrial problems that formerly required too much computation.The following note and Table of Neural Network Applications are reproduced here from the Neural Network Toolbox for MATLAB with the permission of the Math Works, Inc.The 1988 DARPA Neural Network Study [DARP88] lists various neural network applications, beginning with the adaptive channel equalizer in about 1984. This device, which is an outstanding commercial success, is a single-neuron network used in long distance telephone systems to stabilize voice signals. The DARPA report goes on to list other commercial applications, including a small word recognizer, a process monitor, a sonar classifier and a risk analysis system.Neural networks have been applied in many fields since the DARPA report was written. A list of some applications mentioned in the literature follows.AerospaceHigh performance aircraft autopilots, flight path simulations, aircraft control systems, autopilot enhancements, aircraft component simulations, aircraft component fault detectorsAutomotiveAutomobile automatic guidance systems, warranty activity analyzersBankingCheck and other document readers, credit application evaluatorsDefenseWeapon steering, target tracking, object discrimination, facial recognition, new kinds of sensors, sonar, radar and image signal processing including data compression, feature extraction and noise suppression, signal/image identification ElectronicsCode sequence prediction, integrated circuit chip layout, process control, chip failure analysis, machine vision, voice synthesis, nonlinear modeling EntertainmentAnimation, special effects, market forecastingFinancialReal estate appraisal, loan advisor, mortgage screening, corporate bond rating, credit line use analysis, portfolio trading program, corporate financial analysis, currency price predictionInsurancePolicy application evaluation, product optimizationManufacturingManufacturing process control, product design and analysis, process and machine diagnosis, real-time particle identification, visual quality inspection systems, beer testing, welding quality analysis, paper quality prediction, computer chip quality analysis, analysis of grinding operations, chemical product design analysis, machine maintenance analysis, project bidding, planning and management, dynamic modeling of chemical process systemsMedicalBreast cancer cell analysis, EEG and ECG analysis, prosthesis design, optimization of transplant times, hospital expense reduction, hospital quality improvement, emergency room test advisement0il and GasExplorationRoboticsTrajectory control, forklift robot, manipulator controllers, vision systems SpeechSpeech recognition, speech compression, vowel classification, text to speech synthesisSecuritiesMarket analysis, automatic bond rating, stock trading advisory systems TelecommunicationsImage and data compression, automated information services,real-time translation of spoken language, customer payment processing systemsTransportationTruck brake diagnosis systems, vehicle scheduling, routing systems ConclusionThe number of neural network applications, the money that has been invested in neural network software and hardware, and the depth and breadth of interest in these devices have been growing rapidly.4.Biological InspirationThe artificial neural networks discussed in this text are only remotely related to their biological counterparts. In this section we will briefly describe those characteristics of brain function that have inspired the development of artificial neural networks.The brain consists of a large number (approximately 1011) of highly connected elements (approximately 104 connections per element) called neurons. For our purposes these neurons have three principal components: the dendrites, the cell body and the axon. The dendrites are tree-like receptive networks of nerve fibers that carry electrical signals into the cell body. The cell body effectively sums and thresholds these incoming signals. The axon is a single long fiber that carries the signal from the cell body out to other neurons. The point of contact between an axon of one cell and a dendrite of another cell is called a synapse. It is the arrangement of neurons and the strengths of the individual synapses, determined by a complex chemical process, that establishes the function of the neural network. Figure 6.1 is a simplified schematic diagram of two biological neurons.Figure 6.1 Schematic Drawing of Biological NeuronsSome of the neural structure is defined at birth. Other parts are developed through learning, as new connections are made and others waste away. This development is most noticeable in the early stages of life. For example, it has been shown that if a young cat is denied use of one eye during a critical window of time, it will never develop normal vision in that eye.Neural structures continue to change throughout life. These later changes tend to consist mainly of strengthening or weakening of synaptic junctions. For instance, it is believed that new memories are formed by modification of these synaptic strengths. Thus, the process of learning a new friend's face consists of altering various synapses.Artificial neural networks do not approach the complexity of the brain. There are, however, two key similarities between biological and artificial neural networks. First, the building blocks of both networks are simple computational devices (although artificial neurons are much simpler than biological neurons) that are highly interconnected. Second, the connections between neurons determine the function of the network. The primary objective of this book will be to determine the appropriate connections to solve particular problems.It is worth noting that even though biological neurons are very slow whencompared to electrical circuits, the brain is able to perform many tasks much faster than any conventional computer. This is in part because of the massively parallel structure of biological neural networks; all of the neurons are operating at the same time. Artificial neural networks share this parallel structure. Even though most artificial neural networks are currently implemented on conventional digital computers, their parallel structure makes them ideally suited to implementation using VLSI, optical devices and parallel processors.In the following chapter we will introduce our basic artificial neuron and will explain how we can combine such neurons to form networks. This will provide a background for Chapter 3, where we take our first look at neural networks in action.译文神经网络概述1.目的当你现在看这本书的时候,就正在使用一个复杂的生物神经网络。