九年级数学检测卷
福建省厦门第六中学2024-2025学年上学期九年级数学期中质量检测卷

班级:座号: 姓名:_______________厦门六中2024~2025学年九年级期中检测数学学科注意事项:1.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号,非选择题答案用0.5毫米黑色签字笔在答题卡相应位置作答,在试卷上答题无效,可以直接使用2B 铅笔作图; 2.本试卷共5页,共三大题,25小题,满分150分.一.单项选择题:本题共8小题,每小题4分,共32分,在每小题给出的四个选项中,只有一项符合题目要求.1. 已知点(3,2),则它关于原点的对称点坐标为( )A .(2,3)B .(3,-2)C .(-3,-2)D .(-3,2) 2. 方程(x -1)(x +2)=0的解是( )A .x 1=1,x 2=2B .x 1=-1,x 2=2C .x 1=1,x 2=-2D .x 1=-1,x 2=-2 3. 抛物线y =-x 2+3的顶点为( )A .(-1,3)B .(0,3)C .(1,-3)D .(0,-3) 4. 如图1,点A ,B ,C 在⊙O 上,点D 在⊙O 外,CD 与⊙O 交于点E ,AC ,BE 交于点F .下列角中,弧AE 所对的圆周角是( ) A .∠ADE B .∠ABEC .∠AFED .∠AOE5. 如图2,AB 是⊙O 的弦,若⊙O 的半径OA =10,圆心O 到弦AB 的距离OC =6,则弦AB 的长为( ) A .8 B .12 C .16 D .206. 从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的函数关系如图3所示.则下列结论不正确的是( ) A .小球在空中经过的路程是40 m B .小球运动的时间为6 sC .小球抛出3 s 时,刚好到达最高点D .小球所能到达的最大高度为40 mFE C O B AD 图1 图3 图27. 已知点P (m -1,n ),Q (m +1,n ),M (m +3,n ),N (m +2,n +1),二次函数的图象经过这四个点中的三个点,得到对应的函数解析式y =ax 2+bx +c ,当a 的值最小时,所对应的二次函数图象所经过的点为( ) A .点P ,点Q 和点M B .点P ,点Q 和点N C .点P ,点M 和点N D .点Q ,点M 和点N8. 如图4,点E 是正方形ABCD 内部的一动点,连接DE ,以DE 为腰在DE 的右侧作等腰直角三角形DEF ,连接EC ,AF ,G 为AF 的中点,连接DG ,随着点E 的运动,下列结论正确的是( ) A .EC =2DG B .EC =2DG C .EC =12AFD .EC =22AF二.填空题:本题共8小题,每小题4分,共32分.9. 一只不透明的袋子中装有3个白球和4个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到白球的概率是_________. 10.将抛物线y =2x 2向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为__________________.11.如图5,四边形ABCD 是⊙O 的内接四边形,若∠B =110°,则∠D的度数为___________.12.若关于x 的一元二次方程x 2+4x +m =0有两个相等的实数根,则m 的值为___________. 13.化简:a 2a -1-1a -1=_______________.14.如图6,△ABC 中,∠CAB =65°,将△ABC 在平面内绕点A 逆时针旋转到△ADE 的位置,使CD ∥AB ,则旋转角为____________.15.定义:关于x 的一元二次方程a 1x 2+b 1x +c 1=0的两根之和x 1+x 2与两根之积x 1·x 2分别是另一个一元二次方程a 2x 2+b 2x +c 2=0的两个根,则一元二次方程a 2x 2+b 2x +c 2=0称为一元二次方程a 1x 2+b 1x +c 1=0的“再生韦达方程”,一元二次方程a 1x 2+b 1x +c 1=0称为“原生方程”.(1) 写出方程x 2-4=0的“再生韦达方程”_________________;(2) 写出一个一元二次方程,使得它既是“原生方程”又是自己的“再生韦达方程”_________________.16.如图7,在菱形ABCD 中,∠BAD =60°,AB =6,O 为对角线的交点.将菱形ABCD 绕点O 逆时针旋转90°得到菱形A ′B ′C ′D ′,两个菱形的公共点为E ,F ,G ,H . (1) AD ′的长度为____________;(2) 八边形BFB ′GDHD ′E 的面积为___________.图4图5图6 图7BA三.解答题:本题共9小题,共86分. 17.(本题满分12分)按要求计算:(1) 解方程:x 2-6x -2=0;(2) 计算:20×⎪⎪⎪⎪-13+4-3-1.18.(本题满分7分)如图8,在矩形ABCD 中.点O 在边AB 上,∠AOC =∠BOD .求证:AO =OB .19.(本题满分7分)解方程:2x 2-1+xx -1=1.20.(本题满分8分)如图9,△ABC 中,AB =AC ,以AB 为直径作⊙O ,交BC 边于点D ,交CA 的延长线于点E ,连结AD ,DE . (1) 求证:BD =CD ;(2) 若AB =5,AD =3,求DE 的长.21.(本题满分8分)如图10,AB =BC ,∠ABC =α,其中α>90°,以点C 为中心,将线段BC 顺时针旋转α,得到线段CD ,连接AD .(1) 尺规作图:求作线段CD ;(2) 探究AD 与BC 的位置关系,并说明理由.图8图9C AB 图10空气质量指数(AQI )是定量描述空气质量状况的指标,其数值越大说明空气污染状况越严重.空气质量指数范围及相应类别为: 0≤AQI ≤50,空气质量为优; 50<AQI ≤100空气质量为良;100<AQI ≤150,空气质量为轻度污染; 150<AQI ≤200,空气质量为中度污染; 200<AQI ≤300,空气质量为重度污染; AQI >300,空气质量为严重污染 某市以建设“生态强市”为目标,着力改善空气质量,为了解2023年环境改善情况,环保部门收集了该年每天的空气质量指数,绘制如图11的频数分布直方图,通过数据分析得到其平均数为66.67,其中部分数据按从小到大的顺序排列后得到如下统计表1:表1序号 1 2 3 … 182 183 184 185 … 363 364 365 AQI888…32333434…298298298(1) 这组数据的中位数是为___________;(2) 梓轩认为可以用平均数来反映该市2023年的空气质量情况,你认为合理吗?请说明理由;(3) 当地政府计划从2024年开始增加绿化面积,到2025年底该地区的绿化面积达到43.2万亩.已知2023年底该地区的绿化面积为30万亩,求这两年中绿化面积的年平均增长率.23.(本题满分10分)某公司成功研制出电子产品后投入生产并进行销售.已知生产这种电子产品的成本为10元/件,公司规定该种电子产品每件的销售价格不低于23元,不高于29元.在销售过程中发现:销售量y (万件)与销售价格x (元/件)的关系如表2,投入成本m (万元)与销售量y (万件)的关系为二次函数,其图象如图12,其中点(5,2)是图象的顶点.x (元/件) 23 23.5 25 27 29y (万件)76.5531(1) 求投入成本m 与销售量y 之间的函数解析式;(2) 应如何定价才能使得销售这种电子产品的利润达到最大?最大利润为多少?图11表2 图12my5218O 17如图13,在△ABC 中,∠CAB =60°,BC 的垂直平分线交AB 于点O ,以O 为圆心,OC 为半径作⊙O ,过C 作CD ⊥AB 交AB 于点E ,交⊙O 于点D ,延长DA 交⊙O 于点F ,G 为OC 的中点,连接FG ,交AC 于点P .(1) 求∠D 的度数; (2) 若∠F =2∠B ,试探究AP 与CP 的数量关系,并说明理由.25.(本题满分14分)已知抛物线M :y =x 2-ax -2a -4,其中a >0,点B 在对称轴上. (1) 若抛物线M 过点N (1,y 0),且对于任意的实数x ,都有y ≥y 0.① 求a 的值;② 若直线l :y =x -4与抛物线M 交于点P ,Q ,求△PQN 的面积;(2) 已知点A (-2,0)在抛物线M 上,将点B 绕点A 顺时针旋转90°,得到点C ,试探究:对于任意正数a ,是否总存在点B 使得点C 在抛物线M 上?请通过计算说明理由.图13 E P AF G D C B O。
江苏省徐州市邳州市2024—2025学年上学期期中考试九年级数学试卷(含答案)

2024~2025学年度第一学期期中检测九年级数学试题注意事项1.本卷共6页,满分140分,考试时间100分钟。
2.答题前,请将姓名、文化考试证号用0.5毫米黑色字迹签字笔填写本卷和答题卡的指定位置。
3.答案全部涂、写在答题卡上,写在本卷上无效。
考试结束后,将答题卡交回。
一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.方程的解是( )A .,B .C .,D .,2.的半径长为4,若点P 到圆心的距离为3,则点P 与的位置关系是( )A .点P 在内B .点P 在上C .点P 在外D .无法确定3.方程的两根为、,则( )A .6B .-6C .3D .-34.下列函数的图象与的图象形状相同的是( )A .B .C .D .5.如图,A 、B 、C 、D 为一个正多边形的顶点,O 为正多边形的中心.若,则这个正多边形的边数为( )A .7B .8C .9D .10(第5题)6.如图,在半径为5的中,弦,点C 是弦AB 上的一动点,若OC 长为整数,则满足条件的点C 有()240x x -=12x =-22x =4x =10x =24x =14x =-24x =O e O e O e O e O e 2261x x -=1x 2x 25y x =22y x=252y x =-+251y x x =++51y x =-20ADB ∠=︒O e 8AB =(第6题)A .3个B .4个C .5个D .6个7.为响应“坚持绿色低碳,建设一个清洁美丽的世界”的号召,已知某市一共有285个社区,第一季度已有60个社区实现垃圾分类,第二、三季度实现垃圾分类的小区个数较前一季度平均增长率为x ,要在第三季度将所有社医都进行垃圾分类,下列方程正确的是( )A .B .C .D .8.当时,函数的最小值为1,则a 的值为( )A .0B .2C .0或2D .0或3二、填空题(本大题共8小题,每小题4分,共32分.不需写出解题过程,请将答案直接填写在答题卡相应位置)9.一元二次方程的根是______.10.请在横线上写一个常数,使得关于x 的方程有两个相等的实数根.11.若是一元二次方程的一个根,则______.12.如图,是的内切圆,若,,则______°.(第12题)13.已知二次函数的图像经过点、,则______(填“>”“<”或“=”).14.如图,将一个圆锥展开后,其侧面是一个圆心角为108°,半径为12cm 的扇形,则该圆锥的底面圆的半径为______cm.()2601285x +=()2601285x -=()()2601601285x x +++=()()260601601285x x ++++=1a x a -≤≤221y x x =-+213x -=26______0x x -+=1x =20x mx n --=2024m n ++=O e ABC △60ABC ∠=︒50ACB ∠=︒BOC ∠=()()210y a x c a =-+<()11,y -()24,y 1y 2y(第14题)15.平面直角坐标系中,若平移二次函数的图象,使其与x 轴交于两点,且此两点的距离为1个单位,则平移方式为______.16.已知如图,二次函数的图像交x 轴于A 、B 两点,交y 轴于C 点,连接BC ,点M 是BC 上一点,射线MN 与以A 为圆心,1为半径的相切于点N ,则线段MN 的最小值是______.(第16题)三、解答题(本大题共9小题,共84分,请在答题卡指定区域内作答,解答时写出相应文字说明、证明过程或演算步骤)17.(本题10分)解下列方程:(1);(2).18.(本题8分)已知关于x 的一元二次方程.求证:不论m 为何值,该方程总有两个实数根.19.(本题8分)如图,AB 是的直径,弦AD 平分,,垂足为E .试判断DE 与的位置关系,并说明理由.(第19题)()()202420254y x x =--+2y =+A e 2420x x --=()()323x x x +=+210x mx m ++-=O e BAC ∠DE AC ⊥O e20.(本题8分)某小区有一块矩形绿地,长为20m ,宽为8m .为美化小区环境,现进行如下改造,将绿地的长减少a m ,宽增加a m ,改造后的面积比原来增加,求a 的值.21.(本题10分)已知y 是x 的函数,下表中给出了几组x 、y 的对应值:x …-2-1.5-101 4.55…y…3m-2-31.3753…(1)建立直角坐标系,以表中各对对应值为坐标描出各点,用平滑曲线顺次连接,由图像可知,它是我们学过的哪类函数?求出函数表达式,并直接写出m 的值;(2)结合图像回答问题:当x 的取值范围是____________时,.(第21题)22.(本题10分)如图,在中,,以AB 为直径作,分别交AC 、BC 于点D 、E .(1)求证:;(2)当时,求的度数;(3)过点E 作的切线,交AB 的延长线于点F ,当时,求图中阴影部分面积.(第22题)23.(本题10分)商场将进货价为40元每件的某商品以50元售出,平均每月能售出700件,调查表明:售价在50元至100元范围内,这种商品的售价每上涨1元,其销售量就将减少10件,设商场决定每件商品的售价为元.(1)该商场平均每月可售出______件商品(用含x 的代数式表示);(2)商品售价定为多少元时,每月销售利润最大?227m 0y ≥ABC △AB AC =O e BE CE =40BAC ∠=︒ADE ∠O e 2AO BE ==()50100x x <<(3)该商场决定每销售一件商品就捐赠a 元利润给希望工程,通过销售记录发现,每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小,求a 的取值范围.24.(本题10分)(1)如图①,点A 、B 、C 、D 在上,,则______°:(2)如图②,A 、B 两点分别在x 轴和y 轴上,是的外接圆,利用直尺和圆规在第一象限内作出一点P ,使,且;(保留作图痕迹)(3)如图③,已知线段AB 和直线l ,利用直尺和圆规在l 上作出点P ,使;(保留作图痕迹)(4)如图④,在平面直角坐标系的第一象限内有一点B ,坐标为,过点B 作轴,轴,垂足分别为A 、C ,若点P 在线段AB 上滑动(点P 可以与点A 、B 重合),使得的位置有两个,则m 的取值范围为______.(第24题)25.(本题10分)如图,二次函数的图像与x 轴交于点、,与y 轴交于点C .连接AC 、BC .(1)填空:______,______;(2)如图①,若点D 是此二次函数图像的第一象限上一点,设D 点横坐标为m ,当四边形OCDB 的面积最大时,求m 的值;(3)如图②,若点P 在第四象限,点Q 在PA 的延长线上,当时,求点P 的坐标.(第25题)()1a ≥O e 35BAC ∠=︒BOC ∠=C e AOB △OPA OBA ∠=∠OP AP =30APB ∠=︒()2,m AB y ⊥BC x ⊥45OPC ∠=︒212y x bx c =-++()1,0A -()4,0B b =c =45CAQ CBA ∠=∠+︒2024~2025学年度第一学期期中检测九年级数学参考答案一、选择题(本大题共8小题,每小题3分,共24分)题号12345678答案CACBCCDD二、填空题(本大题共8小题,每小题4分,共32分)9.,10.911.202512.12513.>14.3.615.向下平移4个单位长度16三、解答题(本大题共9小题,共84分)17.(本题10分)解:(1)移项,得配方,得即直接开平方,得∴(2)移项,得因式分解,得∴或∴,18.(本题8分)解:∵,,∴∵不论m 为何值∴不论m 为何值,该方程总有两个实数根.19.(本题8分)解:DE 与相切理由是:连接OD∵∴∵AD 平分∴∴∴∵∴∴DE 与相切.12x =22x =-242x x -=24424x x -+=+()226x -=2x -=12x =+22x =()()3230x x x +-+=()()230x x -+=20x -=30x +=12x =23x =-1a =b m =1c m =-()2²4411b ac m m -=-⨯⨯-²44m m =-+()22m =-()220m -≥O e OD OA =ODA OAD∠=∠BAC ∠OAD CAD ∠=∠ODA CAD ∠=∠AC OD ∥DE AC ⊥OD DE ⊥O e(第19题)20.(本题8分)解:根据题意得:即:解得:,答:a 的值为3或9.21.(本题10分)(1)描点、连线如图是二次函数,设函数的表达式为:把点,,代入得解得:∴函数得表达式为(2)或.22.(本题10分)(1)证明:连接AE∵AB 是直径∴∴∵∴()()20820827a a -+-⨯=212270a a -+=13a =29a =()20y ax bx c a =++≠()1,0-()0,2-()1,3-023a b c c a b c -+=⎧⎪=-⎨⎪++=-⎩12322a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩213222y x x =--1.375m =1x ≤-4x ≥O e 90AEB ∠=︒AE BC ⊥AB AC =BE CE=(第22题)(2)解:∵,∴∵四边形ABED 是的内接四边形∴∴.(3)解:连接OE 则∵∴∴是等边三角形∴∵EF 是切线∴∴∴∴∴阴影部分的面积.23.(本题10分)(1)(2)设每月销售利润为y 元则∵,∴当时,y 有最大值16000答:商品售价定为80元时,每月销售利润最大;(3)设每月销售利润为y 元则∴对称轴为直线∵∴当时,y 随x 得增大而减小∵每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小∴解得:∵∴a 的取值范围是.24.(本题10分)(1)35,702分AB AC =40BAC ∠=︒180180407022BAC ABC ︒-∠︒-︒∠===︒O e 180ADE ABC ∠+∠=︒180********ADE ABC ∠=︒-∠=︒-︒=︒OE OA OB==2OA BE ==OA OB BE ==OBE △60BOE ∠=︒O e OE EF ⊥30F ∠=︒24OF OE ==EF ===2160π222π23603OEF BOE S S ⨯=-=⨯⨯=-扇形△101200x -+()()()224010120010160048000108016000y x x x x x =--+=-+-=--+100-<50100x <<80x =()()()24010120010160010480001200y x a x x a x a=---+=-++--()160010802102a a x +=-=+⨯-100-<802ax >+80852a+≤10a ≤1a ≥110a ≤≤(2)如图(3)如图(4)25.(本题10分)(1),2(2)∵点D 横坐标为m ,且点D 在二次函数的图像上∴点D 坐标为对于二次函数,当时,∴设BC :则解得:∴BC :21m ≤<32213222y x x =-++213,222m m m ⎛⎫-++ ⎪⎝⎭213222y x x =-++0x =2y =()0,2C y kx b =+402k b b +=⎧⎨=⎩122k b ⎧=-⎪⎨⎪=⎩122y x =-+过点D 作轴,交BC 于点E 则∴∴到DE 的距离到DE 的距离(C 到DE 的距离到DE 的距离)∵,∴当时,有最大值8∴.(3)∵,,∴,,∴∴设,则∵∴∴DE y ∥1,22E m m ⎛⎫-+ ⎪⎝⎭2213112222222DE m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭OBC BCD OCDB S S S =+四边形△△OBC CDE BDES S S =++△△△1122OC OB DE C =⨯⨯+⨯⨯12DE B +⨯⨯112422DE =⨯⨯+⨯⨯B +1442DE =+⨯⨯214222m m ⎛⎫=+-+ ⎪⎝⎭244m m =-++()()22804m m =--+<<10a =-<04m <<2m =OCDB S 四边形2m =()1,0A -()4,0B ()0,2C 25AC =220BC =225AB =222AC BC AB +=90ACB ∠=︒ABC x ∠=90CAB x∠=︒-45CAQ CBA ∠=∠+︒45CAQ x ∠=+︒()()180459045PAB x x ∠=︒-+︒-︒-=︒设直线AP 交y 轴于F则∴设AP :则解得:∴AP :设∵点P 在二次函数的图象上∴解得:,(舍去)当时,∴点P 的坐标为.1OF OA ==()0,1F -y kx b =+01k b b -+=⎧⎨=-⎩11k b =-⎧⎨=-⎩1y x =--()(),10P n n n -->213222y x x =-++2132122n n n -++=--16n =21n =-6n =17n --=-()6,7-。
鲁教版数学九年级数学上册 第三章 二次函数 单元检测卷

鲁教版九年级数学上册第3章《二次函数》 单元检测题一、选择题:1.抛物线y =2(x ﹣1)2+3的顶点坐标是( )A .(1,3)B .(3,1)C .(﹣3,2)D .(2,3)2.二次函数21y ax bx c =++与一次函数2y mx n =+的图象如图所示,则满2ax bx c mx n ++>+的x 的取值范围是( )A .30x -<< B .3x <-或0x > C .3x <-或1x > D .03x <<3.已知二次函数2y ax bx c =++的图象的对称轴为直线1x =,其图象如图所示,现有下列结论:①0abc >;①20a b +=;①420a b c -+>;①()a b m am b +≥+;①23c b <.其中正确结论的是( )A .①①①B .①①①C .①①①D .①①①4.根据表格对应值判断关于x 的方程ax 2+bx +c =2的一个解x 的范围是( ) A .1.1<x <1.2B .1.2<x <1.3C .1.3<x <1.4D .无法判定5.便民商店经营一种商品,在销售过程中,发现一周利润y (元)与每件销售价x (元)之间的关系满足y=-2(x -20)2+1558,由于某种原因,价格只能15≤x≤22,那么一周可获得最大利润是( )A .20B .1508C .1550D .1558x 1.1 1.2 1.3 1.4 ax 2+bx +c ﹣0.59 0.84 2.29 3.766.将抛物线y =2x 2经过怎样的平移可得到抛物线y =2(x +3)2+4( ) A .先向左平移3个单位,再向上平移4个单位 B .先向左平移3个单位,再向下平移4个单位 C .先向右平移3个单位,再向上平移4个单位 D .先向右平移3个单位,再向下平移4个单位7.将抛物线y =2x 2先向右平移4个单位,再向上平移5个单位,得到的新抛物A .4B .3C .2D .1 9.把抛物线22y x bx =++的图像向右平移3个单位,再向上平移2个单位,所得到的图像的解析式为247y x x =-+,则b =( )A .2B .4C .6D .810.已知二次函数y =ax 2+bx +c (a≠0)的图像如图所示,有下列5个结论:①c <0;①abc >0;①a -b +c >0;①2a -3b>0;①c -4b >0,你认为其中正确信息的个数有( )A .2个B .3个C .4个D .5个10.如图所示,二次函数y =ax 2+bx +c (a ≠0)的图象经过点A (﹣1,2),且与x 轴交点的横坐标分别为x 1,x 2,其中﹣2<x 1<﹣1,0<x 2<1,下列四个结论①2a ﹣b <0;①4a ﹣2b +c <0;①c ﹣a >2;①3a +c >0中,错误的个数有( ) A .0 B .1 C .2 D .312.如图,二次函数y =ax 2+bx +c 的图象与y 轴正半轴相交,其顶点坐标为(12,1),下列结论:①abc <0;①b 2﹣4ac >0;①a +b <0;①2a +c <0,其中正确的个数是( )A .1个B .2个C .3个D .4个 13.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如下表: x … 2- 1- 0 1 2 …y … 15- 5- 1 3 1 … 则当14x -≤≤时,y 的取值范围是 .14.2(1)1y x a x =+-+是关于x 的二次函数,当x 的取值范围是13x -时,y 只在=1x -时取得最大值,则实数a 的取值范围是 .15.抛物线213222y x x =-+与x 轴交于点()1,0A x ,()2,0B x ,则AB 的长为 . 16.将抛物线2y x 沿直线3y x =方向移动10个单位长度,若移动后抛物线的顶点在第一象限,则移动后抛物线的解析式是 .17.将抛物线y=﹣(x +1)2+3向右平移2个单位再向上平移2个单位后得到的新抛物线的表达式为 .18. 已知二次函数224y x x =-+-的图象上两点()()124,,,A y B m y ,若12y y =,则m = .19.某电商在购物平台上销售一款小电器,其进价为45元/件,每销售一件需缴纳平台推广费5元,该款小电器每天的销售量y (件)与每件的销售价格x (元)满足函数关系:2180y x =-+.为保证市场稳定,供货商规定销售价格不得低于75元/件且不得高于90元/件.(1)写出每天的销售利润w (元)与销售价格x (元)的函数关系式;(2)每件小电器的销售价格定为多少元时,才能使每天获得的利润最大,最大是多少元?1⎛⎫两点,PAB的面积恒成立,求b的值.关于抛物线的(1)求抛物线的表达式;(2)点P是抛物线上一动点,且位于第四象限,当ABP的面积为6时,求出点P的坐标;(3)若点M在直线BH上运动,点N在x轴上运动,当以点C,M,N为顶点的三角形为等腰直角三角形时称这样的点N为“美丽点”,共有多少个“美丽点”?请直接写出当点N为“美丽点”时,CMN的面积.23.如图,设抛物线T:y=ax2+c(a> 0)与直线L:y=kx-4(k> 0)交A,B两点(点B在点A的右侧).(1)如图,若点A(12,-52),且a+c=-1.①求抛物线T和直线L的解析式;①求①AOB的面积.(2)设点C是点B关于y轴的对称点,当点A,O,C三点共线时,求实数c的值.。
2024年北京朝阳区初三九年级上学期期末数学试题和答案

张卡片,除所标注文字不同外无其他差别.其中,写有“珍稀濒危植.随机摸出一张卡片写有“珍的扇形作圆锥的侧面,记扇形的半径为R,所在一定范围内变化时,l与S都随R的变第12题图第14题图试题13.某科技公司开展技术研发,在相同条件下,对运用新技术生产的一批产品的合格率进行检测,下表是检测过程中的一组统计数据:估计这批产品合格的产品的概率为.14.如图,AB 是半圆O 的直径,将半圆O 绕点A 逆时针旋转30°,点B 的对应点为B ',连接A B ',若AB =8,则图中阴影部分的面积是_______.15.对于向上抛的物体,在没有空气阻力的条件下,上升高度h ,初速度v ,抛出后所经历的时间t ,这三个量之间有如下关系:221gt vt h -=(其中 g 是重力加速度,g 取10m/s 2).将一物体以v=21m/s 的初速度v 向上抛,当物体处在离抛出点18m 高的地方时,t 的值为 .16.已知函数y 1=kx +4k -2(k 是常数,k ≠0),y 2=ax 2+4ax -5a (a 是常数,a ≠0),在同一平面直角坐标系中,若无论k 为何值,函数y 1和y 2的图象总有公共点,则a 的取值范围是_______.三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解方程x 2-1 =6x .18.关于x 的一元二次方程x 2-(m +4)x +3(m +1)=0 .(1)求证:该方程总有两个实数根;(2)若该方程有一根小于0,求m 的取值范围.抽取的产品数n 5001000150020002500300035004000合格的产品数m 476967143119262395288333673836合格的产品频率nm0.9520.9670.9540.9630.9580.9610.9620.959图2图3图1图1 图2试题北京市朝阳区2023~2024学年度第一学期期末检测九年级数学试卷参考答案及评分标准(选用)2024.1一、选择题(共16分,每题2分)题号12345678答案DABCACAC二、填空题(共16分,每题2分)三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分)17.解:方程化为x 2 -6x =1.x 2 -6x+9 =10.1032=-)(x .103±=-x .1031+=x ,1032-=x .18.(1)证明:依题意,得=[-(m +4)]2-4×3(m +1) =(m -2)2.∵(m -2)2≥0,∴0≥∆∴该方程总有两个实数根.(2)解:解方程,得x =.∴x 1= m +1,x 2=3.依题意,得m +1<0.∴m <-1.19.解:(1)根据题意,设该二次函数的解析式为 y 2=a (x -1)2+4.当x =0时,y 2 =3∴a =-1.∴y 2=-x 2+2x +3.题号9101112答案x 1=3,x 2=-3相切(1,3)140题号13141516答案答案不唯一,如0.9593438+π1.2或3a <0或a ≥52线段垂直平分线上的点与这条线段两个端点的距离相等.三角形的外角等于与它不相邻的两个内角的和.由题意可知,抛物线顶点C ),(9254.设抛物线对应的函数解析式)4(2+-=x a y试题26. 解:(1)由题意知,a +b +c = 9a +3b +c .∴b = -4a .∴22=-=a b t . (2)∵a >0,∴当x ≥t 时,y 随x 的增大而增大;当x ≤t 时,y 随x 的增大而减小.设抛物线上的四个点的坐标为A (t -1,m A ) ,B (t ,m B ),C (2,n C ),D (3,n D ).点A 关于对称轴x =t 的对称点为A'(t +1,m A )∵抛物线开口向上,点B 是抛物线顶点,∴m A >m B .ⅰ 当t ≤1时,n C < n D∴t +1≤2.∴m A ≤n C ,∴不存在m >n ,不符合题意.ⅱ 当1<t ≤2时,n C < n D∴2<t +1≤3.∴m A >n C .∴存在m >n ,符合题意.ⅲ当2<t ≤3时,∴n 的最小值为m B .∵m A >m B .. ∴存在m >n ,符合题意.ⅳ 当3<t <4时,n D <n C .∴2<t -1<3.∴m A >n D .∴存在m >n ,符合题意.ⅴ 当t ≥4时,n D <n C .∴t -1≥3.∴m A ≤n D ,∴不存在m >n ,不符合题意.综上所述,t 的取值范围是1<t <4.)解:补全图1,如图.证明:延长AF到点G,使得GF=AF,连接,连接GE并延长,与AB的延长。
期中检测九年级数学卷

期中检测九年级数学卷时间:120分钟满分:150分一.选择题(共12小题,满分48分,每小题4分)1.已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC2.一个正方体沿四条棱的中点切割掉一部分后,如图所示,则该几何体的左视图是()A.B.C.D.3.如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8B.7C.4D.34.一元二次方程y2﹣y﹣=0配方后可化为()A.(y+)2=1B.(y﹣)2=1C.(y+)2=D.(y﹣)2=5.若关于x的一元二次方程x2﹣2x+m=0有实数根,则实数m的取值范围是()A.m<1B.m≤1C.m>1D.m≥16.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在15%和35%,则口袋中白色球的个数可能是()A.6个B.14个C.20个D.40个7.如图,∠DAB=∠CAE,请你再添加一个条件,使得△ADE∽△ABC.则下列选项不成立的是()A.∠D=∠B B.∠E=∠C C.D.第7题图第8题图8.如图,小明探究课本“综合与实践”板块“制作视力表”的相关内容:当测试距离为5m 时,标准视力表中最大的“E”字高度为72.7mm,当测试距离为3m时,最大的“E”字高度为()A.4.36mm B.29.08mm C.43.62mm D.121.17mm9.如图,在△ABC中,DE∥BC,=,则的值是()A.B.1C.D.第9题图第10题图10.如图,点P(8,6)在△ABC的边AC上,以原点O为位似中心,在第一象限内将△ABC 缩小到原来的,得到△A′B′C′,点P在A′C′上的对应点P′的坐标为()A.(4,3)B.(3,4)C.(5,3)D.(4,4)11.如图,正方形ABCD的边长为4,G是BC边上一点,若矩形DEFG的边EF经过点A,GD=5,则FG长为()A.2.8B.3C.3.2D.4第11题图第12题图12.如图,正方形ABCD的边长为6,点E是BC的中点,连接AE与对角线BD交于点G,连接CG并延长,交AB于点F,连接DE交CF于点H,连接AH.以下结论:①∠DEC=∠AEB;②CF⊥DE;③AF=BF;④=,其中正确结论的个数是()A.1B.2C.3D.4二.填空题(共6小题,满分24分,每小题4分)13.若=,则=.14.方程x(x﹣2)=x的根是.15.小新的身高是1.7m,他的影子长为5.1m,同一时刻水塔的影长是42m,则水塔的高度是m.16.某种药品原价每盒60元,由于医疗政策改革,价格经过两次下调后现在售价每盒48.6元,则平均每次下调的百分率为.17.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为72cm2,则菱形的边长为.(结果中如有根号保留根号)18.四个完全相同的小球上分别标有数字﹣2,﹣1,1,3,从这4个球中任意取出一个球记为a,不放回,再取出一个记为b.则能使一次函数y=2ax+b的图象必过第一、第四象限的概率为.三.解答题(共9小题,满分78分)19.(6分)解方程:x(x﹣4)=2.20.(6分)已知:如图,在□ABCD中,点E、F分别在AD、BC上,且BE平分∠ABC,EF∥AB.求证:四边形ABFE是菱形.21(6分)如图,等边△ABC中,点D、E分别在边BC、AC上,∠ADE=60°(1)求证:△ABD∽△DCE;(2)若BD=2,CE=,求等边△ABC的边长.22.(8分)某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为600m2的矩形土地做养鸡场.如图所示,养鸡场一面靠墙,墙长35m,另外三面用69m长的篱笆围成,其中一边开有一扇1m宽的门(不包括篱笆)求这个养鸡场的长和宽.23.(8分)商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)若每台冰箱降价150元,则平均每天可售出台冰箱;(2)商场要想在这种冰箱销售中平均每天盈利4800元,要使百姓得到实惠,每台冰箱应降价多少元?24.(10分)某校九(1)班针对“垃圾分类”知晓情况对全班学生进行专题调查活动,将“垃圾分类”的知晓情况分为A,B,C,D四类.其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,每名学生可根据自己的情况任选其中一类,班长根据调查结果进行了统计,并绘制成了不完整的条形统计图和扇形统计图.根据以上信息解决下列问题:(1)补全条形统计图,并求出扇形统计图中类别C所对应扇形的圆心角.(2)类别A的4名学生中有3名男生和1名女生,现从这4名学生中随机选取2名学生参加学校“垃圾分类”知识竞赛,求所选取的2名学生中恰好有1名男生、1名女生的概率.25.(10分)如图所示,△ABC中,∠C=90°,BC=8cm,AC:AB=3:5,点P从点B出发沿BC向点C以2cm/s的速度移动,点Q从点C出发沿CA向点A以1cm/s的速度移动,如果P、Q分别从B、C同时出发:(1)经过多少秒后,△CPQ的面积为8cm?(2)经过多少秒时,以C、P、Q为顶点的三角形恰与△ABC相似.26.(12分)一次小组合作探究课上,小明将两个正方形按如图1所示的位置摆放(点E、A、D在同一条直线上).(1)发现BE与DG数量关系是,BE与DG的位置关系是.(2)将正方形AEFG绕点A按逆时针方向旋转(如图2),(1)中的结论还成立吗?若能,请给出证明;若不能,请说明理由.(3)把图1中的正方形分别改写成矩形AEFG和矩形ABCD,且==,AE=2,AB =4,将矩形AEFG绕点A按顺时针方向旋转(如图3).连接DE,BG.说明BE与DG的关系;小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.27.(12分)【问题发现】如图1,△ABC和△ADE均为等边三角形,点B,D,E在同一直线上.填空:①线段BD,CE之间的数量关系为;②∠BEC=°.【类比探究】如图2,△ABC和△ADE均为等腰直角三角形,∠ACB=∠AED=90°,AC =BC,AE=DE,点B,D,E在同一直线上.请判断线段BD,CE之间的数量关系及∠BEC 的度数,并给出证明.【解决问题】如图3,在△ABC中,∠ACB=90°,∠A=30°,AB=5,点D在AB边上,DE⊥AC于点E,AE=3.将△ADE绕点A旋转,当DE所在直线经过点B时,点C到直线DE的距离是多少?(直接写出答案)。
人教版九年级数学第一学期期末质量检测试题含答案

人教版九年级数学第一学期期末质量检测试题第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.反比例函数y=−3在平面直角坐标系中的图象可能是( )xA. B.C. D.2.如果两个相似三角形的面积之比为9:4,那么这两个三角形对应边上的高之比为( )A. 9:4B. 3:2C. 2:3D. 81:163.某中学为了解九年级学生数学学习情况,在一次考试中,从全校500名学生中随机抽取了100名学生的数学成绩进行统计分析,统计结果这100名学生的数学平均分为91分,由此推测全校九年级学生的数学平均分( )A. 等于91分B. 大于91分C. 小于91分D. 约为91分4.用配方法解方程x2−2x−3=0时,可变形为( )A. (x−1)2=2B. (x−1)2=4C. (x−2)2=2D. (x−2)2=45.某商品经过两次连续降价,每件售价由原来的60元降到了48.6元,设平均每次降价的百分率为x,则下列方程正确的是( )A. 60(1+x)2=48.6B. 48.6(1+x)2=60C. 60(1−x)2=48.6D. 48.6(1−x)2=606.若关于x的一元二次方程kx2−2x−1=0有两个实数根,则k的取值范围是( )A. k≠0B. k≥−1C. k≥−1且k≠0D. k>−1且k≠07.已知点A(m,1)和B(n,3)在反比例函数y=k(k>0)的图象上,则( )xA. m<nB. m>nC. m=nD. m与n大小关系无法确8.在△ABC中,若|tanA−1|+(2cosB−√2)2=0,则△ABC是( )A. 等腰三角形B. 等腰直角三角形C. 直角三角形D. 一般锐角三角形9.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与如图的三角形相似的是( )第2页,共21页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………A. B. C. D.10. 如图,正比例函数y 1=k 1x 和反比例函数y 2=k2x的图象交于A(−1,2)、B(1,−2)两点,若y 1<y 2,则x 的取值范围是( )A. x <−1或x >1B. x <−1或0<x <1C. −1<x <0或0<x <1D. −1<x <0或x >111. 如图,在矩形ABCD 中,AB =2,AD =3,点E 是CD 的中点,点F 在BC 上,且FC =2BF ,连接AE ,EF ,则cos ∠AEF 的值是( )A. 12B. 1C. √22D. √3212. 如图,在正方形ABCD 中,△ABP 是等边三角形,AP 、BP 的延长线分别交CD 于点E 、F ,连接AC 、CP ,AC 与BF 相交于点H.有下列结论: ①AE =2DE ; ②tan∠CPE =1; ③△CFP ∽△APH ; ④CP 2=PH ⋅PB . 其中正确的有( )A. ①②③B. ①②④C. ①③④D. ①②③④第II 卷(非选择题)二、填空题(本大题共6小题,共18.0分)13. 某人沿着坡度i =1:√3的山坡走了50米,则他离地面的高度上升了______米.14. 甲、乙两台机床在相同的条件下,同时生产一种直径为10mm 的滚珠.现在从中各抽测100个进行检测,结果这两台机床生产的滚珠平均直径均为10mm ,但S 甲2=0.288,S 乙2=0.024,则______机床生产这种滚珠的质量更稳定.15. 如图,在△ABC 中点D 、E 分别在边AB 、AC 上,请添加一个条件:______ ,使△ABC∽△AED .16. 若m ,n 是一元二次方程x 2−4x −7=0的两个实数根,则1m +1n =______.17. 如图,在△ABC 中,sinB =13,tanC =√22,AB =3,则AC 的长为______.18. 如图,菱形ABCD 顶点A 在函数y =3x (x >0)的图象上,函数y =kx(k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠BAD =30°,则k =______.三、解答题(本大题共8小题,共66.0分。
2023-2024学年度第一学期第一次教学质量检测九年级数学试卷

2023-2024学年度第一学期第一次教学质量检测九年级数学试卷一.选择题(共8小题)1.下列方程中,是一元二次方程的是( )A.2x2=5x﹣1B.x+=2C.(x﹣3)(x+1)=x2﹣5D.3x﹣y=52.已知⊙O的半径为5cm,当线段OA=5cm时,则点A在( )A.⊙O内B.⊙O上C.⊙O外D.无法确定3.方程x(x﹣1)=0的根是( )A.x=0B.x=1C.x1=0,x2=1D.x1=1,x2=﹣1 4.若关于x的一元二次方程kx2﹣6x+9=0有实数根,则k的取值范围是( )A.k<1B.k≤1C.k<1且k≠0D.k≤1且k≠0 5.如图,AB是圆O的直径,BC、CD、DA是圆O的弦,且BC=CD=DA,则∠BCD等于( )A.100°B.110°C.120°D.135°6.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为( )A.10×6﹣4×6x=32B.10×6﹣4x2=32C.(10﹣x)(6﹣x)=32D.(10﹣2x)(6﹣2x)=327.如图,AB是⊙O的直径,AB=8,△BCD内接于⊙O,若∠BCD=60°,则圆心O到弦BD的距离是( )A.5B.3C.2 D.18.如图,B为线段AC的中点,过C点的直线l与线段AC成60°的角,在直线l上取一点P,使得∠APB=30°,则满足条件的点P的个数是( )A.1个B.2个C.3个D.4个二.填空题(共8小题)9.若a是方程x2﹣2x﹣5=0的一个根,则2a2﹣4a= .10.如图,在平面直角坐标系xOy中,点A,B,C的横、纵坐标都为整数,过这三个点作一条圆弧,则此圆弧的圆心坐标为 .11.用配方法解一元二次方程x2﹣6x+5=0,将它化成(x+p)2=q的形式,则p+q的平方根为 .12.如图,⊙O的弦AB、半径OC延长交于点D,BD=OA.若∠AOC=120°,则∠D的度数是 .13.某商场今年1月盈利3000万,3月盈利3630万,若从1月到3月,每月盈利的平均增长率都相同,则这个平均增长率是 .14.如图,在⊙O中,弦AB=4,点C在AB上移动,连接OC,过点C作CD⊥OC,交⊙O 于点D,则CD长的最大值为 .15.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F.若∠A=55°,∠F=30°,则∠E= °.16.如图,已知⊙O的半径为5,P是直径AB的延长线上一点,BP=1,CD是⊙O的一条弦,CD=6,以PC,PD为相邻两边作平行四边形PCED,当C,D点在圆周上运动时,线段PE长的最小值是 .三.解答题(共10小题)17.解方程(1)x2+4x=0 (2)x2+6x=518.4x(2x﹣1)2=36.解:(2x﹣1)2=9;2x﹣1=3……第一步;2x=4……第二步;x=2……第三步;(1)以上解方程的过程中从第 步开始出现错误,错误的原因是 .(2)请写出正确的解方程过程.19.已知k为实数,关于x的方程为x2﹣2(k+1)x+k2=0.(1)若方程有两个不相等的实数根,请求出k的范围;(2)请判断x=﹣1是否可为此方程的根,说明理由.20.如图,已知AB是⊙O的直径,M,N分别是AO,BO的中点,CM⊥AB,DN⊥AB.求证:.21.如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为640m2的羊圈?(2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能,请说明理由.22.如图,一段圆弧与长度为1的正方形网格的交点是A、B、C.(1)请完成以下操作:①以点O为原点,垂直和水平方向为轴,网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD;(2)请在(1)的基础上,完成下列填空:⊙D的半径为 ;点(6,﹣2)在⊙D ;(填“上”、“内”、“外”)∠ADC的度数为 .23.如图所示的工件槽的两个底角均为90°.尺寸如图(单位:cm),将形状规则的铁球放入槽内,若同时具有A,B,E三个接触点,请你根据图中的数据求出该球的半径.24.某商场以每件30元的价格购进一种商品,规定这种商品每件售价不低于进价,又不高于55元,经市场调查发现:该商品每天的销售量y(件)与每件售价x(元)之间符合一次函数y=﹣2x+140的关系.(1)当每件售价35元时,每天的利润是多少元?(2)该商场销售这种商品要想每天获得600元的利润,每件商品的售价应定为多少元?(3)该商场销售这种商品每天是否能获得900元的利润?请说明理由.25.如图,AB为⊙O的直径,点C,D为直径AB同侧圆上的点,且点D为的中点,过点D作DE⊥AB于点E,延长DE,交⊙O于点F,AC与DF交于点G.(Ⅰ)如图①,若点C为的中点,求∠AGF的度数;(Ⅱ)如图②,若AC=12,AE=3,求⊙O的半径.26.代数推理:例题:求x2+8x+21的最小值解:x2+8x+21=x2+2x⋅4+42﹣42+21=(x+4)2+5无论x取何值,(x+4)2总是非负数,即(x+4)2≥0所以(x+4)2+5≥5所以:当x=﹣4时,x2+8x+21有最小值,最小值为5阅读材料:利用完全平方式,将多项式x2+bx+c变形为(x+m)2+n的形式,然后由(x+m)2≥0就可以求出多项式x2+bx+c的最小值.根据上述材料,解答下列问题:(1)填空:x2﹣12x+ =(x﹣ )2;(2)将多项式x2+16x﹣1变形为(x+m)2+n的形式,并求出x2+16x﹣1的最小值;(3)若一个长方形的长和宽分别为(2a+3)和(3a+5),面积记为S1,另一个长方形的长和宽分别为5a和(a+3),面积记为S2,试比较S1和S2的大小,并说明理由.。
2024-2025学年上学期期中质量检测九年级数学试卷

2024~2025学年度第一学期期中质量检测九年级数学试题一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.在一元二次方程2x2+x-1=0中,二次项系数、一次项系数、常数项分别是(A)2,1,-1. (B)2,-1,1. (C)2,1,1. (D)2,-1,-1.2.下列APP图标中,是中心对称图形的是3.一元二次方程x2-2x-1=0的根的情况是(A)有两个相等的实数根. (B)有两个不相等的实数根.(C)只有一个实数根. (D)没有实数根.4.关于抛物线y=-2(x+5)2-4,下列说法正确的是(A)开口向上. (B)对称轴是直线x=-5. (C)函数有最小值-4.(D)可由抛物线y=-2x2向右平移5个单位再向下平移4个单位而得.5.如图,△ABC内接于⊙O,连OA,OB,若∠BOA-∠C=35°,则∠OAB的度数是(A)70°. (B)65°. (C)55°. (D)50°.6.如图,将△ABC绕点C逆时针旋转,点A的对应点为D,点B的对应点为E,若B恰好是线段CD与AE的交点,且∠DCE=34°,则∠A的度数是(A)34°. (B)39°. (C)42°. (D)45°.7.在平面直角坐标系中,点P坐标(3,-4),以P为圆心,4个单位长度为半径作圆,下列的是(A)原点O在⊙P内. (B)原点O在⊙P上.(C)⊙P与x轴相切,与y轴相交. (D)⊙P与y轴相切,与x轴相交.8.已知抛物线y =x 2-x+c 上有三个点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),若-2<x 1<-1, 0<x 2<1,1<x 3<2,则y 1,y 2,y 3的大小关系是(A )y 1<y 2<y 2. (B )y 2<y 1<y 3 (C )y 2<y 2<y 1 (D )y 2<y 3<y 1.9.如图,四边形ABCD 内接于⊙O ,AB =BC ,∠ABC =90°,⊙O 的直径为10,四边形ABCD 的周长为y ,BD 的长为x ,则y 关于x 的函数关系式是(A )y =√2x 2+10√2.(B )y =√2x +10√2.(C )y =√22x 2+10√2.(D )y =√22x +10√2. 10.在平面直角坐标系中,将函数y =x 2-2x+t 的图象记为C 1,将C ,绕原点旋转180°得到图象C 2,把C 1和C 2合起来的图形记为图形C.则当-1≤t ≤1时,直线y =x+1与图形C 的交点的个数是(A )2. (B )4. (C )2或3. (D )3或4.二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填在答卷指定的位置.11.点A (2,-1)关于原点对称的点的坐标是____________________.12.某航空公司有若干个飞机场,每两个飞机场之间都开辟了一条航线,一共开辟了6条航线,这个航空公司共有__________________个飞机场.13.若关于x 的方程x 2+(k -2)x+1-k =0的两个实数根互为相反数,则k 的值是 _____________.14.中国传统数学重要的著作《九章算术》中记载了一个“圆材理壁”的问题:“今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?“用几何语言表达为:如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,EB =1寸,CD =10寸,则直径AB 长是__________________________寸.15.已知抛物线y =ax 2+bx+c (a ,b ,c 为常数,a <0)经过点(m ,0),m >0,且4a -2b+c =0,则下列四个结论:① c >0;② b -3a >0;③ 若方程ax 2+bx+c =b 有两个不相等的实数根x 1,x 2 (且x 1<x 2),则x 2<m;④ 若0<m <2,抛物线过点(0,1),且s =a+b+c ,则s <34.其中正确的结论是____________(填序号). 16.如图,已知△ABC ,△DEF 均为等腰直角三角形,∠BAC =∠DEF =90°,A 为DF 的中点,BF 的延长线交线段EC 于点G ,连接GD.若GD =10,GE =4,则GF =_____.三、解答题(共8小题,共72分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形.17.(本小题8分)解方程:x 2-x -5=0.18.(本小题8分)如图,在△ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点D 从点C 开始沿边CA 运动,速度为1cm/s.与此同时,点E 从点B 开始沿边BC 运动,速度为2cm/s.当点E 到达点C 时,点D ,E 同时停止运动.连接AE ,DE ,设运动时间为ts ,△ADE 的面积为Scm 2.(1)用含t 的代数式表示:CD =______cm ,CE =______cm;(2)当CD 为何值时S =58S △ABC ?19.(本小题8分)二次函数y =ax 2+bx -3中的x ,y 的部分取值如下表:根据表中数据填空:(1)该函数图象的对称轴是_________;(2)该函数图象与x 轴的交点的坐标是_________;(3)当0<x <3时,y 的取值范围是__________;(4)不等式ax 2+bx -3>x -3的解集是__________.x *** - I 0 1 2 3 *** y … m -3 n -3 0 ***如图,已知直线MA交⊙O于A,B两点,BD为⊙O的直径,E为⊙O上一点,BE平分∠DBM,过点E作EF⊥AB于点F.小求证:EF为⊙O的切线;2.若已知⊙O的半径为5,且EF-BF=2,求AB的长.21.(本小题8分)如图是由小正方形组成的5×5的网格,小正方形的顶点称为格点,A,B,C,D,E五个点均为格点,F是线段CD与网格线的交点,仅用无刻度的直尺在给定网格中完成画图,每个画图任务的画线不得超过三条.(1)在图(1)中,若点A和B关于点O中心对称,画点O;2)在图(1)中,若点F绕点E逆时针旋转90°后得到点G,画点G;(3)在图(2)中,在线段BC上画点M,使∠AMB=∠BAC;(4)在图(2)中,画满足条件的格点N,使∠ANC=2∠ABC.(2)(第21题)在2024年巴黎奥运会上,全红鲜凭借总分425.60分的成绩蝉联奥运会女子10米跳台的冠军,成为中国奥运史上最年轻的三金王.在进行跳水训练时,运动员身体(视作一点)在空中的运动路线可视作一条抛物线,如图所示,建立平面直角坐标系xOy.已知AB为3米,OB为10米,跳水曲线在离起跳点A水平距离为0.5米时达到距水面最大垂直高度k米.(1)当k=11.25时,①求这条抛物线的解析式;②求运动员落水点与点A的距离;(2)图中OE=4.5米,OF=5.5米,若跳水运动员在区域EF内(含点E,F)人水时才能达到训练要求,请直接写出k的取值范围.23.(本小题10分)如图,在△ABC中,AC=BC,∠ACB=120°,点P为△ABC内一点.(1)如图(1),CP=CQ,∠QCP=120°,连接BP,AQ,求证:BP=AQ;(2)如图(2),D为AB的中点,若PC=2,PA=5,∠CPD=150°,求线段PD的长;(3)如图(3),在(2)的条件下,若点M为平面内一点,PM=PC,连BM,将线段BM绕点B顺时针旋转120°至BN,连PN,请直接写出PN的最大值.(第23题)已知抛物线y=ax2+bx+3与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图(1),Q为抛物线上第一象限内一点,若∠AQC=2∠BAQ,求点Q 的坐标;(3)如图(2),P为x轴上方一动点,直线PM,PN与抛物线均只有唯一公共点M,N, OH⊥MN于点H,且△PAB的面积是10,求线段OH长度的最大值.(1)(2)(第24题)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学检测卷
编写:丁黎森 审核:吴根弟
一、选择题 班级
1.
2
3
的相反数是( ) A .-23 B .23
C .-
3
2
D .
32
2. 2010年3月5日,第十一届全国人大三次会议在人民大会堂开幕,温家宝总理在政府工作报告中指出,2009年我国国内生产总值达到3
3.5万亿元。
用科学记数法表示应为( )
A .33.5×1012元
B .3.35×1012元
C .3.35×1013元
D .3.35×1011
元 3. 观察下列银行标志,从图案看到中心对称图形的有( )个
A. 4个 B .3个 C .2个 D .1个 4. 如图所示几何体的左视图是( )
D
C B A 第6题图
D
C
B
A
5. 已知11x y =⎧⎨=-⎩
是二元一次方程2x-ay=3的一个解,那么系数a 的值是( )
A .1
B .3
C .-3
D .-1
6. 如图,XXXX 地震后,抢险队派一架直升机去C ,D 两个村庄抢险,飞机在距地面450米上空的点A ,测得D 村的俯角为30°,测得C 村的俯角为60°,则DC 两村相距多少米?( ) A .300米
B .3
C .280米
D .675米
7. 如图,扇形OAB 是圆锥的侧面展开图,若小正方形方格的边长为1cm ,则这个圆锥的底面积为( ) A .8πcm
2
B .2πcm
2
C .
12
πcm 2
D .
14
πcm 2
8. 某储运部紧急调拨一批物质,调进物资共用4小时,调进物质2小时后开始调出物资(调进物资与调出物资的速度均保持不变),储运部库存物资w (吨)与时间t (小时)之间的函数关系如图所示,这批物质从开始调进到全部调出需要的时间是( ) A .4.5小时
B .4.75小时
C .5小时
D .5
1
3
小时 y
x
t 42w (吨)
t (时)
B
O
A
第10题图
第8题图
第7题图
第9题图
H
P
F E
D
C
B
A 21
2
1
9. 如图,梯形ABCD 中,∠ABC 和∠DCB 的平分线相交于梯形中位线EF 上的一点P ,PH ⊥AB 于H ,若EF=3,PH=1,则梯形ABCD 的面积为( ) A .12 B .9 C .7.5 D .6
10. 如图,已知二次函数y=ax 2
+bx+c 的图象与x 轴交于(x 1,0),(x 2,0),两点,且0<x 1<1,1<x 2<2,与y 轴交于点(0,2)。
下列结论:①2a+b>-1;②3a+b>0;③a+b<-2;④a>0;⑤a-b<0,其中结论正确的个数是( ) A .4 B .3 C .2 D .1 二、填空题
11. 函数y=
2x
x
-中自变量x 的取值X 围是. 12.因式分解:x 3
-4xy 2
=.
13. 布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球的概率是. 14. 已知⊙O 1和⊙O 2的半径分别是一元二次方程x 2
-3x+2=0的两根,且O 1O 2=3
2
,则⊙O 1和⊙O 2的位置关系是. 15. 在△ABC 中,点D 、E 分别在边AB 、AC 上,DE//BC ,AD=1,BD=2,则S △ADE :S △ABC =. 16. 如图,在等腰梯形ABCD 中,AD BC ∥,BC =4AD =42,B ∠=45°.直角三角板含45°角的顶点E 在边BC 上移动,一直角边始终经过点A ,斜边与CD 交于点
F .若ABE △为等腰三角形,则CF 的长等于. 三、解答题
17. (1)计算:1
012cos602|3|(21)2-⎛⎫
-⨯+-+- ⎪⎝⎭
(2)解方程:21
32x x
=
-
18. 如图,四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,过点O 画直线EF 分别交AD 、BC 于点E 、F ,求证:
OE=OF.
19. 如图,△ABC 内接于⊙O ,点D 在半径OB 的延长线上,∠BCD=∠A=30°. (1)试判断直线CD 与⊙O 的位置关系,并说明理由;
(2)若⊙O 的半径长为1,求由弧BC 、线段CD 和BD 所围成的阴影部分面积(结果保留
π和根号)
20. 如右图,在5×5的正方形网格中,每个小正方形的边长为1,请在所给的网格中按下
列要求画出图形。
(1)从点A 出发画一条线段AB ,使它的另一个端点在格点(即小正方形的顶点)上,
且长度为22;
(2)以(1)中的AB 为边,且另两边的长为无理数的所有等腰三角形ABC ; (3)以(1)中的AB 为边画任意两个格点三角形,它们相似但不全等。
21. 2009年“幸福XX 十件大事”首当其冲是“推出公共自行车服务”,目前XX 市一
共分6个免费单车
服务区。
分别是西湖区、景区、下城区、上城区、拱墅区、江干区。
下面是截至2009年1月8日六个服务区内服务点数量的
条形图。
(1)求这6个服务区的免费单车服务点数量的极差,服务点数量的平均数和中位数;
(2)据XX 市统计局统计显示,截至2009年5月1六个服务区内服务点数量共达到了800
个。
免费单车总数达到32000辆。
试求出从2009年1月8日到5月1日服务点数量的增长率(精确到1%)和2009年5月1日平均每个服务点的免费单车数量。
22. 位于义乌市江滨路和香山路交叉十字路口的“施粥摊”,每天早晨向群众免费施粥,某天早上7:30时亭前已经排
起了180人长的队伍,预计从7:30开始到8:30每分钟有8位群众过来喝粥,8:30后过来喝粥人逐渐减少,现在施粥摊上有志愿工作人员3人,每人每分钟能服务3名群众喝粥,设从7:30开始x 分钟后队伍人数为y 人。
(0≤x ≤60)
(1)求y 关于x 的函数解析式; (2)为减少群众排队时间,“施粥摊”方面准备增加工作人员又通过合理分配工作使每位工作人员效率提高20%,要使
7:50开始后过来的群众能马上喝到粥,则至少需要增加多少人名工作人员。
第18题
O F
E
D
C
B
A O
D
B
A A A
120
100
80
60
40
2059
1689
776446
服务点数量(个)服务区
(假设每位工作人员工作效率一样,不考虑其它因素) 23. 两个反比例函数y=
1k x 和y=2k x (k 1>k 2>0)在第一象限内的图象如图所示,动点P 在y=1k x
的图象上,PC ⊥x 轴于点C ,交y=2k x 的图象于点A ,PD ⊥y 轴于点D ,交 y=2k
x
的图象于点B.
(1)求四边形PAOB 的面积(用k 1、k 2的形式表示) (2)当
23PA PC =时,求
DB
BP
的值; (3)若点P 的坐标为(5,2),△OAB 、△ABP 的面积分别记为S △OAB 、S △ABP ,设S=S △OAB -S △ABP .
①求k 1的值;②当k 2为何值时,S 有最大值,最大值为多少?
24. 如图所示,抛物线y=-(x-3m )2
(m>0)的顶点为A ,直线3
:3
l y x m =
-与y 轴交点为B. (1)写出抛物线的对称轴及顶点A 的坐标(用含 m 的代数式表示); (2)证明点A 在直线l 上,并求∠OAB 的度数;
(3)动点Q 在抛物线对称轴上,问抛物线上是否存在点P ,使以点P 、Q 、A 为顶点的三角形与△OAB 全等?若存在,
求出m 的值,并写出所有符合上述条件的P 点坐标;若不存在,请说明理由.
九年级数学检测答题卷
编写:丁黎森 审核:吴根弟
一、选择题 班级
1 2 3 4 5 6 7 8 9 10
11.
12.
13.
14. 15. 16. 三、解答题
17. (1)计算:1
012cos602|3|(21)2-⎛⎫
-⨯+-+- ⎪⎝⎭
(2)解方程:2132x x
=- 18.
E
A
O
D
B
A 120100
8060402059
1689
77
64
46
服务点数量(个)服务区
拱墅区 19. 20.
21.
22. 23.
A
A A
24.。