定积分的换元法与分部积分法ppt课件
合集下载
定积分的换元法和分部积分法课件

常数倍性质
定积分具有常数倍性质,即对于任 意非零常数c,有c乘以被积函数的 定积分等于该常数乘以被积函数在 积分区间上的增量。
定积分的计算
直接法
直接代入被积函数进行计算,适 用于简单的被积函数和明确的积
分区间。
换元法
通过变量替换简化被积函数或积 分区间,适用于较为复杂的积分
问题。
分部积分法
通过将两个函数的乘积进行分部 积分,将一个复杂函数的积分转 化为更简单函数的积分,适用于
计算旋转体的体积
01
定积分可以用于计算旋转体的体积,例如旋转抛物面下的体积
。
求解平面图形的面积
02
定积分可以用于求解平面图形的面积,例如椭圆、圆、三角形
等。
求解曲线长度
03
定积分可以用于求解曲线的长度,例如圆的周长、正弦函数的
长度等。
05
定积分的应用
定积分在物理中的应用
计算物体在恒力作用下的运动轨迹
分部积分法在求解三角函数的不定积分中有着广泛的应用,例如求解$int sin x dx$或$int cos x dx$等。
求解复杂函数的不定积分
对于一些复杂函数的不定积分,分部积分法可以将其转化为简单函数的定积分 ,从而简化计算过程。例如求解$int x^2 e^x dx$等。
04
定积分的几何意义
03
分部积分法在定积分中的应用
分部积分法的定义和原理
分部积分法的定义
分部积分法是一种求解定积分的技巧 ,通过将一个不定积分转化为两个函 数的乘积的导数,从而简化计算过程 。
分部积分法的原理
基于微积分基本定理,通过将一个复 杂函数的不定积分转化为简单函数的 定积分,实现积分的求解。
定积分具有常数倍性质,即对于任 意非零常数c,有c乘以被积函数的 定积分等于该常数乘以被积函数在 积分区间上的增量。
定积分的计算
直接法
直接代入被积函数进行计算,适 用于简单的被积函数和明确的积
分区间。
换元法
通过变量替换简化被积函数或积 分区间,适用于较为复杂的积分
问题。
分部积分法
通过将两个函数的乘积进行分部 积分,将一个复杂函数的积分转 化为更简单函数的积分,适用于
计算旋转体的体积
01
定积分可以用于计算旋转体的体积,例如旋转抛物面下的体积
。
求解平面图形的面积
02
定积分可以用于求解平面图形的面积,例如椭圆、圆、三角形
等。
求解曲线长度
03
定积分可以用于求解曲线的长度,例如圆的周长、正弦函数的
长度等。
05
定积分的应用
定积分在物理中的应用
计算物体在恒力作用下的运动轨迹
分部积分法在求解三角函数的不定积分中有着广泛的应用,例如求解$int sin x dx$或$int cos x dx$等。
求解复杂函数的不定积分
对于一些复杂函数的不定积分,分部积分法可以将其转化为简单函数的定积分 ,从而简化计算过程。例如求解$int x^2 e^x dx$等。
04
定积分的几何意义
03
分部积分法在定积分中的应用
分部积分法的定义和原理
分部积分法的定义
分部积分法是一种求解定积分的技巧 ,通过将一个不定积分转化为两个函 数的乘积的导数,从而简化计算过程 。
分部积分法的原理
基于微积分基本定理,通过将一个复 杂函数的不定积分转化为简单函数的 定积分,实现积分的求解。
§3.3定积分换元法

π 2
0
sin n xdx = − ∫
π 2
0
sin n −1 xd (cos x )
π 2 0
= − sin n −1 x cos x
[
= (n − 1) ∫
π 2 0 π 2
]
π 2 0
+∫
cos xd (sin n −1 x )
cos 2 x sin n − 2 xdx
= (n − 1) ∫
0
8.已知 g ( x ) = ∫ t f ′( x − t )dt ,求 g′( x ) 。
0
x
g( x ) = ∫ t f ′( x − t )dt
0
x 0
x
令x−t=u
=
− ∫ ( x − u ) f ′(u )du
x
0
= ∫ ( x − u ) f ′(u )du = x
x
∫0 f ′(u )du − ∫0 uf ′(u )du
a a ∫ 0 f(− x) dx
0
f(x) dx =
+
a ∫0
f(x) dx = ∫ [ f(x) + f(− x)] dx.
0
a
续上
∴∫
a
−a
f(x) dx = ∫ [f(x) + f( − x)] dx ,
0
a
(2)∵ f ( x ) 为偶函数,即 f (− x ) = f ( x ) ,
∴∫
π 2 sin 2 t − 1 dt π sin t 6
6 cos t dt = π cos t sin t 2
∫
6 cos t dt π cos t ⋅ sin t 2
-定积分的换元法与分部积分法

2
x t 0, 2
返回
微积分
第三章 一元函数积分学
2 f (sin x)dx
0
0
2
f
sin
2
t
dt
3
2 arcsin(
ln x)
e4 e
. 6
返回
微积分
第三章 一元函数积分学
例4
a
计算
0 x
1
dx.
a2 x2
(a 0)
解 令 x a sin t, dx a cos tdt,
x a t , x 0 t 0,
2
原式 2
a cos t
2
2 cos5 x sin xdx 0
x 0 t 1,
0 t 5dt t 6 1 1 .
1
60 6
返回
微积分
第三章 一元函数积分学
例2
计算
sin3 x sin5 xdx.
0
3
解 f ( x) sin3 x sin5 x cos x sin x2
微积分
第三章 一元函数积分学
第七节 定积分的换元法与分部积分法
一、定积分的换元法 二、定积分的分部积分法 三、小结
返回
微积分
第三章 一元函数积分学
一、定积分的换元法
定理 假设
(1) f ( x)在[a, b]上连续;
(2)函数 x (t ) 在[ , ]上是单值的且有连续
导数;
(3)当t 在区间[ , ]上变化时, x (t ) 的值 在[a,b]上变化,且 ( ) a 、 ( ) b,
x t 0, 2
返回
微积分
第三章 一元函数积分学
2 f (sin x)dx
0
0
2
f
sin
2
t
dt
3
2 arcsin(
ln x)
e4 e
. 6
返回
微积分
第三章 一元函数积分学
例4
a
计算
0 x
1
dx.
a2 x2
(a 0)
解 令 x a sin t, dx a cos tdt,
x a t , x 0 t 0,
2
原式 2
a cos t
2
2 cos5 x sin xdx 0
x 0 t 1,
0 t 5dt t 6 1 1 .
1
60 6
返回
微积分
第三章 一元函数积分学
例2
计算
sin3 x sin5 xdx.
0
3
解 f ( x) sin3 x sin5 x cos x sin x2
微积分
第三章 一元函数积分学
第七节 定积分的换元法与分部积分法
一、定积分的换元法 二、定积分的分部积分法 三、小结
返回
微积分
第三章 一元函数积分学
一、定积分的换元法
定理 假设
(1) f ( x)在[a, b]上连续;
(2)函数 x (t ) 在[ , ]上是单值的且有连续
导数;
(3)当t 在区间[ , ]上变化时, x (t ) 的值 在[a,b]上变化,且 ( ) a 、 ( ) b,
定积分的换元法和分部积分法教学课件ppt

定积分的换元法和分部积 分法教学课件ppt
xx年xx月xx日
目录
• 定积分的换元法 • 定积分的分部积分法 • 定积分的几何意义 • 定积分的物理应用 • 定积分的经济应用 • 定积分的优化方法
01
定积分的换元法
换元法的定义与性质
换元法的定义
将一个定积分中的被积函数或积分区间变换 成另一个函数或区间,以求得定积分的值。
THANKS
谢谢您的观看
总结词
功率的概念、能量转换的效率、机械能与热能的转换
详细描述
首先介绍功率的概念,然后通过分析能量转换的效率 和机械能与热能的转换关系,说明功率在不同能量转 换中的重要作用。同时,还介绍如何利用功率公式求 解机械能与热能转换等问题。
05
定积分的经济应用
需求价格弹性
需求价格弹性定义
需求价格弹性是衡量商品需求量 对价格变动敏感程度的指标,用 需求量变动百分比与价格变动百 分比的比值来表示。
成本函数表示企业在一定时期内生产一定数量产品所需投入的成本的函数关系。
收益函数与成本函数的关系
收益函数和成本函数之间存在一定的关系,当销售量增加时,收益增加,但成本也会增加,因此需要找到一个最优的生产 量和销售量组合,使得企业获得最大利润。
利润函数与最优生产量
利润函数定义
利润函数表示企业在一定时期内销售产品 所获得的收益减去生产成本的函数关系。
换元法应用
将复杂的积分区间变换成简单的积分 区间,简化计算。
将非标准形式的积分转换成标准形式的积 分,以便使用积分的性质和公式进行计算 。
将难以求导的被积函数变换成容易 求导的函数,以便使用微积分基本 定理进行计算。
02
定积分的分部积分法
xx年xx月xx日
目录
• 定积分的换元法 • 定积分的分部积分法 • 定积分的几何意义 • 定积分的物理应用 • 定积分的经济应用 • 定积分的优化方法
01
定积分的换元法
换元法的定义与性质
换元法的定义
将一个定积分中的被积函数或积分区间变换 成另一个函数或区间,以求得定积分的值。
THANKS
谢谢您的观看
总结词
功率的概念、能量转换的效率、机械能与热能的转换
详细描述
首先介绍功率的概念,然后通过分析能量转换的效率 和机械能与热能的转换关系,说明功率在不同能量转 换中的重要作用。同时,还介绍如何利用功率公式求 解机械能与热能转换等问题。
05
定积分的经济应用
需求价格弹性
需求价格弹性定义
需求价格弹性是衡量商品需求量 对价格变动敏感程度的指标,用 需求量变动百分比与价格变动百 分比的比值来表示。
成本函数表示企业在一定时期内生产一定数量产品所需投入的成本的函数关系。
收益函数与成本函数的关系
收益函数和成本函数之间存在一定的关系,当销售量增加时,收益增加,但成本也会增加,因此需要找到一个最优的生产 量和销售量组合,使得企业获得最大利润。
利润函数与最优生产量
利润函数定义
利润函数表示企业在一定时期内销售产品 所获得的收益减去生产成本的函数关系。
换元法应用
将复杂的积分区间变换成简单的积分 区间,简化计算。
将非标准形式的积分转换成标准形式的积 分,以便使用积分的性质和公式进行计算 。
将难以求导的被积函数变换成容易 求导的函数,以便使用微积分基本 定理进行计算。
02
定积分的分部积分法
高等数学:第三节 定积分的换元法、分部积分法

2
0
sin 3 x cos x d x
sin 3 x cos x d x
2
2
0
sin 3 x d (sin x)
sin 3 x d (sin x)
2
[2 5
sin
5 2
x]
2 0
[2 5
sin
5 2
x]
( 20) (0 2 )
5
5
4 5
2
例4:证明
(1)若 f (x) 在 [ - a , a ] 上连续且为偶函数,
2
2
对称性 02
2
sin 2 x cos 2 x d x 1
2 sin 2 2 x d x
0
20
1 2
2
0
1 cos 4 x d x 2
1 4
[
x
sin4 4
x
]
2 0
8
3
e4
例7 计算
1
dx
e x ln x(1 ln x)
3
解:原式 e4
1
d ln x
e ln x(1 ln x)
x
0
t
2
,
x t 0, 2
2
0
f (sin x)dx
0
2
f
sin
2
t
dt
2 f (cos t)dt 2 f (cos x)dx;
0
0
(2)设 x t 可以证明
xf (sin x)dx
f (sin x)dx.
0
20
0
1
x
sin cos
x
2
x
dx
第4节 定积分的换元法与分部积分法

4 1 0
1 0
1 x
1 0
ax dx
a 4
4
即
a
1 0
f ( x )d x
3
7/9/2013 12:56 AM
第6章
函数的积分
7. 设
f (x)
F 是连续函数, ( x ) 是 f ( x ) 的原
函数,则( A )
(A) (B ) (C ) (D) F 当 f ( x ) 是奇函数时, ( x ) 必是偶函数 F 当 f ( x ) 是偶函数时, ( x ) 是奇函数
dx )
8(e 2e 2
7/9/2013 12:56 AM
x
) 8(e 2 )
第6章
函数的积分
例9 设
解
f (x)
x 1
2
sin t t
2 2
dt ,
2
求
2
1
x f ( x )d x
0
f ( x ) 2 x
x f ( x )d x
2 1 0
sin x x
,
x 1
3
f ( t ) d t ln x ,
求
x 1
3
f (e ) 。
3
解
ln x
3
1
3 ( t ) d t f ( x ) f (1 ) f ( x ) f
令
u x ,
得
f ( u ) ln
3
u
1 3
ln u
f (e )
3
思考 是否还有其它方法?
1 0
1 x
1 0
ax dx
a 4
4
即
a
1 0
f ( x )d x
3
7/9/2013 12:56 AM
第6章
函数的积分
7. 设
f (x)
F 是连续函数, ( x ) 是 f ( x ) 的原
函数,则( A )
(A) (B ) (C ) (D) F 当 f ( x ) 是奇函数时, ( x ) 必是偶函数 F 当 f ( x ) 是偶函数时, ( x ) 是奇函数
dx )
8(e 2e 2
7/9/2013 12:56 AM
x
) 8(e 2 )
第6章
函数的积分
例9 设
解
f (x)
x 1
2
sin t t
2 2
dt ,
2
求
2
1
x f ( x )d x
0
f ( x ) 2 x
x f ( x )d x
2 1 0
sin x x
,
x 1
3
f ( t ) d t ln x ,
求
x 1
3
f (e ) 。
3
解
ln x
3
1
3 ( t ) d t f ( x ) f (1 ) f ( x ) f
令
u x ,
得
f ( u ) ln
3
u
1 3
ln u
f (e )
3
思考 是否还有其它方法?
§5.3_定积分的换元法与分部法

2
20
定积分的换元法和分部积分法
3
例
e4
dx
e x ln x(1 ln x)
d( ln x) 1 1 d ln x 2 ln x
3
e4
解 原式
d(ln x)
e ln x(1 ln x)
3
3
e4
d(ln x)
e4 d ln x
2
e ln x (1 ln x)
e 1 ( ln x)2
2 arcsin(
ln x )
3
e4 e
.
6
21
定积分的换元法和分部积分法
a
1
dx (a 0)
0 x a2 x2
解 令 x a sint, dx a cos tdt
x0t0
x a t
2
原式
2
0
a
sin
t
a cost a 2 (1
则
b
a f ( x)dx F(b) F(a)
N--L公式
由于 d dt
F (t) F(t)(t)t) (t)的原函数, N--L公式
则
f [ (t)](t)dt
F ( )
b
a
所以 f (a b x)dx f (t)(dt)
a
b
b
b
a f (t)dt a f (x)dx
所以,原命题成立。
10
例
计算
4 dx .
0 1 x
解 用定积分换元法.
令
x
t, 则
定积分的换元积分法和分部积分法.ppt

cos t dt sin t cos t
1 2
2 0
1
cos t sin t
sin cos
t t
dt
1 2
2
1 2
ln
sin
t
cos
t
2 0
. 4
首页
上页
下页
例 5 当 f ( x)在[a, a]上连续,且有
① f ( x)为偶函数,则
a
a
f
( x)dx
a
20
f
( x)dx ;
②
f
(
0
a
f
( x)dx
a
0
f
( x)dx
a
20 f (t)dt;
② f ( x)为奇函数,则 f (t) f (t),
a
a
f
( x)dx
0
a
f
( x)dx
a
0
f
( x)dx
0.
首页
上页
下页
例6
计算
1
2x2 x cos x dx.
1 1 1 x2
解
原式
1
1
1
2x2 1
x2
dx
1
1
x cos x 1 1 x2
0
0
2 sin 2 tdt 2 sin 4 tdt
0
0
3•1
•
4 4 • 2 2 16
首页
上页
下页
例2
计算
sin3 x sin5 xdx.
0
3
解 f ( x) sin3 x sin5 x cos x sin x2
sin3 x sin5 xdx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例9 计算
Nπ
1sin2xdx 例10 计算
π 6
+50π
cos 2x
dx
π
0
6
➢综合题
1 ln(1 x)
例11 计算 0
1 x2
dx
例12 f(x)C[0,1] 证明
不能用牛莱公式作出
π
π
(1) 2f(sinx)dx2f(cosx)dx
0
0
(2) πxf(sinx)dxππf(sinx)dx
且其值域 R [a,b],
则有:
a bf(x)dx f[(t)](t)dt
定积分换元公式
a bf(x)dx f[(t)](t)dt
注 (1) 换元过程
b
f ( x )dx
a
三 被积函数 f ( x )
f ((t))
个 积分元素 d x
变 化
积分区间[ a , b ]
f[(t)](t)dt
(t )dt
a
a
aa
budvuvb
b
vdu
a
aa
定积分的分部积分公式
注 使用分部积分公式应边积边代限
例14 计算
1
2arcsinxdx 例15 计算
1
e
xdx
0
0
例16 证明
In
π
02
sinn
xdx
π
2 0
cosn
xdx
n n 1n n 2 3 4 31 2 2,n 为偶数
nn 1n n 2 35 43 2, n 为奇数
[ , ] 或
[ , ]
(2) 公式特点 变量不必回代 换元必换限 必须注意积分限 上限对上限
例1 计算 a a2x2dx (a0) 0
下限对下限 注意简便算法
4
例2 计算
x2
dx
0 2x 1
a bf(x)dx f[(t)](t)dt
换元公式可以反过来使用:
f[(x)](x)dxa bf(t)d t
0
20
(3) 计算
π xsin x 0 1 cos2 x dx
例13
f (x)
xex2 1
1cosx
x0 计算
1 x0
4
f (x 2)dx
1
定积分的换元法与分部积分法
一、换元法 二、分部积分法
定积分的换元法与分部积分法
一、换元法 二、分部积分法
b u(x)v(x)dx
u (x )v (x )d xb u (x )v (x )bb v (x )u (x )d x
注 换元必换限
公式反用,可以不换元. 若不换元,则不换限. 不换元则不换限
π
例3 计算 2cos5 xsinxdx 0
例4 计算 π sin3xsin5xdx 0 绝对值函数的定积分,注意分区间讨论
➢重要结论
对称区间上奇偶函数的定积分
f(x)f(x) f(x)C[a,a]
f(x)f(x)
a
a
f(x)dx2 f(x)dx
第三讲 定积分的换元法和分部积分法
定积分 牛-莱公式 不定积分
换元积分法 分部积分法
?分法
定积分的换元法与分部积分法
一、换元法 二、分部积分法
➢定理
假设f(x)在区间[a,b]上连续,函数 x(t)满足条件:
(1) ()a,()b;
(2) (t )在[, ](或[ ,])上具有连续导数,
a
0
a
f(x)dx0 a
例5 例7
计算 1
x
dx 例6
1 1 x2 x4
π
计算 2 sin6 xcos xdx 例8 π2
2 x | x |
计算 2 2 x2 dx
计算
1 2
cosxln1xdx
12
1x
无穷区间上周期函数的定积分
aT
T
f(x) C ( , )周期为T aa f(x)dx0f(x)dx