BP神经网络

合集下载

BP神经网络详解-最好的版本课件(1)

BP神经网络详解-最好的版本课件(1)

月份 1
销量 月份 销量
2056 7
1873
2
2395 8
1478
3
2600 9
1900
4
2298 10
1500
5
1634 11
2046
6
1600 12
1556
BP神经网络学习算法的MATLAB实现
➢%以每三个月的销售量经归一化处理后作为输入
P=[0.5152
0.8173 1.0000 ;
0.8173
计算误差函数对输出层的各神经元的偏导

。 o ( k )
p
e e yio w ho y io w ho
(
yio(k) h who
whohoh(k)bo)
who
hoh(k)
e
yio
(12oq1(do(k)yoo(k)))2 yio
(do(k)yoo(k))yoo(k)
(do(k)yoo(k))f(yio(k)) o(k)
1.0000 0.7308;
1.0000
0.7308 0.1390;
0.7308
0.1390 0.1087;
0.1390
0.1087 0.3520;
0.1087
0.3520 0.0000;]';
➢%以第四个月的销售量归一化处理后作为目标向量
T=[0.7308 0.1390 0.1087 0.3520 0.0000 0.3761];
BP神经网络模型
三层BP网络
输入层 x1
x2
隐含层
输出层
-
y1
z1
1
T1
y2
z2
-
2

bp神经网络

bp神经网络

bp神经网络BP神经网络(Backpropagation Network)是一种被广泛应用于分类、预测和优化问题中的人工神经网络模型。

BP神经网络具有简单易懂、易于理解和易于实现的特点,因此在工程实践中被广泛应用。

BP神经网络的基本思想是将信息通过一层层的神经元传递,然后反向调节神经元的权重和偏置,从而实现对模型参数的优化。

BP神经网络通常包含输入层、隐层和输出层三个层次。

其中输入层用于接收输入数据,隐层用于处理输入数据,输出层用于给出模型的预测结果。

BP神经网络通过不断反向传播误差信号来调整各层神经元之间的连接权重,从而实现对模型参数的逐步优化。

BP神经网络的训练过程通常分为前向传播和反向传播两个阶段。

在前向传播阶段,输入数据被输入到神经网络中,经过一系列计算后得到输出结果。

在反向传播阶段,将输出结果与真实值进行比较,计算误差信号,并通过反向传播算法将误差信号逐层传递回到输入层,从而实现对神经网络参数(权重和偏置)的不断调整。

通过多次迭代,直到神经网络的输出结果与真实值的误差达到一定的精度要求为止。

BP神经网络的优点在于可以处理非线性问题,并且可以自适应地调整模型参数。

然而,BP神经网络也存在一些缺点,例如容易陷入局部极小值,训练速度较慢,需要大量的训练数据等等。

在实际应用中,BP神经网络已经被广泛应用于分类、预测和优化等方面。

例如,BP神经网络可以用于识别手写数字、预测股票市场走势、自动驾驶和机器人控制等方面。

另外,BP 神经网络还可以与其他机器学习算法相结合,共同解决各种复杂问题。

总之,BP神经网络是一种简单实用的人工神经网络模型,具有广泛的应用前景。

在实际应用中,需要根据具体问题对模型进行适当的改进和优化,以提高其预测精度和鲁棒性。

BP人工神经网络的基本原理模型与实例

BP人工神经网络的基本原理模型与实例

BP人工神经网络的基本原理模型与实例BP(Back Propagation)人工神经网络是一种常见的人工神经网络模型,其基本原理是模拟人脑神经元之间的连接和信息传递过程,通过学习和调整权重,来实现输入和输出之间的映射关系。

BP神经网络模型基本上由三层神经元组成:输入层、隐藏层和输出层。

每个神经元都与下一层的所有神经元连接,并通过带有权重的连接传递信息。

BP神经网络的训练基于误差的反向传播,即首先通过前向传播计算输出值,然后通过计算输出误差来更新连接权重,最后通过反向传播调整隐藏层和输入层的权重。

具体来说,BP神经网络的训练过程包括以下步骤:1.初始化连接权重:随机初始化输入层与隐藏层、隐藏层与输出层之间的连接权重。

2.前向传播:将输入向量喂给输入层,通过带有权重的连接传递到隐藏层和输出层,计算得到输出值。

3.计算输出误差:将期望输出值与实际输出值进行比较,计算得到输出误差。

4.反向传播:从输出层开始,将输出误差逆向传播到隐藏层和输入层,根据误差的贡献程度,调整连接权重。

5.更新权重:根据反向传播得到的误差梯度,使用梯度下降法或其他优化算法更新连接权重。

6.重复步骤2-5直到达到停止条件,如达到最大迭代次数或误差小于一些阈值。

BP神经网络的训练过程是一个迭代的过程,通过不断调整连接权重,逐渐减小输出误差,使网络能够更好地拟合输入与输出之间的映射关系。

下面以一个简单的实例来说明BP神经网络的应用:假设我们要建立一个三层BP神经网络来预测房价,输入为房屋面积和房间数,输出为价格。

我们训练集中包含一些房屋信息和对应的价格。

1.初始化连接权重:随机初始化输入层与隐藏层、隐藏层与输出层之间的连接权重。

2.前向传播:将输入的房屋面积和房间数喂给输入层,通过带有权重的连接传递到隐藏层和输出层,计算得到价格的预测值。

3.计算输出误差:将预测的价格与实际价格进行比较,计算得到输出误差。

4.反向传播:从输出层开始,将输出误差逆向传播到隐藏层和输入层,根据误差的贡献程度,调整连接权重。

BP神经网络概述

BP神经网络概述

BP神经网络概述BP神经网络由输入层、隐藏层和输出层组成。

输入层接收外界输入的数据,隐藏层对输入层的信息进行处理和转化,输出层输出最终的结果。

网络的每一个节点称为神经元,神经元之间的连接具有不同的权值,通过权值的调整和激活函数的作用,网络可以学习到输入和输出之间的关系。

BP神经网络的学习过程主要包括前向传播和反向传播两个阶段。

前向传播时,输入数据通过输入层向前传递到隐藏层和输出层,计算出网络的输出结果;然后通过与实际结果比较,计算误差函数。

反向传播时,根据误差函数,从输出层开始逆向调整权值和偏置,通过梯度下降算法更新权值,使得误差最小化,从而实现网络的学习和调整。

BP神经网络通过多次迭代学习,不断调整权值和偏置,逐渐提高网络的性能。

学习率是调整权值和偏置的重要参数,过大或过小的学习率都会导致学习过程不稳定。

此外,网络的结构、激活函数的选择、错误函数的定义等也会影响网络的学习效果。

BP神经网络在各个领域都有广泛的应用。

在模式识别中,BP神经网络可以从大量的样本中学习特征,实现目标检测、人脸识别、手写识别等任务。

在数据挖掘中,BP神经网络可以通过对历史数据的学习,预测未来的趋势和模式,用于市场预测、股票分析等。

在预测分析中,BP神经网络可以根据历史数据,预测未来的房价、气温、销售额等。

综上所述,BP神经网络是一种强大的人工神经网络模型,具有非线性逼近能力和学习能力,广泛应用于模式识别、数据挖掘、预测分析等领域。

尽管有一些缺点,但随着技术的发展,BP神经网络仍然是一种非常有潜力和应用价值的模型。

5.第6章 BP神经网络汇总

5.第6章  BP神经网络汇总

x1 x0 F x0
当步长足够小时
F x1 F x0
求得函数最小值
反复迭代 F xn1 F xn L F x1 F x0
2.BP网络的学习算法
最速下降法 实例:求函数的最小值
z x 2 y / 2 1.2
5.BP网络相关函数详解
newff——创建一个BP网络: 新版语法net=newff(P,T,S) P:R*Q1矩阵,表示创建的神经网络中,输入层有R个神经元。每行对应一个神经 元输入数据的典型值,实际应用中常取其最大最小值。 T:SN*Q2矩阵,表示创建的网络有SN个输出层节点,每行是输出值的典型值
BP神经网络来说,由于传递函数都是可微的,因此能满足最速 下降法的使用条件。
2.BP网络的学习算法
最速下降BP法
X1 X2
. . . . . .

mi
K1

ij
1.工作信号正向传播
Y1 YJ
1 J 2 en ej n 2 j 1
K2
2.误差信号反向传播
XM
输入层
ij n Jj vIi n
S:标量或向量,用于指定隐含层神经元个数,若隐含层多于一层,则写成行向量 的形式。
旧版语法格式net=newff(P,N,TF,BTF) : P表示输入向量的典型值, N为各层神经元的个数, TF为表示传输函数的细胞数组,
BTF为训练函数
Tan-Sigmoid Function
Log-Sigmoid Function 1.5
1.5
1 f x 1 e x
1
1
0.5
0.5
0
y
0

bp网络

bp网络
20310192
一、简介
BP(Back propagation)神经网络又称为 BP( propagation) 多层前馈神经网络, 多层前馈神经网络,为三层前馈神经网 络的拓扑结构。它是当前最为广泛的一 络的拓扑结构。它是当前最为广泛的一 种人工神经网络,可用于语言综合、识 别和自适应控制等系统。这种神经网络 别和自适应控制等系统。这种神经网络 模型的特点是:结构简单,工作状态稳 模型的特点是:结构简单,工作状态稳 定,易于硬件实现;各层神经元仅与相 定,易于硬件实现;各层神经元仅与相 邻层神经元之间有连接;各层内神经元 之间无任何连接;各层神经元之间无反 馈连接。输入信号先向前传播到隐结点,
经过变换函数之后,把隐结点的输 出信息传播到输出结点,再给出输 出结果。结点的变换函数通常选取 Sigmoid型函数。 Sigmoid型函数。
图1 BP网络 BP网络
BP算法的原理 BP算法的原理
BP算法是用于前馈多层网络的学习算法, BP算法是用于前馈多层网络的学习算法, 前馈多层网络的结构如图1 前馈多层网络的结构如图1所示。它包含 有输入层、输出层以及处于输入输出层 之间的中间层。中间层有单层或多层, 由于它们和外界没有直接的联系,故也 称隐层。在隐层中的神经元也称隐单元; 隐层虽然与外界不连接,但它们的状态 影响输入输出之间的关系。也就是说, 改变隐层的权系数,可以改变整个多层 神经网络的性能。
BP算法的数学描述 BP算法的数学描述
BP算法实质是求取误差函数的最小值问 BP算法实质是求取误差函数的最小值问 题,这种算法采用最速下降法,按误差 函数的负梯度方向修改权系数。

bp神经网络

bp神经网络

BP神经网络框架BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。

BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。

它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。

BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。

1BP神经网络基本原理BP神经网络的基本原理可以分为如下几个步骤:(1)输入信号Xi→中间节点(隐层点)→输出节点→输出信号Yk;(2)网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y 和期望输出值t之间的偏差。

(3)通过调整输入节点与隐层节点的联接强度取值Wij和隐层节点与输出节点之间的联接强度取值Tjk,以及阈值,使误差沿梯度方向下降。

(4)经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练到此停止。

(5)经过上述训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线性转换的信息。

2BP神经网络涉及的主要模型和函数BP神经网络模型包括输入输出模型、作用函数模型、误差计算模型和自学习模型。

输出模型又分为:隐节点输出模型和输出节点输出模型。

下面将逐个介绍。

(1)作用函数模型作用函数模型,又称刺激函数,反映下层输入对上层节点刺激脉冲强度的函数。

一般取(0,1)内的连续取值函数Sigmoid函数:f x=11+e^(−x)(2)误差计算模型误差计算模型反映神经网络期望输出与计算输出之间误差大小的函数:Ep=12(tpi−Opi)2其中,tpi为i节点的期望输出值;Opi为i节点的计算输出值。

(3)自学习模型自学习模型是连接下层节点和上层节点之间的权重矩阵Wij的设定和修正过程。

bp神经网络原理

bp神经网络原理

bp神经网络原理
BP神经网络,全称为反向传播神经网络,是一种常用的前馈
神经网络,通过反向传播算法来训练网络模型,实现对输入数据的分类、回归等任务。

BP神经网络主要由输入层、隐藏层
和输出层构成。

在BP神经网络中,每个神经元都有自己的权重和偏置值。


据从输入层进入神经网络,经过隐藏层的计算后传递到输出层。

神经网络会根据当前的权重和偏置值计算输出值,并与真实值进行比较,得到一个误差值。

然后,误差值会反向传播到隐藏层和输入层,通过调整权重和偏置值来最小化误差值。

这一过程需要多次迭代,直到网络输出与真实值的误差达到可接受的范围。

具体而言,BP神经网络通过梯度下降算法来调整权重和偏置值。

首先,计算输出层神经元的误差值,然后根据链式求导法则,将误差值分配到隐藏层的神经元。

最后,根据误差值和激活函数的导数,更新每个神经元的权重和偏置值。

这个过程反复进行,直到达到停止条件。

BP神经网络的优点是可以处理非线性问题,并且具有较强的
自适应能力。

同时,BP神经网络还可以通过增加隐藏层和神
经元的数量来提高网络的学习能力。

然而,BP神经网络也存
在一些问题,如容易陷入局部最优解,训练速度较慢等。

总结来说,BP神经网络是一种基于反向传播算法的前馈神经
网络,通过多次迭代调整权重和偏置值来实现模型的训练。


可以应用于分类、回归等任务,并具有较强的自适应能力。

但同时也有一些问题需要注意。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


(( d 2
o 1
o
( k ) f( w h o h o h ( k ) b o ) ))
2 h 1
p
hoh (k ) h ih ( k )
hoh (k )
q
( d o ( k ) y o o ( k )) f ( y i o ( k )) w h o
3. BP网络学习算法
学习的过程: 神经网络在外界输入样本的刺激下不断改变网络的连接权值,以 使网络的输出不断地接近期望的输出。 学习的本质: 对各连接权值的动态调整 正向传播:
输入样本---输入层---各隐层---输出层
判断是否转入反向传播阶段: 若输出层的实际输出与期望的输出不符 误差反传 误差以某种形式在各层表示----修正各层单元的权值
hi h ( k )
hi h ( k ) w ih
h (k ) xi (k )
w ih h ( k ) x i ( k )
第八步,计算全局误差
E 1 2m
(d
k 1 o 1
m
q
o
( k ) y o ( k ))
2
第九步,判断网络误差是否满足要求。当误差 达到预设精度或学习次数大于设定的最大次数 ,则结束算法。否则,选取下一个学习样本及 对应的期望输出,返回到第三步,进入下一轮 学习。
%创建一个BP神经网络,每一个输入向量的取值范围为[0 ,1],隐含层有 5个神经元,输出层有一个神经元,隐含层的激活函数为tansig,输出层的 激活函数为logsig,训练函数为梯度下降函数 net=newff([0 1;0 1;0 1],[5,1],{'tansig','logsig'},'traingd'); net.trainParam.epochs=15000; %训练步数 net.trainParam.goal=0.01; %误差性能目标值
4 BP神经网络的应用实例
例2-3,下表为某药品的销售情况,现构建一个如下的三层BP神经 网络对药品的销售进行预测:输入层有三个结点,隐含层结点数为 5,隐含层的激活函数为tansig;输出层结点数为1个,输出层的激 活函数为logsig,并利用此网络对药品的销售量进行预测,预测方 法采用滚动预测方式,即用前三个月的销售量来预测第四个月的销 售量,如用1、2、3月的销售量为输入预测第4个月的销售量,用2 、3、4月的销售量为输入预测第5个月的销售量.如此反复直至满足 预测精度要求为止。 月份 销量
N 1 N
e w ho
o (k )hoh (k )
w ho o ( k ) h o h ( k )
第七步,利用隐含层各神经元的 各神经元的输入修正连接权。
h
(k )
和输入层
w ih ( k ) w ih
N 1 N
e w ih

e
y io w h o
( w h o h o h ( k ) bo )
h
p
w ho
hoh (k )
e yio
(
1 2

o 1
q
( d o ( k ) yo o ( k ))) yio
2
( d o ( k ) yo o ( k )) yo o ( k )
第三步,计算隐含层各神经元的输入和输出
n
h ih ( k )

i 1
w ih x i ( k ) b h
h 1, 2 , , p
h o h ( k ) f( h i h ( k ))
y io ( k )
h 1, 2 , , p
o 1, 2 , q

h 1
BP神经网络
神经元
人工神经网络
BP神经网络
生物神经元模型
特征:
(1)信息处理和存储单元结合在一起
(2)一种并行、分布处理结构 (3)自组织、自学习功能
人工神经网络模型
历史中具有重要影响的神经网络
感知器
自适应线性单元 小脑自动机 BP神经网络 盒中脑BSB网络 自组织特征映射网络SOM Hopfield网络 双向联想记忆网络BAM 双向传播网CPN ……
1 2056
2 2395
3 2600
4 2298
5 1634
6 1600
月份
销量
7
1873
8
1478
9
1900
10
1500
11
2046
12
1556
%以每三个月的销售量经归一化处理后作为输入 P=[0.5152 0.8173 1.0000 ; 0.8173 1.0000 0.7308; 1.0000 0.7308 0.1390; 0.7308 0.1390 0.1087; 0.1390 0.1087 0.3520; 0.1087 0.3520 0.0000;]'; %以第四个月的销售量归一化处理后作为目标向量 T=[0.7308 0.1390 0.1087 0.3520 0.0000 0.3761];
给各连接权值分别赋一个区间(-1,1)内的随机数 ,设定误差函数e,给定计算精度值ε和最大学习次 数M。
第二步: 随机选取第k个输入样本及对应期望输出
x ( k ) x 1 ( k ), x 2 ( k ), , x n ( k )
d o ( k ) d 1 ( k ), d 2 ( k ), , d q ( k )
BP神经网络
BP神经网络概述 BP神经网络模型 BP网络学习算法 基本思想 推导过程 BP神经网络的应用实例 BP网络的局限性
1. 概述
Rumelhart,McClelland于1985年提出了BP网络的误差反向 后传BP(Back Propagation)学习算法
David Rumelhart
2.2 隐层数
一般认为,增加隐层数可以降低网络误差(也有文献认为不一定 能有效降低),提高精度,但也使网络复杂化,从而增加了网络的 训练时间和出现“过拟合”现象。 Hornik等早已证明:若输入层和输出层采用线性转换函数,隐层采 用Sigmoid转换函数,则含一个隐层的MLP网络能够以任意精度逼近 任何有理函数。显然,这是一个存在性结论。在设计BP网络时可参 考这一点,应优先考虑3层BP网络(即有1个隐层)。

e
y io
y io w h o
e
o (k )hoh (k )

h ih ( k ) w ih
n
h ih ( k )
h ih ( k ) w ih
( w ih x i ( k ) b h )
i 1
w ih
xi (k )
e h ih ( k )
J. McClelland
BP神经网络是一种按误差逆传播算法训练的多层前馈网络 ,是目前应用最广泛的神经网络模型之一。它的学习规则 是使用最速下降法,通过反向传播来不断调整网络的权值 和阈值,使网络的误差平方和最小。
2. BP神经网络模型
激活函数f(x)
必须处处可导
一般都使用S型函数
p
w h o h o h ( k ) bo
y o o ( k ) f( y i o ( k ))
o 1, 2 , q
第四步,利用网络期望输出和实际输出,计算 误差函数对输出层的各神经元的偏导数 ( k ) 。
o
e w ho

e
y io
y io ( k ) w ho
( d o ( k ) yo o ( k )) f ( yio ( k )) o ( k )

第五步,利用隐含层到输出层的连接权值、输 出层的 ( k ) 和隐含层的输出计算误差函数对隐 含层各神经元的偏导数 ( k ) 。
o h
e w ho
e w ih
BP神经网络的应用较为广泛,主要使用在构建预测模型 机械控制、信号处理、材料学、医学、水文预报等等
电子商务:
企业网站绩效评价 电子商务系统绩效评价 顾客满意度评价
例子:一种基于BP 神经网络的B2C电子商务 顾客满意度评价模型
第一步:列出B2C 电子商务顾客满意度评价指标体系
第二步:指标归一化处理
定量指标 Y=(X-min)/(max-min)
定性指标 专家打分法
第三步:网络模型的设计
输入层节点数:11个 隐含层节点数:4个 输出层节点数:5个
从验证及比较结果可看出,网络评价的结果和实际评价的结果 基本上是一致的,这标志着基于BP 神经网络的B2C电子商务企业顾
%设置学习速率为0.1 LP.lr=0.1; net=train(net,P,T);
%进行仿真
Y= sim(net,P);
%比较结果
plot(T) hold on plot(Y,'+')
由对比图可以看出预测效果与实际存在一定误差,此误差可以通过 增加运行步数和提高预设误差精度业进一步缩小。
误差改为 0.005
一般地,靠增加隐层节点数来获得较低的误差,其训练效果要比增 加隐层数更容易实现。
2.2 隐层节点数
在BP 网络中,隐层节点数的选择非常重要,它不仅对建立的神经 网络模型的性能影响很大,而且是训练时出现“过拟合”的直接原因, 但是目前理论上还没有一种科学的和普遍的确定方法。
目前多数文献中提出的确定隐层节点数的计算公式都是针对训练样 本任意多的情况。 事实上,各种计算公式得到的隐层节点数有时相差几倍甚至上百倍。 确定隐层节点数的最基本原则是:在满足精度要求的前提下取尽可能 紧凑的结构,即取尽可能少的隐层节点数。 研究表明,隐层节点数不仅与输入/输出层的节点数有关,更与需解 决的问题的复杂程度和转换函数的型式以及样本数据的特性等因素有 关。
相关文档
最新文档