配置路由重分发
08路由重分布

注意事项( 注意事项(续)
5、因为EIGRP的度量相对复杂,所以在重分 因为EIGRP的度量相对复杂, EIGRP的度量相对复杂 布时,需要分别指定带宽、延迟、可靠性、 布时,需要分别指定带宽、延迟、可靠性、 带宽 负载以及MTU参数的值。 负载以及MTU参数的值。 以及MTU参数的值 6、EIGRP能够识别内部路由和外部路由,默 EIGRP能够识别内部路由和外部路由, 能够识别内部路由和外部路由 认情况下,内部路由的管理距离是90,外 认情况下,内部路由的管理距离是90, 90 170( 部路由的管理距离是170 部路由的管理距离是170(路由代码为 EX” ”D EX )。
3、注入默认路由
EIGRP:ip defaultEIGRP:ip default-network (D* 1.0.0.0/8) OR:redistribute static (D*EX 0.0.0.0/0) RIP:defaul defaulRIP:defaul-information originate defaultOR:ip default-network OR:redistribute static 0.0.0.0/0) (R* 0.0.0.0/0) OSPF:defaul defaulOSPF:defaul-information originate (O*E2 0.0.0.0/0)
度量
路由重分布时,必须给重分布而来的路 由指定的度量值被称为默认度量值或 由指定的度量值被称为默认度量值或种 子度量值,它是在重分布期间定义的。 子度量值,它是在重分布期间定义的。
路由协议 RIP EIGRP OSPF IS-IS BGP 默认种子度量值 无限大 无限大 BGP为1,其他为20 0 IGP的度量值
配置重分布( 配置重分布(续)
单元任务书23_STUP区域及路由重分发配置

子任务1:配置末梢区域 需求描述:
为了减少区域内路由器的路由条目,特把右侧区域配置为末梢区 域。该Stub区域中仅仅需要域内的路由条目和一条指向区域边界路由器 的默认路由就能实现所有的选路。
现对公司网络路由器设备使用OSPF协议进行配置,并将右侧配置成 末梢区域,实现网络互通。 推荐步骤:
1、 连接网络设备,标识OSPF区域,规划IP地址 2、 R1配置接口地址,启用OSPF协议
配置RIP与OSPF路由重分发,通过路由重分发实验,实现在不同路 由协议之间发布路由的要点。 配置主要步骤: 1、在路由器上配置IP路由选择和IP地址 2、配置RIP和OSPF路由协议 3、配置重分发 4、验证测试
任务二:路由重分发配置 实验环境:
BT公司有两家分公司,分别在上海、杭州,总公司在北京。为了提 高访问的安全性和实时性,避免出现故障,BT公司决定租用数字电路, 将分公司和总公司的网络互通,如下图所示。其中R1为总公司路由器, R2、R5为上海分公司路由器,R3、R4为杭州分公司路由器。按照以下要 求配置网络中的路由器,实现全网互通,并能访问Internet。
单元任务书23_ STUP区域及路由重分发配置
任务目标:
1、会配置STUB区域
2、会把静态路由、RIP路由重发布ห้องสมุดไป่ตู้OSPF区域内
学习形式
小组协作,分别完成
英语词汇:
Stub:残端,末梢 Destination:目的 Redistribute:重新分配,重发布 Internal Router:内部路由器 ABR:Area Border Router,区域边界路由器 ASBR:Autonomous System Boundary Router,自治系统边界路由 器 LSA:Link State Advertisement,链路状态通告 Stub Area:末梢区域 Totally Stubby Area:完全末梢区域
路由重分发工作原理

路由重分发工作原理路由重分发工作原理网络协议有很多种,例如isis、rip、ospf、bgp等,在大型公司中经常会出现网络设备之间运行多种网络协议的情况,各种网络协议之间如果不进行一定的配置那么设备之间是不能进行互通信息的,在这种情况下就出现了路由重分发技术,路由重分发的作用就是为了实现多种路由协议之间的协同工作。
路由重分发的工作原理:通过在各种路由协议的配置中添加一定的配置使将路由协议广播到另外的路由协议中,让各个路由协议都能检测到运行其他的路由协议的网段,从而实现数据的传输。
路由重分发技术需要用到redistribute命令rip协议的redistribute命令redistribute protocol 【metric metric-value】【match internal | external nssa-external type】【route-map map-tag】protocol:路由重分发的源路由协议 metric metric-value:设置路由重分发的度量值(1···6),没有将使用default-metric命令设置的metric值 match internal | external nssa-external type:设置重分发路由的条件,只适合重分发的源路由协议是ospf route-map map-tag应用路由图进行重分发ospf协议的redistribute命令 redistribute protocol 【subnets】【metric metric-value】【metric-type{1 | 2}】【tag tag-value】【route-map map-tag】protocol:路由重分发的源路由协议subnets:设置是否重分发子网metric metric-value:设置路由重分发的度量值(1···16777214),没有将使用default-metric命令设置的metric值metric metric-type:设置重分发的路由度量类型,默认值为2 tag tag-value:设置重分发的路由的tag(0···2147483647)默认为0 route-map map-tag应用路由图进行重分发重分发到ospf中的时候,除了直连路由和默认路由外,其他重分发的路由的默认的度量值是20,默认度量值类型是2,且默认不重分发子网。
重分布和策略路由

一、实验拓扑图:AucklandSanJose3Singapore 192.168.224.1/30S1/2192.168.240.2/30S1/2 S1/0192.168.224.2/30S1/1192.168.240.1/30 Engineers Lo0 192.168.232.1/24T1 1.544Mbps19.2Kpbs RIP v2Managers Lo1 192.168.236.1/24Lo0 192.168.5.1/24二、实验目的1、在实验中应用到高级路由功能来操作路由更新,这些特性包括分发列表,默认路由,被动接口和路由重分布。
2、掌握高级路由特性来控制路由更新。
三、实验要求1、公司的SanJose3和Singapore 之间的网络使用的RIPV2动态路由协议。
2、在SanJose3上面连接了一个stub network 192.168.5.1/24,为了减少流量,过滤RIPv2更新流量在整个192.168.5.1/24网络发送。
3、在Singapore 有Engineers 和Managers 部门,Managers 网络并不想被SanJose3所学习到。
4、有一条非常慢的19.2Kpbs 的链路连接Singapore 和Auckland ,为了减少这条链路的 流量,我们要禁止动态路由更新通过这条链路5、在满足上述条件的情况下,实现全网互通。
四、实验步骤1、按照拓扑图中IP ,配置好路由器接口的 IP 地址,但是不要配置RIPv2协议,使用CDP 协议检测相邻设备的连通性。
配置如下:Router(config)#hostname SanJose3SanJose3(config)#line c 0SanJose3(config-line)#exec-timeout 0 0SanJose3(config-line)#logging synchronousSanJose3(config)#no ip domain-lookupSanJose3(config)#interface s1/2SanJose3(config-if)#ip address 192.168.224.1 255.255.255.252SanJose3(config-if)#no shutdownSanJose3(config)#interface loopback 0SanJose3(config-if)#ip address 192.168.5.1 255.255.255.0Router(config)#hostname AucklandAuckland (config)#interface s1/2Auckland (config-if)#ip address 192.168.240.2 255.255.255.252Auckland (config-if)#no shutdownAuckland (config)#interface loopback 0Auckland (config-if)#ip address 192.168.248.1 255.255.255.0Router(config)#hostname SingaporeSingapore(config)#interface loopback 0Singapore(config-if)#ip address 192.168.232.1 255.255.255.0Singapore(config-if)#description EngineersSingapore(config)#interface loopback 1Singapore(config-if)#ip address 192.168.236.1 255.255.255.0Singapore(config-if)#description ManagerSingapore(config)#interface s1/0Singapore(config-if)#ip address 192.168.224.2 255.255.255.252Singapore(config-if)#no shutdownSingapore(config)#interface s1/1Singapore(config-if)#ip address 192.168.240.1 255.255.255.252Singapore(config-if)#no shutdown配置完成后使用CDP 协议检查相邻设备的连通性,如下2、在SanJose3上,配置RIPv2协议通告物理直连的网络,配置如下:SanJose3(config)#router ripSanJose3(config-router)#version 2SanJose3(config-router)#network 192.168.224.0SanJose3(config-router)#network 192.168.5.0因为192.158.5.0是一个stub network,这个网络里没有路由器或者主机需要RIPv2协议的更新。
路由重分发的基本概念

路由重分发的基本概念在计算机网络中,路由器是用于转发网络数据包的设备。
路由器根据目的地地址将数据包从一个网络接口转发到另一个网络接口,以便将数据从源主机传输到目标主机。
如果网络结构发生改变或者某个路径出现故障,路由器就需要重新分发路由信息,以便确保数据能够正确地到达目标主机。
下面是路由重分发的基本概念。
路由重分发是指将新的路由信息通知给其它路由器,以便它们能够将数据包转发到正确的目标。
当网络拓扑发生改变时,例如有一条链路故障或者新增了一条链路,路由重分发就需要被执行。
在路由重分发的过程中,路由器会发送路由更新消息给其它路由器,以便让它们更新它们的路由表。
这样,当一个数据包到达网络时,路由器就可以根据最新的路由表将其正确地转发到目标主机。
路由器可以采用不同的路由协议来执行路由重分发。
常用的路由协议包括距离向量路由协议和链路状态路由协议。
距离向量路由协议根据最短距离确定最佳路径,并向其它路由器发送这些路径的距离信息。
当一条路径不可用时,路由器会从其它可能的路径中选择一个最佳路径,然后向其它路由器发送更新消息。
链路状态路由协议则根据网络中各链路的状态动态计算出路由信息。
当网络结构发生改变时,路由器会重新计算路由信息并通知其它路由器。
在执行路由重分发之前,路由器通常会先删除旧的路由信息。
这样可以避免新的路由信息和旧的路由信息冲突,导致数据包被错误地转发。
当路由重分发完成后,路由器会重新建立路由信息表。
新的路由表将包含最新的路由信息,以便将数据包正确地转发到目标主机。
总之,路由重分发是计算机网络中维护路由信息的重要过程。
它可以确保数据包能够正确地到达目标主机,同时避免了路由信息的冲突。
在实际应用中,路由重分发的频率对网络的性能有重要影响。
如果路由重分发太频繁,会导致网络负载过大,从而降低网络的吞吐量。
因此,在设计网络拓扑时,需要仔细考虑路由重分发的频率,并采取相应的措施来保证网络的高效稳定运行。
OSPF多进程之间的路由重发布

OSPF多进程之间的路由重发布1、实验拓扑如下图:R1R4R3 R2Area 00spf 10Area 0Ospf 1002、实验目的:1、实现R2与R3之间互相访问时的数据分流。
R2访问R3的3.3.3.3/32时走R1,R2访问R3的30.30.30.30/32时走R4。
R3访问R2的2.2.2.2/32时走R1,R3访问R2的20.20.20.20/32时走R1。
2、实现线路的冗余备份。
当R1链路故障时数据可以走R4,当R4链路故障时数据可以走R1。
实现链路的冗余备份。
3、理解并掌握route-map在控制路由方面的应用。
3、实验配置文档R1配置:config terint f0/0ip add 10.0.0.1 255.255.255.252no shutint f1/0ip add 10.0.0.5 255.255.255.252no shutint lo 0ip add 1.1.1.1 255.255.255.255endwriteconfig terrouter ospf 10router-id 1.1.1.1network 10.0.0.0 0.0.0.3 area 0redistribute ospf 100 metric-type 1 subnets route-map ospf100_to_ospf10 distribute-list deny_ospf100 inendconfig terrouter ospf 100router-id 1.1.1.1network 10.0.0.4 0.0.0.3 area 0redistribute ospf 10 metric-type 1 subnets route-map ospf10_to_ospf100 distribute-list deny_ospf10 inendwriteip access-list standard deny_ospf10deny 2.2.2.2 0.0.0.0deny 20.20.20.20 0.0.0.0permit anyip access-list standard deny_ospf100deny 3.3.3.3 0.0.0.0deny 30.30.30.30 0.0.0.0permit anyaccess-list 10 permit 2.2.2.2 0.0.0.0access-list 11 permit 3.3.3.3 0.0.0.0access-list 20 permit 20.20.20.20 0.0.0.0access-list 21 permit 30.30.30.30 0.0.0.0route-map ospf100_to_ospf10 permit 10match ip address 11set metric 100route-map ospf100_to_ospf10 permit 20match ip address 21set metric 200route-map ospf10_to_ospf100 permit 10match ip address 10set metric 100route-map ospf10_to_ospf100 permit 20match ip address 20set metric 200R4配置:config terint f0/0ip add 172.16.0.1 255.255.255.252no shutint f1/0ip add 172.16.0.5 255.255.255.252no shutint lo 0ip add 4.4.4.4 255.255.255.255endwriteconfig terrouter ospf 10router-id 4.4.4.4network 172.16.0.4 0.0.0.3 area 0redistribute ospf 100 metric-type 1 subnets route-map ospf100_to_ospf10 distribute-list deny_ospf100 inendconfig terrouter ospf 100router-id 4.4.4.4network 172.16.0.0 0.0.0.3 area 0redistribute ospf 10 metric-type 1 subnets route-map ospf10_to_ospf100 distribute-list deny_ospf10 inendwriteip access-list standard deny_ospf10deny 2.2.2.2 0.0.0.0deny 20.20.20.20 0.0.0.0permit anyip access-list standard deny_ospf100deny 3.3.3.3 0.0.0.0deny 30.30.30.30 0.0.0.0permit anyaccess-list 10 permit 2.2.2.2 0.0.0.0access-list 11 permit 3.3.3.3 0.0.0.0access-list 20 permit 20.20.20.20 0.0.0.0access-list 21 permit 30.30.30.30 0.0.0.0route-map ospf100_to_ospf10 permit 10 match ip address 11set metric 200route-map ospf100_to_ospf10 permit 20 match ip address 21set metric 100route-map ospf10_to_ospf100 permit 10 match ip address 10set metric 200route-map ospf10_to_ospf100 permit 20 match ip address 20set metric 100R2的配置:config terint f0/0ip add 10.0.0.2 255.255.255.252no shutint f1/0ip add 172.16.0.6 255.255.255.252no shutint lo 0ip add 2.2.2.2 255.255.255.255int lo 1ip add 20.20.20.20 255.255.255.255 endwriteconfig terrouter ospf 10router-id 2.2.2.2network 172.16.0.4 0.0.0.3 area 0 network 10.0.0.0 0.0.0.3 area 0 network 2.2.2.2 0.0.0.0 area 0network 20.20.20.20 0.0.0.0 area 0endwriteR3的配置:config terint f0/0ip add 10.0.0.6 255.255.255.252no shutint f1/0ip add 172.16.0.2 255.255.255.252no shutint lo 0ip add 3.3.3.3 255.255.255.255int lo 1ip add 30.30.30.30 255.255.255.255endwriteconfig termrouter ospf 100router-id 3.3.3.3network 172.16.0.0 0.0.0.3 area 0network 10.0.0.4 0.0.0.3 area 0network 3.3.3.3 0.0.0.0 area 0network 30.30.30.30 0.0.0.0 area 0endwrite4、实验测试1、在R2上show ip route查看结果,可以看出实现了数据分流。
路由重发布

当把OSPF充分布到RIP中的时候,默认的METRIC为无穷大,如果不用default-metric来进行修改,或用redistribute ospf 1 metric (number) 的话,那样就无意义了。
1.当把OSPF充分布到RIP中的时候,默认的METRIC为无穷大,因此,RIP是不接受的!!!所以,要通过default-metric来进行修改,当然,也可以在redis 命令后进行修改的!2.在将其他协议redis to ospf中的时候,必须加sub,否则只会redistribute class routing!一.重发布基础:大家都知道,一般来说一个组织或者一个跨国公司很少只使用一个路由协议,而如果一个公司同时运行了多个路由协议,或者一个公司和另外一个公司合并的时候两个公司用的路由协议并不一样,这个时候该怎么办呢?所以必须采取一种方式来将一个路由协议的信息发布到另外的一个路由协议里面去,这样,重发布的技术就诞生了。
(重发布的概念:将一种路由选择协议获悉的网络告知另一种路由选择协议,以便网络中每台工作站能到达其他的任何一台工作站,这一过程被称为重发布。
)重发布只能在针对同一种第三层协议的路由选择进程之间进行,也就是说,OSPF,RIP,IGRP等之间可以重发布,因为他们都属于TCP/IP协议栈的协议,而AppleTalk或者IPX 协议栈的协议与TCP/IP协议栈的路由选择协议就不能相互重发布路由了。
二.重发布的命令:Router(config-router)#redistribute protocol [protocol-id] { level-1 | level-2 | level-1-2 } {metric metric-value} {metric-type type-value} {match ( internal | external 1 | external 2 ) } {tag Tag-value} {route-map map-tag} {weight weight } {subnets}对此命令就不详细介绍了,大家可以参考人民邮电出版社《CCNP BSCI 认证指南(第三版)》第435页。
路由重分布概念

路由重分布概念
路由重分布是指在不同路由协议之间共享路由信息的过程。
为了在同一个网络中有效地支持多种路由协议,需要在不同的路由协议之间进行路由信息的交换。
这个过程将一种路由协议获悉的路由信息告知给另一种路由协议,从而实现在不同的路由协议之间路由信息的共享。
在执行路由重分布时,需要注意一些关键问题。
首先,应避免在同一个网络中同时使用两个不同的路由协议,除非在网络之间有明显的界限。
其次,如果有多台路由器作为重分布点,应使用单项重分布以避免回环和收敛问题,并在不需要接收外部路由的路由器上使用默认路由。
此外,在单边界的情况下,可以使用双向重分布,但如果没有任何机制来防止路由回环,则不要在一个多边界的网络中使用双向重分布。
在进行路由重分布时,还需要考虑度量标准和管理距离。
种子度量值是在路由生分布时定义的,它是一条通过外部重分布进来的路由的初始度量值。
同时,由于不同路由协议的度量标准不同,需要进行协议标准的转换以实现兼容性。
总之,路由重分布是实现多个路由协议在同一个网络中协同工作的关键技术之一。
通过在不同路由协议之间进行路由信息的共享和转换,可以实现更加高效和可靠的路由选择和网络通信。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Example: Configuring Redistribution at Router B
Example: Routing Tables After Route Redistribution
Example: Routing Tables After Summarizing Routes and Redistributions
操纵路由选择更新
配置和验证路由重分发
所有路由协议都支持Redistribution命令
eigrp
RtrA(config)#router rip
RtrA(config-router)#redistribute ?
bgp
Border Gateway Protocol (BGP)
connected Connected
重分发到OSPF
Default-metric命令
Default-metric命令用于指定默认度量值.
如果使用了该命令,指定的度量值将用于重分发到该协议中的所有协议. 在Redistribute中配置的默认度量值将覆盖Default-metric指定的默认度量值
Passive-interface命令
route-map
Route map reference
ቤተ መጻሕፍቲ ባይዱ
subnets
Consider subnets for redistribution into OSPF
tag
Set tag for routes redistributed into OSPF
…
<cr>
默认metric是20. 默认metric类型是2. 默认不重分发子网.
Enhanced Interior Gateway Routing Protocol (EIGRP)
isis
ISO IS-IS
iso-igrp IGRP for OSI networks
metric
Metric for redistributed routes
mobile
Mobile routes
odr
用于禁止通过指定的路由器接口发送路由选择更新.
使用参数Default可以将所有路由器接口设置为被动状态
Distance命令
使用Distance命令可以修改路由协议的管理距离 根据各个 路由协议的管理距离差异影响路由选择
Example: Before Redistribution
Example: Before Redistribution (Cont.)
On Demand stub Routes
ospf
Open Shortest Path First (OSPF)
rip
Routing Information Protocol (RIP)
route-map Route map reference
static
Static routes
<cr>
RIP协议的Redistributie命令
<1-65535> Autonomous system number RtrA(config-router)# redistribute eigrp 100 ?
metric
Metric for redistributed routes
metric-type OSPF/IS-IS exterior metric type for redistributed routes
metric
Metric for redistributed routes
route-map Route map reference
…
<cr>
默认Metric为无穷大.
重分发到RIP
OSPF中的重分发命令
RtrA(config)# router ospf 1 RtrA(config-router)# redistribute eigrp ?
RtrA(config)# router rip RtrA(config-router)# redistribute ospf ?
<1-65535> Process ID RtrA(config-router)# redistribute ospf 1 ?
match
Redistribution of OSPF routes
Summary
Several steps must be followed for accurate IP route redistribution to occur. All IP routing protocols can be redistributed into RIP. When IP routing protocols are redistributed into OSPF, additional commands are required. When IP routing protocols are redistributed into EIGRP, a seed metric is required. IP routing protocols are usually redistributed into IS-IS as Level 2 routes. There are several techniques for verifying IP route redistribution.