高等数学不定积分PPT课件
合集下载
《不定积分》ppt课件

2
2
a2 x2 dx x a2 x2 a2 arcsin x C
2
2
a
.
+ 除牢记积分公式外,还需熟练运用几种常 用方法:
+ 〔1〕换元积分法 + 〔2〕分部积分法 + 〔3〕有理函数积分法〔运用分式变形处置
积分函数联络积分根本公式〕
.
+ 关于换元法的问题 不定积分的换元法是在复合函数求导法那 么的根底上得来的,我们应根据详细实例 来选择所用的方法,求不定积分不象求导 那样有规那么可依,因此要想熟练的求出 某函数的不定积分,只需作大量的练习。
ln a
shxdx chx C
chxdx shx C
dx
ln( x
x2 a2
x2 a2 ) C
I n
2
sin n
0
2
xdx cosn
0
xdx
n 1
n
I n2
x 2 a 2 dx x 2
x 2 a 2 a 2 ln( x 2
x2 a2 ) C
x 2 a 2 dx x 2
2
2
2
.
2.第一类换元法 利用复合函数的一阶微分形式的不变性,通过变量代换求不定积分
简记为
g(x) dx = f φ(x) φ‘(x)dx
例 1.求
e x dx
2x
解:令u =
x,原式= e x d x =
eu du = eu + C = e x + C
例 2.求
arcsin x−x2
x
dx
解
:
令
dt
=
1 4
1 t−3
−
第六章不定积分 《高等数学》课件

机动 目录 上页 下页 返回 结束
例求co2s2xdx.
解
cos2
x 2
dx
1c2osxdx
12(dxcoxsdx)
1(xsinx)C 2
例求tan2xd.x
解 tan2xdx(se2xc1)dx
se2x cdx dx ta x x n C
机动 目录 上页 下页 返回 结束
例 求不定积分
1 d x. x3 x
证明:
[ k f ( x ) d x ] k [ f ( x ) d x ] k f ( x ) [ k f ( x ) d x ] .
机动 目录 上页 下页 返回 结束
五、积分的应用模型实例
机动 目录 上页 下页 返回 结束
由于经济函数的边际就是经济函数的导数,所以, 由经济函数的边际通过计算不定积分,即可求出经济函数。 步骤如下:
证明: f(x )d x F (x ) C , ( F (x ) C ) f(x ) 结论性质:2 F (x )d x F (x ) C , d(F x)F (x)C .
注:微分运算与求不定积分的运算是互逆的.两个运算在一起时,
d 完全抵消, d 抵消后相差一常数。
机动 目录 上页 下页 返回 结束
(12)
dx co2sx
se2cxdxtaxn C;
(13)
dx sin2 x
cs2cxdxco x tC ;
(1)4sexc taxndxsexcC;
(1)5csxcoxtdxcsxcC.
机动 目录 上页 下页 返回 结束
四、不定积分的性质
机动 目录 上页 下页 返回 结束
由不定积分的定义知,若 F ( x ) 为 f ( x ) 在区间 I 的原函数,即
例求co2s2xdx.
解
cos2
x 2
dx
1c2osxdx
12(dxcoxsdx)
1(xsinx)C 2
例求tan2xd.x
解 tan2xdx(se2xc1)dx
se2x cdx dx ta x x n C
机动 目录 上页 下页 返回 结束
例 求不定积分
1 d x. x3 x
证明:
[ k f ( x ) d x ] k [ f ( x ) d x ] k f ( x ) [ k f ( x ) d x ] .
机动 目录 上页 下页 返回 结束
五、积分的应用模型实例
机动 目录 上页 下页 返回 结束
由于经济函数的边际就是经济函数的导数,所以, 由经济函数的边际通过计算不定积分,即可求出经济函数。 步骤如下:
证明: f(x )d x F (x ) C , ( F (x ) C ) f(x ) 结论性质:2 F (x )d x F (x ) C , d(F x)F (x)C .
注:微分运算与求不定积分的运算是互逆的.两个运算在一起时,
d 完全抵消, d 抵消后相差一常数。
机动 目录 上页 下页 返回 结束
(12)
dx co2sx
se2cxdxtaxn C;
(13)
dx sin2 x
cs2cxdxco x tC ;
(1)4sexc taxndxsexcC;
(1)5csxcoxtdxcsxcC.
机动 目录 上页 下页 返回 结束
四、不定积分的性质
机动 目录 上页 下页 返回 结束
由不定积分的定义知,若 F ( x ) 为 f ( x ) 在区间 I 的原函数,即
高等数学(第三版)课件:不定积分的积分方法

还应注意到,在换元—积分—还原的解题过程中,关 键是换元,若在被积函数中作变量代换 j(x) = u,还需要在
被积表达式中再凑出 j '(x)dx 即 dj(x),也就是 du ,这样才能
以u为积分变量作积分,也就是所求积分化为
f j(x)dj(x) f (u) du Fj(x) C
在上述解题过程中u可不必写出,从这个意义上讲,第 一换元积分法也称为“凑微分”法.
式而可能使其容易积分.当然在求出原函数后, 还要
将 t j1(x) 代回.还原成x的函数,这就是第二换元
积分法计算不定积分的基本思想.
定理2 设 x j(t) 是单调可导的函数,且
j(t) 0. 如果 f j(t)j(t) dt F(t) C,
则有
f (x) d x f j(t)j(t) d t F(t) C
3
1
2x
dx
1 u
1 2
du
=
1 2
1 du u
12 u C 2
3 2x C.
例4 求 x x2 4 dx.
解 令u x2 4,则du 2xdx,则
x
x2
4dx
1 2
udu
12 3
= 2 3u2 C
1 3
(
x2
3
4)2
C.
例5
求
(lnx)2
dx x
解 1 dx d(ln x), x
= sect dt
= ln | sect tant | C.
x
x2 a2
t
a
根据sec t x ,利用图所示三角形,易得 a
对边 tan t 邻边
x2 a2 , a
高等数学不定积分的计算教学ppt

dx.
6x 1
3(2x 1) 4
(2x 1)10 dx (2x 1)10 dx
3
4
( (2x
1)9
(2x
1)10
)dx
1
2
3d(2 (2x
x
1) 1)9
1 2
4d(2x 1) (2 x 1)10
3 ( 1) (2x 1)8 2 ( 1) (2x 1)9 C
例8
计算(5)
2x 1 x2 4 x 5 dx.
例8
计算(6)
6x 1 (2 x 1)10
dx.
例8
计算(7)
1
x
x
dx.
例8
计算(8)
(1
x x)3
dx.
例8
计算(1)
1 x2 a2 dx;
x2
1
a2 dx
1 2a
x
1
a
x
1
a
dx
1 2a
d(x a) xa
d(x a) x a
例6 计算
(2 arctan x)2
1 x2
dx.
1 1 x2 dx d(arctan x)
f
(arctan
x
)
1
1 x
2
dx
f
(arctan
x)d(arctan
x)
例6 计算
(2 arctan x)2
1 x2
dx.
1
原式
1 x2 dx d(arctan x)
(2
arctan
x)2
tan
x
1
sec
d(tan x
x
sec
高等数学 课件 PPT 第四章 不定积分

如果一个函数存在原函数,那么这些原函数之间有什 么关系呢?
一、原函数的概念
定理2
若F(x)是函数f(x)在区间I上的一个原函数,则F(x)+C(C为任意 常数)是fx在区间I上的全体原函数.
定理2说明,若一个函数有原函数,则它必有无穷多个原函数,且 它们彼此相差一个常数. 事实上,设F(x)和G(x)都是f(x)的原函数,则
g(x)=f[φ(x)]φ′(x). 作变量代换u=φ(x),并将φ′(x)dx凑微分成dφ(x),则可将关 于变量x的积分转化为关于变量u的积分,于是有
∫f[φ(x)]φ′(x)dx=∫f(u)du. 如果∫f(u)du 可以求出,那么∫g(x)dx 的问题也就解决了,这就 是第一类换元积分法,又称为凑微分法.
一、第一类换元积分法
【例1】
解 本题的关键是将2xdx凑微分得dx2,然后令u=x2,则
【例2】
解 先将被积表达式中的sec2xdx凑微分得dtanx,然后令 u=tanx,再积分,即
一、第一类换元积分法
【例3】
一、第一类换元积分法
注意
(1)求不定积分的方法不唯一,不同方法算出的 答案也不相同,但它们的导数都是被积函数,经过恒等 变形后可以互化,其结果本质上只相差一个常数.
对于给定的函数fx具备什么条件才有原函数?这个问题将 在下一章讨论,这里先介绍一个结论.
一、原函数的概念
定理1
(原函数存在定理)若函数f(x)在区间I上连续,则函数 f(x)在区间I上存在原函数F(x).
由于初等函数在其定义区间上都是连续的,所以初等函 数在其定义区间上都存在原函数. 如果一个函数存在原函数,那么它的原函数是否唯一?事 实上,函数fx的原函数不是唯一的.例如,x2是2x的一个原 函数,而(x2+1)′=2x,故x2+1也是2x的一个原函数.
一、原函数的概念
定理2
若F(x)是函数f(x)在区间I上的一个原函数,则F(x)+C(C为任意 常数)是fx在区间I上的全体原函数.
定理2说明,若一个函数有原函数,则它必有无穷多个原函数,且 它们彼此相差一个常数. 事实上,设F(x)和G(x)都是f(x)的原函数,则
g(x)=f[φ(x)]φ′(x). 作变量代换u=φ(x),并将φ′(x)dx凑微分成dφ(x),则可将关 于变量x的积分转化为关于变量u的积分,于是有
∫f[φ(x)]φ′(x)dx=∫f(u)du. 如果∫f(u)du 可以求出,那么∫g(x)dx 的问题也就解决了,这就 是第一类换元积分法,又称为凑微分法.
一、第一类换元积分法
【例1】
解 本题的关键是将2xdx凑微分得dx2,然后令u=x2,则
【例2】
解 先将被积表达式中的sec2xdx凑微分得dtanx,然后令 u=tanx,再积分,即
一、第一类换元积分法
【例3】
一、第一类换元积分法
注意
(1)求不定积分的方法不唯一,不同方法算出的 答案也不相同,但它们的导数都是被积函数,经过恒等 变形后可以互化,其结果本质上只相差一个常数.
对于给定的函数fx具备什么条件才有原函数?这个问题将 在下一章讨论,这里先介绍一个结论.
一、原函数的概念
定理1
(原函数存在定理)若函数f(x)在区间I上连续,则函数 f(x)在区间I上存在原函数F(x).
由于初等函数在其定义区间上都是连续的,所以初等函 数在其定义区间上都存在原函数. 如果一个函数存在原函数,那么它的原函数是否唯一?事 实上,函数fx的原函数不是唯一的.例如,x2是2x的一个原 函数,而(x2+1)′=2x,故x2+1也是2x的一个原函数.
《高等数学》教学课件 第4章

〔4-3〕
例1 求 2exdx 。
解
2exdx 2 exdx 2ex C
性质2 两个函数代数和的积分等于它们积分的代数和,即
[ f (x) g(x)]dx f (x)dx g(x)dx
〔4-4〕
例2 求 (2x cos x)dx 。
解
(2x cos x)dx 2xdx cosxdx x2 sin x C
令us100
1
1
0.05 u 2du 0.1u 2 C
回代
1
0.1(s 100)2 C
又因为 Q(0) 0,得 C 1 ,故
1
Q 0.1(s 100)2 1
3
例2 求 (1 2x) dx 。
解 将dx凑成 dx 1 d(1 2x) ,则 2
(1
3
2x) dx
1 2
(1
2x)3
二、不定积分的概念
定义2 如果函数 F (x) 是 f (x) 的一个原函数,那么表达式 F (x) C
( C为任意常数)称为 f (x) 的不定积分,记为 f (x)dx ,即
f (x)dx F (x) C
其中“ ”称为积分号,x 称为积分变量,f (x) 称为被积函
数,f (x)dx 称为被积表达式, C 称为积分常数。dx
1 2a
a
1
x
dx
a
1
x
dx
1 ( ln a x ln a x ) C 2a
1 ln a x C. 2a a x
同理有
1
1 xa
dx ln
C
x2 a2 2a x a
例10 求 csc xdx 。
解
csc xdx
《数学分析》第8章 不定积分ppt课件

证 (i) 由 (F( x) C) F ( x) f ( x), 知 F( x) C 也是 f ( x) 在 I 上的原函数.
(ii) 设 F(x) 和 G(x) 是 f (x) 在 I 上的任意两个原 函数, 则
(F ( x) G( x)) F ( x) G( x) f ( x) f ( x) 0.
又如, 已知曲线在每一点处的切线斜率 k( x), 求 f ( x), 使 y f ( x) 的图象正是该曲线, 即使得
f ( x) k( x).
定义1 设函数 f 与 F 在区间 I 上都有定义,若 F ( x) f ( x), x I ,
则称 f 为 F 在区间 I 上的一个原函数.
例1 (i) 路程函数 s(t) 是速度函数 v(t) 的一个原函
三、不定积分的几何意义
若F (x)是 f (x) 的一个原函数, 则称 y = F (x) 的图
像是 f (x) 的一条积分曲线.
所有的积分曲线都是
y
y F(x)C
由其中一条积分曲线 沿纵轴方向平移而得 到的.
y F(x) ( x0 , y0 )
O
x
满足条件 F ( x0 ) y0 的原函数正是在积分曲线中 通过点( x0 , y0 )的那一条积分曲线. 例如, 质点以匀速 v0 运动时, 其路程函数
§1 不定积分概念与 基本积分公式
不定积分是求导运算的逆运算.
一、原函数 二、不定积分 三、不定积分的几何意义 四、基本积分表
一、原函数
微分运算的逆运算是由已知函数 f (x), 求函数F(x), 使
F ( x) f ( x). 例如 已知速度函数 v(t ), 求路程函数 s(t ). 即求
s(t), 使 s(t) v(t).
高等数学-不定积分课件

贰
请在此添加较简洁标题内容
在区间 I 上的一个原函数 .
定义 1 . 若在区间 I 上定义的两个函数 F (x) 及 f (x)
满足
则称 F (x) 为f (x)
问题:
1. 在什么条件下, 一个函数的原函数存在 ?
2. 若原函数存在, 它如何表示 ?
定理.
01
存在原函数 .
02
初等函数在定义区间上连续
则
原式
例19. 求
原式
解: 原式
例20. 求
解: 原式 =
例21. 求
例22. 求
解: 令
得
原式
CONTENTS
思考与练习
壹
下列积分应如何换元才使积分简便 ?
单击此处添加文本具体内容
贰
叁
肆
第三节
由导数公式
积分得:
分部积分公式
或
1) v 容易求得 ;
容易计算 .
分部积分法
第四章
解: 令
03
4.5 1,2,3,4,
05
4.2 1(1,2,4,6,7,9,12,15,16,18) 4 5
02
4.4 1,3,5,7,9,11
04
作业 P218
得 0 = 1
下述运算错在哪里? 应如何改正?
答: 不定积分是原函数族 , 相减不应为 0 .
第四节
有理函数的积分
第四章
一、有理函数的积分
有理函数: 时, 多项式 + 真分 式 分解 若干部分分式之和
其中部分分式的形式为
A
有理函数
B
相除
C
例1. 将下列真分式分解为部分分式 : 解: 用拼凑法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
该例显 ,在示 运用分部,可 积能 分会 法出 时现下 : 列
f(x )d x (x ) a f(x )d x (a 1 ).
此,时 经移项并在任 等意 式常 右 C后 ,数 端 便加 可得出 所求的不定积分
f(x)dx1 1a(x)C.
12
例6 解
计算 I x2a2dx.
x2 a2
x x2 a2
x
coxs
1 sinx
x2co x2 s(xsix nsixd n x)
x 2 c x o 2 x sx s i 2 c n x o C . s
该例说 , 与明 换元法 , 只一 要样 条件 , 允许 分部积分法可 用 . 以连续使
10
例5 计算 excoxsdx.
ex
coxs
e x sinx
u (x )v (x )d x u (x )v (x ) u (x )v (x )d x .
该公式称为不分 定部 积积 分分 的. 公式
分部积分公式 数将 的一 积个 分函 计算 一转 个化为 函数的积.分计算
5
一般说来, 当被积函数为下列形式之一时, 可考虑 运用分部积分法进行计算:
幂函数与三角函数 (或反三角函数) 之积 , 指数函数与三角函数 (或反三角函数) 之积 , 幂函数与指数函数之积 , 指数函数与对数函数之积 , 一个函数难于用其它方法积分 , 两个函数的乘积 .
如果 u (x )v 函 (x )与 u (数 x )v (x )的原,函 对数 上存 边关x积 于,分 便得到
u (x )v (x )d x u (x )v (x ) u (x )v (x )d x .
该公式称为不分 定部 积积 分分 的. 公式
4
定理
设 u ( x ) 函 ,v ( x ) 在 数 I 上 区 .若 可 间 u ( x ) 函 v ( x 微 ) 数 在区间 I 上的原函数, 存 则在
6
例1 计算 xsinxdx.
u(x)x v(x)sixn
u(x)1 v(x)coxs
解 xsixd n x x ( co x ) s ( co x )dx s xcoxscoxsdx
x c x o sx i C s . n
7
例2 解
计算 xcsoi3nxsxdx.
x
cos x
sin 3 x
计算 arccxodxs.
arccxos
1
1 x 1 x2
arc xd x c x o as rc x cx o 1 d x x s 2
x arx c c 1 x o 2 C s .
9
例4 计算 x2sinxdx.
x2
sinx
2x co xs
解 x2sixd n x x2co x 2 s xco xdx s
1
1
2 sin 2 x
xc s3 io x x d n x s 2 sx2 ix n 1 22 s dx 2 ix n
xcs2xc1cox tC.
2
2
cso x i3d x n s xd s(i3x x n s) ind uu 3 (usixn)
1 2u2C2s1i2x nC .
8例3 解Fra bibliotek22
13
例7
计算 (lxn )ndx, n Z.
解 记In (ln x)ndx, 则
(ln x)n
1
n(lnx)n1 1 x
x
In(l x )n n d x x (l x )n n n(l x )n n 1 d x
x(lxn )nnIn 1. 于是, 得到一个递推关系: 式
Inx(lx)n n nIn 1.
1
x
I x 2 a 2d x xx 2 a 2 x 2 d x x 2 a 2
xx2a2(x2a2a2)dx
x2a2
xx 2 a 2 x 2 a 2 d x a 2 d x x 2 a 2
x x 2 a 2 I a 2 l|n x x 2 a 2 |
故 I x 2 a 2 d x 1 x x 2 a 2 a 2 l|x n x 2 a 2 | C .
高等院校非数学类本科数学课程
大 学 数 学(一)
—— 一元微积分学
第二十五讲 不定积分及其计算(续)
1
第五章 一元函数的积分
本章学习要求: ▪ 熟悉不定积分和定积分的概念、性质、基本运算公式. ▪ 熟悉不定积分基本运算公式.熟练掌握不定积分和定积分的换
元法和分部积分法.掌握简单的有理函数积分的部分分式法. 了解利用建立递推关系式求积分的方法. ▪ 理解积分上限函数的概念、求导定理及其与原函数的关系. ▪ 熟悉牛顿—莱布尼兹公式. ▪ 理解广义积分的概念.掌握判别广义积分收敛的比较判别法. 能熟练运用牛顿—莱布尼兹公式计算广义积分。 ▪ 掌握建立与定积分有关的数学模型的方法。能熟练运用定积分 表达和计算一些几何量与物理量:平面图形的面积、旋转曲面 的侧面积、平行截面面积为已知的几何体的体积、平面曲线的 弧长、变力作功、液体的压力等。 ▪ 能利用定积分定义式计算一些极限。
解
exco xdx s exsix nexsixd n x
ex
sinx
exsix n( exco xsexco xdx s)
e x co xs exsixn exco xsexco xdx s
故 e xcx o d x s 1 e x (s x icn x o ) C s . 2
11
2
二.不定积分的计算
利用不定积分的性质 换元法( 第一、第二 ) 分部积分法 部分分式法
3
3. 不定积分的分部积分法
分部积分法积 是分 计时 算应 不用 定种 较方 广 . 法 泛 该方法与函数导 的公 乘式 积相 求: 对应
设u 函 (x )v ,(x 数 )在I 区 上间 ,可 则微 有 ( u ( x ) v ( x ) ) u ( x ) v ( x ) u ( x ) v ( x ) .
I0(lxn )0dxdxxC ,
利用递推关系式 可以由低次幂函 数的积分计算出 高次幂函数的积 分.
14
例,如 求 I3 (lxn )3dx.
I3x(lxn )33I2,
I2x(lx)n 22I1,
I 2 x (x l ) 2 n 2 ( x lx n ( x C ))
I1xln xI0,
I1 xln x (x C )