(期末复习)九年级上《第22章一元二次方程》单元评估试卷有答案【推荐】.docx
华师大版数学九年级上册第22章一元二次方程单元测试卷(含答案)

第22章学情评估一、选择题(每题3分,共24分)题序12345678答案1.下列方程是一元二次方程的是( )A .-6x +2=0B .2x 2-y +1=0 C.1x 2+x =2 D .x 2+2x =02.一元二次方程x 2+x -2=0根的判别式的值为( )A .-7B .3C .9D .±33.方程(x -3)2=4的根为( )A .x 1=x 2=5B .x 1=5,x 2=1C .x 1=x 2=1D .x 1=7,x 2=-14.关于x 的方程mx 2+2x =1有两个不相等的实数根,则m 的值可以是( )A .1B .0C .-1D .-25.等腰三角形的两条边长分别是方程x 2-8x +12=0的两根,则该等腰三角形的周长是( )A .10B .12C .14D .10或146.以x =4±16+4c 2为根的一元二次方程可能是( )A .x 2-4x -c =0B .x 2+4x -c =0C .x 2-4x +c =0D .x 2+4x +c =07.对于一元二次方程ax 2+bx +c =0(a ≠0),给出下列说法:①若a +b +c =0,则b 2-4ac ≥0;②若方程ax 2+c =0有两个不相等的实数根,则方程ax 2+bx +c =0必有两个不相等的实数根;③若x 0是一元二次方程ax 2+bx +c =0的根,则b 2-4ac =(2ax 0+b )2;④若c 是方程ax 2+bx +c =0的一个根,则一定有ac +b +1=0成立.其中正确的是( )A .①②B .①②④C .①②③④D .①②③8.在△ABC 中,∠ABC =90°,AB =6 cm ,BC =8 cm ,动点P 从点A 沿线段AB向点B运动,动点Q从点B沿线段BC向点C运动,两点同时开始运动,点P的速度为1 cm/s,点Q的速度为2 cm/s,当Q到达点C时两点同时停止运动.若△PBQ的面积为5 cm2,则点P运动的时间为( )A.1 s B.4 s C.5 s或1 s D.4 s或1 s二、填空题(每题3分,共18分)9.一元二次方程3x2+2x-5=0的一次项系数是________.10.已知关于x的一元二次方程x2+kx-3=0的一个根是x=1,则另一个根是________.11.已知x=-1是关于x的方程x2+mx-n=0的一个根,则m+n的值是________.12.定义运算:m&n=m2-mn+2.例如:1&2=12-1×2+2=1,则方程x&3=0的根的情况为____________________.13.如图,从正方形的铁片上沿平行于一条边的直线截去一个3 cm宽的长方形铁片,余下(阴影部分)面积为40 cm2,则原来的正方形铁片的面积是________cm2.(第13题)14.若实数a,b分别满足a2-4a+3=0,b2-4b+3=0,且a≠b,则(a+1)(b+1)的值为________.三、解答题(15题8分,16,17题每题9分,18,19题每题10分,20题12分,共58分)15.解方程:100(1-x)2=81.①你选用的解法是____________;②直接写出该方程的解是____________;③请你结合生活经验,设计一个问题,使它能利用方程“100(1-x)2=81”来解决.你设计的问题是______________________________________.16.已知x1,x2是方程x2-(3+1)x+3=1 的两个根.求:3(1)x 12+x 22; (2)1x 1+1x 2.17.已知关于x 的一元二次方程kx 2-(2k +4)x +k -6=0有两个不相等的实数根.(1)求k 的取值范围;(2)当k =1时,用配方法解方程.18.下面是某月的日历表,在该月日历表上可以用一个方框圈出4个数(如图所示),若圈出的4个数中,最小数与最大数的乘积为48,求这个最小数.(请用方程的知识解答,否则不给分)(第18题)19.在蚌埠花博园附近某盆栽销售处发现:进货价为每盆50元,销售价为每盆80元的某盆栽平均每天可售出20盆.现此销售处决定采取适当的降价措施,扩大销售量,增加盈利.经市场调查发现:如果每盆降价2元,那么平均每天就可多售出3盆.设每盆降价x元.(1)现在每天卖出________盆,每盆盈利________元(用含x的代数式表示);(2)当x为何值时,销售这种盆栽平均每天能盈利700元,同时又可以使顾客得到较多的实惠?(3)该销售处通过销售这种盆栽平均每天能盈利1 000元吗?请说明理由.20. 阅读材料:各类方程及方程组的解法.求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似地,求解三元一次方程组,把它转化为二元一次方程组来解.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程及方程组的解法不尽相同,但是它们有一个共同的基本数学思想——转化,即把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过提公因式把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的根.(1)问题:方程x3+x2-2x=0的根是x1=0,x2=________,x3=________;5(2)拓展:用“转化”思想求方程 2x +3=x 的根;(3)应用:如图,已知矩形草坪ABCD 的长AD =8 m ,宽AB =3 m ,小华先把一根长为10 m 的绳子的一端固定在点B ,沿草坪边缘BA ,AD 走到点P 处,把绳子PB 段拉直并固定在点P ,然后沿草坪边缘PD ,DC 走到点C 处,把绳子剩下的一段拉直,绳子的另一端恰好落在点C 处,求AP 的长.(第20题)答案一、1.D 2.C 3.B 4.A 5.C 6.A 7.D 8.A 点拨:设点P 运动的时间为t s ,则BP =(6-t )cm ,BQ =2t cm ,依题意得12(6-t )×2t =5,整理,得t 2-6t +5=0,解得t 1=1,t 2=5.因为当Q 到达点C 时两点同时停止运动,所以0≤2t ≤8,所以0≤t ≤4,所以t =1.故选A.二、9.2 10.x =-3 11.1 12.有两个不相等的实数根13.64 14.8 三、15.①直接开平方法②x 1=0.1,x 2=1.9③某种药品的原价是100元/盒,经过两次降价后的价格是81元/盒,求平均每次降价的百分率(答案不唯一)16.解:原方程可变形为x 2-(3+1)x +3-1=0,由题意得x 1+x 2=3+1,x 1x 2=3-1.(1)x 12+x 22=(x 1+x 2)2-2x 1x 2=(3+1)2-2×(3-1)=6.(2)1x 1+1x 2=x 1+x 2x 1x 2=3+13-1=(3+1)2(3-1)(3+1)=4+2 32=2+ 3.17.解:(1)因为关于x 的一元二次方程kx 2-(2k +4)x +k -6=0有两个不相等的实数根,所以Δ=[-(2k +4)]2-4k (k -6)>0,且k ≠0,解得k >-25且k ≠0.(2)当k =1时,原方程为x 2-(2×1+4)x +1-6=0,即x 2-6x -5=0.移项,得x 2-6x =5.配方,得x2-6x+9=5+9,即(x-3)2=14.直接开平方,得x-3=±14,所以x1=3+14,x2=3-14.18.解:设这个最小数为x,则最大数为x+8,依题意得x(x+8)=48,整理,得x2+8x-48=0,解得x1=4,x2=-12(不合题意,舍去).答:这个最小数为4.19.解:(1)(20+3x2);(30-x)(2)由题意得(30-x)(20+3x2)=700,解得x1=10,x2=203.因为要使顾客得到较多的实惠,所以x=10.(3)不能.理由:若销售这种盆栽平均每天能盈利1 000元,则(30-x)(20+3x)=1 000,整理,得3x2-50x+800=0,因为Δ=(-50)2-4×3×800=-7 100 2<0,所以原方程无实数根,所以该销售处通过销售这种盆栽平均每天不能盈利1 000元.20.解:(1)-2;1(2)方程的两边平方,得2x+3=x2,即x2-2x-3=0,所以(x-3)(x+1)=0,解得x1=3,x2=-1.当x=-1时,2x+3=1=1≠-1,舍去;当x=3时,2x+3=3=x,所以方程2x+3=x的根是x=3.(3)因为四边形ABCD是矩形,所以∠A=∠D=90°,AB=CD=3 m.设AP=xm,则PD=(8-x)m,因为BP+CP=10 m,BP=AB2+AP2,CP=PD2+CD2,所以9+x2+(8-x)2+9=10,所以(8-x)2+9=10-9+x2,两边平方,得(8-x)2+9=100-209+x2+9+x2,整理,得5x2+9=4x+9,两边平方并整理,得x2-8x+16=0,即(x-4)2=0,解得x1=x2=4.经检验,x=4是方程的根.答:AP的长为4 m.7。
华东师大版九年级数学上册 第22章 一元二次方程 单元测试题(有答案)

第22章一元二次方程单元测试题(满分120分;时间:120分钟)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!题号一二三总分得分一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 下列方程中,是一元二次方程的是()A.x2+2x+y=1B.x2+1x−1=0C.x2=0D.(x+1)(x+3)=x2−12. 若用配方法解方程x2−4x=1,则方程两边都加上()A.4B.3C.2D.13. 一元二次方程x(x−2)=2−x的根是()A.−1B.2C.1和2D.−1和24. 将方程(x+1)(2x−3)=1化成“ax2+bx+c=0”的形式,正确的是()A.2x2−x−2=0B.2x2−5x+2=0C.2x2−x−4=0D.2x2+x−4=05. 用公式法解方程x2−3x−1=0正确的解为()A.x1,2=−3±√132B.x1,2=−3±√52C.x1,2=3±√52D.x1,2=3±√1326. 一元二次方程2x2−5x−2=0的根的情况是()A.有两个相等的实数根B.没有实数根C.只有一个实数根D.有两个不相等的实数根7. 关于x的一元二次方程(a−1)x2+x+a2−1=0的一个根是0,则a的值为()A.1或−1B.1C.−1D.08. 若二次函数y=x2−2x+m的图象与x轴有两个不相同的交点,则实数m的取值范围是()A.m≥1B.m≤1C.m>1D.m<19. 已知关于x的一元二次方程x2−mx+2m−1=0的两个实数根的平方和为7,那么m 的值是()A.5B.−1C.5或−1D.−5或110. 若关于x的一元二次方程2x2−2x+3m−1=0的两个实数根x1,x2,且x1⋅x2> x1+x2−4,则实数m的取值范围是()A.m>−53B.m≤12C.m<−53D.−53<m≤12二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 一件衬衫原价200元,经过连续两次降价后售价为162元,若两次降价的百分率相同,则这个百分率为________.12. 一元二次方程的两根是0,2,则这个一元二次方程为________.13. 若一元二次方程2x2+4x+1=0的两根是x1、x2,则x1−x1x2+x2的值是________.14. 如果某厂两年内的年产值增加44%,那么这两年的平均增长率是________.15. 已知多项式x2−4x+1的值等于−3x+2,则x的值为________.16. 已知关于x的一元二次方程(k+1)x2+2x−1=0有实数根,则k的取值范围是________.17. 如果一元二次方程x2+ax+3=0的一个根为−1,则a的值为________.18. 若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2014−a−b的值是________.19. 已知关于x的一元二次方程x2+x−k=0的一个根是x=1,则另一个根是________.20. 如图,某单位在直角墙角处用可建60米长围墙的建筑材料围成一个矩形堆物场地,中间用同样的材料分隔为两间,问AB为多长时,所围成的矩形面积是450平方米.设AB的长为x米,则可列方程为________.三、解答题(本题共计6 小题,共计60分,)21. 解下列方程(1)x2−x−3=0;(2)x2+6x+5=0.22. 关于x的一元二次方程x2+2(k−3)x+k2=0有两个不相等的实数根.(1)求k的取值范围;(2)若k取最大的整数时,求这个方程的解.23. (1)用配方法解一元二次方程:x2−6x+4=0.(2)已知关于x的一元二次方程x2−4x+m=0的根的判别式的值为4,求m值及方程的根.24. 已知关于x的方程mx2−3(m+1)x+2m+3=0(m≠0).(1)求证:该方程必有两个实数根.(2)若该方程有两个不相等的整数根,求整数m的值.25. 关于x的一元二次方程(2m+1)x2+4mx+2m−3=0.(1)当m=1时,求方程的实数根;2(2)若方程有两个不相等的实数根,求实数m的取值范围;26. 某批发商店经销一种高档水果,如果每千克成本15元,售价25元,每天可售出500kg,经市场调查发现,在进货价不变的情况下,若每千克涨价5元,日销量将减少100kg,现该商店要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应定价多少元?参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【解答】解:A,x2+2x+y=1,含有两个未知数,不符合一元二次方程的定义,故错误;B,x2+1−1=0,分母含有未知数,不符合一元二次方程的定义,故错误;xC,x2=0,符合一元二次方程的定义;D,(x+1)(x+3)=x2−1,可化简为4x+4=0,不符合一元二次方程的定义,故错误.故选C.2.【解答】解:用配方法解方程x2−4x=1,则方程两边都加上4,故选A3.【解答】解:x(x−2)+(x−2)=0,∴ (x−2)(x+1)=0,∴ x−2=0或x+1=0,∴ x1=2,x2=−1.故选D.4.【解答】解:方程可变形为:2x2−3x+2x−3=1,2x2−x−4=0.故选C.5.【解答】解:∴ a=1,b=−3,c=−1,∴ b2−4ac=13>0,.∴ x=3±√132故选D.6.【解答】解:∴ Δ=(−5)2−4×2×(−2)=41>0,∴ 方程有两个不相等的实数根.故选D.7.【解答】解:由题意得a2−1=0,解得a=±1.由原方程是一元二次方程,可知a−1≠0,即a≠1,故a=−1.故选C.8.【解答】解:由题意可得Δ=(−2)2−4m>0,解得m<1.故选D.9.【解答】解:∴ 方程x2−mx+2m−1=0有两实根,∴ △≥0;即(−m)2−4(2m−1)=m2−8m+4≥0,解得m≥4+2√3或m≤4−2√3.设原方程的两根为α、β,则α+β=m,αβ=2m−1.α2+β2=α2+β2+2αβ−2αβ=(α+β)2−2αβ=m2−2(2m−1)=m2−4m+2=7.即m2−4m−5=0.解得m=−1或m=5∴ m=5≤4+2√3,∴ m=5(舍去)∴ m=−1.故选B10.【解答】解:依题意得x1+x2=−ba =1,x1⋅x2=ca=3m−12,而x1⋅x2>x1+x2−4,∴ 3m−12>−3,得m>−53;又一元二次方程2x2−2x+3m−1=0的有两个实数根,∴ △=b2−4ac≥0,即4−4×2×(3m−1)≥0,解可得m≤12.∴ −53<m≤12.故选D.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【解答】解:设这种衬衫平均每次降价的百分率为x,根据题意列方程得,200×(1−x)2=162,解得x1=0.1,x2=−1.9(不合题意,舍去);答:这种衬衫平均每次降价的百分率为10%.故答案为:10%.12.【解答】设此一元二次方程为x2+bx+c=0二次项系数为1,两根分别为2,0,.b=−(0+2)=−2,c=0×2=0…这个方程为:x2=2x故选:x2=2x(不唯一)13.【解答】解:∴ 方程2x2+4x+1=0的两根是x1、x2,∴ x1+x2=−2,x1⋅x2=12,∴ x1−x1x2+x2=−2−12=−52.故答案为:−52.14.【解答】解:可设原来的产量为1,由于每年的平均增长率为x,那么一年后产量为:1×(1+x),则可列方程为:1×(1+x)2=1×(1+44%);即(1+x)2=1.441+x=1.2(取正值)x=0.2x=20%.故答案是:20%.15.【解答】解:根据题意得:x2−4x+1=−3x+2,即x2−x−1=0,a=1,b=−1,c=−1,则△=1+4=5>0,则x=1±√52,故答案是:1±√52.16.【解答】解:∴ 关于x的一元二次方程(k+1)x2+2x−1=0有实数根,∴ {k+1≠0,Δ=b2−4ac≥0,即{k+1≠0,22−4×(k+1)×(−1)≥0,解得k≥−2且k≠−1.故答案为:k≥−2且k≠−1.17.【解答】解:把x=−1代入方程x2+ax+3=0有:1−a+3=0,解得a=4.故答案是:4.18.【解答】把x=1代入ax2+bx+5=0得a+b+5=0,所以a+b=−5,所以2014−a−b=2014−(a+b)=2014−(−5)=2019.19.【解答】解:设关于x的一元二次方程x2+x−k=0的另一个根为x2,则依题意得:1+x2=−1,解得x2=−2.故答案是:−2.20.【解答】解:依题意得EF也长x米,那么BC长(60−2x)米,∴ x(60−2x)=450.故填空答案:x(60−2x)=450.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【解答】解:(1)移项得x2−x=3,配方得x2−x+14=3+14,∴ (x−12)2=134,∴ x−12=±√132,∴ x1=1−√132,x2=1+√132;(2)分解因式得:(x+5)(x+1)=0,∴ x1=−1,x2=−5.22.【解答】解:(1)∴ △=[2(k−3)]2−4k2=−24k+36,又∴ 原方程有两个不相等的实数根,∴ −24k+36>0,解得k<32,即实数k的取值范围是k<32;(2)∴ k<32,∴ k取的最大的整数是1,把k=1代入方程x2+2(k−3)x+k2=0得:x2−4x+1=0,解得:x1=2+√3,x2=2−√3.23.【解答】解:(1)移项得:x 2−6x =−4,方程两边都加上9得:x 2−6x +9=−4+9,即:(x −3)2=5,方程两边开平方得:x −3=±√5,∴ 方程的根为:x 1=3+√5,x 2=3−√5.(2)∴ 关于x 的一元二次方程x 2−4x +m =0的根的判别式的值为4,∴ △=(−4)2−4m =16−4m =4,解得:m =3.将m =3代入原方程得:x 2−4x +3=(x −1)(x −3)=0,∴ 方程的根为:x 1=1,x 2=3.24.【解答】(1)证明:mx 2−3(m +1)x +2m +3=0(m ≠0),∴ △=[−3(m +1)]2−4m(2m +3)=m 2+6m +9=(m +3)2,∴ 当m ≠0时,△≥0,即该方程必有两个实数根;(2)解:mx 2−3(m +1)x +2m +3=0,x =3(m+1)±√(m+3)22m, x 1=2+3m,x 2=1, 要使3m 为整数,整数m 可以为±1,±3,∴ 该方程有两个不相等的整数根,∴ 整数m 的值是1,−1,3.25.【解答】解:(1)当m =12时,方程为x 2+x −1=0, ∴ Δ=12−4×(−1)=5,∴ x =−1±√52, ∴ x 1=−1+√52,x 2=−1−√52;(2)∴ 关于x 的一元二次方程(2m +1)x 2+4mx +2m −3=0有两个不相等的实数根, ∴ Δ>0且2m +1≠0,即(4m)2−4(2m +1)(2m −3)>0且m ≠−12,∴ m >−34且m ≠−12.26.【解答】解:设每千克应定价x 元,根据题意可得: (x −15)(500−100×x−255)=6000,整理得:x 2−65x +1050=0,(x −30)(x −35)=0,解得:x 1=30,x 2=35(不合题意舍去).。
华师大版九年级上第22章一元二次方程单元复习题有答案解析

华师大版九年级上册第22章一元二次方程单元复习题姓名:;成绩:;一、选择题(4分×10=40分)1、(随州)用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是()A.(x-6)2=—4+36 B、(x-6)2=4+36C.(x-3)2=—4+9D、(x-3)2=4+92、(安顺)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A. 14 B. 12 C. 12或14 D.以上都不对3、(扬州)已知M=a﹣1,N=a2﹣a(a为任意实数),则M、N的大小关系为()A.M<N B.M=N C.M>N D.不能确定4、(随州)随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,约为20万人次,约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A.20(1+2x)=28.8 B.28.8(1+x)2=20C.20(1+x)2=28.8 D.20+20(1+x)+20(1+x)2=28.85、(兰州)公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18 B.x2﹣3x+16=0 C.(x-1)(x-2)=18 D.x2+3x+16=0 6、(烟台)如果x2﹣x﹣1=(x+1)0,那么x的值为()A. 2或﹣1 B. 0或1 C. 2D.﹣17、(达州)方程(m﹣2)x2﹣x+=0有两个实数根,则m的取值范围()A. m>B. m≤且m≠2C. m≥3D. m≤3且m≠28、(安顺)若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第()象限.A.四B.三C.二D.一9、(株洲)有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中ac≠0,a≠c.下列四个结论中,错误的是()A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=110、(贵港)若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a 和b,且a2﹣ab+b2=18,则+的值是()A.3 B.﹣3 C.5 D.﹣511、(广州)定义运算:a★b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b★b﹣a★a的值为()A.0 B.1 C.2 D.与m有关12、(南充)关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y 的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m﹣1)2+(n﹣1)2≥2;③﹣1≤2m﹣2n≤1,其中正确结论的个数是()A.0个B.1个C.2个D.3个二、填空题(4分×6=24分)13、(荆州)将二次三项式x2+4x+5化成(x+p)2+q的形式应为.14、(抚顺)若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为.15. (南通)设一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,则x1+x2(x22﹣3x2)=.16. (内蒙古)如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为m.17. (如皋市校级二模)已知n是关于x的一元二次方程x2+m2x﹣2m=0(m为实数)的一个实数根,则n的最大值是.18. (安徽模拟)对于实数a、b定义:a*b=a+b,a#b=ab,如:2*(﹣1)=2+(﹣1)=1,2#(﹣1)=2×(﹣1)=﹣2.以下结论:①[2+(﹣5)]#(﹣2)=6;②(a*b)#c=c(a*b);③a*(b#a)=(a*b)#a;④若x>0,且满足(1*x)#(1#x)=1,则x=.正确的是(填序号即可)三、解答题(8分+6分=14分)19、(1)(山西)解方程:2(x﹣3)2=x2﹣9.(2)解方程:m2﹣6m﹣9991=0;20、解方程:(x2﹣5)2﹣3(x2﹣5)﹣4=0;四、解答题(10分×4=40分)21、(朝阳)为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.22、(梅州)关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1、x2.(1)求实数k的取值范围.(2)若方程两实根x1、x2满足x1+x2=﹣x1x2,求k的值.23、(重庆校级模拟)阅读下列材料:(1)关于x的方程x2﹣3x+1=0(x≠0)方程两边同时乘以得:即,(2)a3+b3=(a+b)(a2﹣ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2).根据以上材料,解答下列问题:(1)x2﹣4x+1=0(x≠0),则=4, =14, =194;(2)2x2﹣7x+2=0(x≠0),求的值.24、(鄂州)关于x的方程(k﹣1)x2+2kx+2=0.(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k﹣1)x2+2kx+2=0的两个根,记S=+x1+x2,S的值能为2吗?若能,求出此时k的值;若不能,请说明理由.五、解答题(12分×2=24分)24、(荆州)已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.(1)求k的取值范围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.25、(韶关模拟)如图,点A(2,2)在双曲线y1=(x>0)上,点C在双曲线y2=﹣(x<0)上,分别过A、C向x轴作垂线,垂足分别为F、E,以A、C为顶点作正方形ABCD,且使点B在x轴上,点D在y轴的正半轴上.(1)求k的值;(2)求证:△BCE≌△ABF;(3)求直线BD的解析式.华师大版九年级上册第22章一元二次方程单元复习题的解析一、选择题1、(随州)用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是()A.(x-6)2=—4+36 B、(x-6)2=4+36C.(x-3)2=—4+9D、(x-3)2=4+9考点:解一元二次方程-配方法.分析:根据配方法,可得方程的解.解答:解:x2﹣6x﹣4=0,移项,得x2﹣6x=4,配方,得(x﹣3)2=4+9.故选:D.点评:本题考查了解一元一次方程,利用配方法解一元一次方程:移项、二次项系数化为1,配方,开方.2、(安顺)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A. 14 B. 12 C. 12或14 D.以上都不对考点:解一元二次方程-因式分解法;三角形三边关系.分析:易得方程的两根,那么根据三角形的三边关系,排除不合题意的边,进而求得三角形周长即可.解答:解:解方程x2﹣12x+35=0得:x=5或x=7.当x=7时,3+4=7,不能组成三角形;当x=5时,3+4>5,三边能够组成三角形.∴该三角形的周长为3+4+5=12,故选B.点评:本题主要考查三角形三边关系,注意在求周长时一定要先判断是否能构成三角形.3、(扬州)已知M=a﹣1,N=a2﹣a(a为任意实数),则M、N的大小关系为()A.M<N B.M=N C.M>N D.不能确定【分析】将M与N代入N﹣M中,利用完全平方公式变形后,根据完全平方式恒大于等于0得到差为正数,即可判断出大小.【解答】解:∵M=a﹣1,N=a2﹣a(a为任意实数),∴,∴N>M,即M<N.故选A【点评】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.4、(随州)随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,约为20万人次,约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A.20(1+2x)=28.8 B.28.8(1+x)2=20C.20(1+x)2=28.8 D.20+20(1+x)+20(1+x)2=28.8【分析】设这两年观赏人数年均增长率为x,根据“约为20万人次,约为28.8万人次”,可得出方程.【解答】解:设观赏人数年均增长率为x,那么依题意得20(1+x)2=28.8,故选C.【点评】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.5、(兰州)公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18 B.x2﹣3x+16=0 C.(x-1)(x-2)=18 D.x2+3x+16=0 【分析】可设原正方形的边长为xm,则剩余的空地长为(x﹣1)m,宽为(x﹣2)m.根据长方形的面积公式方程可列出.【解答】解:设原正方形的边长为xm,依题意有=18,故选C.【点评】本题考查了由实际问题抽象出一元二次方程的知识,应熟记长方形的面积公式.另外求得剩余的空地的长和宽是解决本题的关键.6、(烟台)如果x2﹣x﹣1=(x+1)0,那么x的值为()A. 2或﹣1 B. 0或1 C. 2 D.﹣1考点:解一元二次方程-因式分解法;零指数幂.分析:首先利用零指数幂的性质整理一元二次方程,进而利用因式分解法解方程得出即可.解答:解:∵x2﹣x﹣1=(x+1)0,∴x2﹣x﹣1=1,即(x﹣2)(x+1)=0,解得:x1=2,x2=﹣1,当x=﹣1时,x+1=0,故x≠﹣1,故选:C.点评:此题主要考查了因式分解法解一元二次方程以及零指数幂的性质,注意x+1≠0是解题关键.7、(达州)方程(m﹣2)x2﹣x+=0有两个实数根,则m的取值范围()A. m>B. m≤且m≠2C. m≥3D. m≤3且m≠2考点:根的判别式;一元二次方程的定义.分析:根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到,然后解不等式组即可.解答:解:根据题意得,解得m≤且m≠2.故选B.8、(安顺)若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第()象限.A.四B.三C.二D.一考点:根的判别式;一次函数图象与系数的关系.分析:根据判别式的意义得到△=(﹣2)2+4m<0,解得m<﹣1,然后根据一次函数的性质可得到一次函数y=(m+1)x+m﹣1图象经过的象限.解答:解:∵一元二次方程x2﹣2x﹣m=0无实数根,∴△<0,∴△=4﹣4(﹣m)=4+4m<0,∴m<﹣1,∴m+1<1﹣1,即m+1<0,m﹣1<﹣1﹣1,即m﹣1<﹣2,∴一次函数y=(m+1)x+m﹣1的图象不经过第一象限,故选D.9、(株洲)有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中ac≠0,a≠c.下列四个结论中,错误的是()A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=1考点:根的判别式;一元二次方程的解;根与系数的关系.分析:利用根的判别式判断A;利用根与系数的关系判断B;利用一元二次方程的解的定义判断C与D.解答:解:A、如果方程M有两个相等的实数根,那么△=b2﹣4ac=0,所以方程N 也有两个相等的实数根,结论正确,不符合题意;B、如果方程M的两根符号相同,那么方程N的两根符号也相同,那么△=b2﹣4ac≥0,>0,所以a与c符号相同,>0,所以方程N的两根符号也相同,结论正确,不符合题意;C、如果5是方程M的一个根,那么25a+5b+c=0,两边同时除以25,得c+b+a=0,所以是方程N的一个根,结论正确,不符合题意;D、如果方程M和方程N有一个相同的根,那么ax2+bx+c=cx2+bx+a,(a﹣c)x2=a﹣c,由a≠c,得x2=1,x=±1,结论错误,符合题意;故选D.10、(贵港)若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a 和b,且a2﹣ab+b2=18,则+的值是()A.3 B.﹣3 C.5 D.﹣5【分析】根据方程的解析式结合根与系数的关系找出a+b=3、ab=p,利用完全平方公式将a2﹣ab+b2=18变形成(a+b)2﹣3ab=18,代入数据即可得出关于p的一元一次方程,解方程即可得出p的值,经验证p=﹣3符合题意,再将+变形成﹣2,代入数据即可得出结论.【解答】解:∵a、b为方程x2﹣3x+p=0(p≠0)的两个不相等的实数根,∴a+b=3,ab=p,∵a2﹣ab+b2=(a+b)2﹣3ab=32﹣3p=18,∴p=﹣3.当p=﹣3时,△=(﹣3)2﹣4p=9+12=21>0,∴p=﹣3符合题意.+===﹣2=﹣2=﹣5.故选D.【点评】本题考查了根与系数的关系、解一元一次方程以及完全平方公式的应用,解题的关键是求出p=﹣3.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.11、(广州)定义运算:a★b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b★b﹣a★a的值为()A.0 B.1 C.2 D.与m有关【分析】由根与系数的关系可找出a+b=1,ab=m,根据新运算,找出b★b﹣a★a=b(1﹣b)﹣a(1﹣a),将其中的1替换成a+b,即可得出结论.【解答】解:∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a+b=1,ab=m.∴b★b﹣a★a=b(1﹣b)﹣a(1﹣a)=b(a+b﹣b)﹣a(a+b﹣a)=ab﹣ab=0.故选A.【点评】本题考查了根与系数的关系,解题的关键是找出a+b=1,ab=m.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之积与两根之和是关键.12、(南充)关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y 的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m﹣1)2+(n﹣1)2≥2;③﹣1≤2m﹣2n≤1,其中正确结论的个数是()A.0个B.1个C.2个D.3个考点:根与系数的关系;根的判别式.专题:计算题.分析:①根据题意,以及根与系数的关系,可知两个整数根都是负数;②根据根的判别式,以及题意可以得出m2﹣2n≥0以及n2﹣2m≥0,进而得解;③可以采用举例反证的方法解决,据此即可得解.解答:解:①两个整数根且乘积为正,两个根同号,由韦达定理有,x1x2=2n>0,y1y2=2m>0,y1+y2=﹣2n<0,x1+x2=﹣2m<0,这两个方程的根都为负根,①正确;②由根判别式有:△=b2﹣4ac=4m2﹣8n≥0,△=b2﹣4ac=4n2﹣8m≥0,4m2﹣8n=m2﹣2n≥0,4n2﹣8m=n2﹣2m≥0,m2﹣2m+1+n2﹣2n+1=m2﹣2n+n2﹣2m+2≥2,(m﹣1)2+(n﹣1)2≥2,②正确;③∵y1+y2=﹣2n,y1y2=2m,∴2m﹣2n=y1+y2+y1y2,∵y1与y2都是负整数,不妨令y1=﹣3,y2=﹣5,则:2m﹣2n=﹣8+15=7,不在﹣1与1之间,③错误,其中正确的结论的个数是2,故选C.点评:本题主要考查了根与系数的关系,以及一元二次方程的根的判别式,还考查了举例反证法,有一定的难度,注意总结.二、填空题13、(荆州)将二次三项式x2+4x+5化成(x+p)2+q的形式应为(x+2)2+1.【分析】直接利用完全平方公式将原式进行配方得出答案.【解答】解:x2+4x+5=x2+4x+4+1=(x+2)2+1.故答案为:(x+2)2+1.【点评】此题主要考查了配方法的应用,正确应用完全平方公式是解题关键.14. (抚顺)若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为a ≤且a≠1.【分析】由一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a﹣1≠0,即a≠1,且△≥0,即△=(﹣1)2﹣4(a﹣1)=5﹣4a≥0,然后解两个不等式得到a的取值范围.【解答】解:∵一元二次方程(a﹣1)x2﹣x+1=0有实数根,∴a﹣1≠0即a≠1,且△≥0,即有△=(﹣1)2﹣4(a﹣1)=5﹣4a≥0,解得a≤,∴a的取值范围是a≤且a≠1.故答案为:a≤且a≠1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了一元二次方程的定义.15. (南通)设一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,则x1+x2(x22﹣3x2)= 3.【分析】由题意可知x22﹣3x2=1,代入原式得到x1+x2,根据根与系数关系即可解决问题.【解答】解:∵一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,∴x12﹣3x1﹣1=0,x22﹣3x2﹣1=0,x1+x2=3,∴x22﹣3x2=1,∴x1+x2(x22﹣3x2)=x1+x2=3,故答案为3.【点评】本题考查根与系数关系、一元二次方程根的定义,解题的关键是灵活运用根与系数的关系定理,属于中考常考题型.16. (内蒙古)如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为2m.【分析】设人行道的宽度为x米,根据矩形绿地的面积之和为480米2,列出一元二次方程.【解答】解:设人行道的宽度为x米,根据题意得,(30﹣3x)(24﹣2x)=480,解得x1=20(舍去),x2=2.即:人行通道的宽度是2m.故答案是:2.【点评】本题考查了一元二次方程的应用,利用两块相同的矩形绿地面积之和为480米2得出等式是解题关键.17. (如皋市校级二模)已知n是关于x的一元二次方程x2+m2x﹣2m=0(m为实数)的一个实数根,则n的最大值是1.【分析】由n是方程的根可得nm2﹣2m+n2=0且△=(﹣2)2﹣4nn2≥0,继而可得n的取值范围,即可知n的最大值.【解答】解:∵n是方程x2+m2x﹣2m=0(m为实数)的一个实数根,∴nm2﹣2m+n2=0,且△=(﹣2)2﹣4nn2≥0,即4﹣4n3≥0,∴n3≤1,则n≤1,∴n的最大值为1,故答案为:1.【点评】本题主要考查一元二次方程的解与根的判别式,根据题意得出关于n的不等式是解题的关键.18. (安徽模拟)对于实数a、b定义:a*b=a+b,a#b=ab,如:2*(﹣1)=2+(﹣1)=1,2#(﹣1)=2×(﹣1)=﹣2.以下结论:①[2+(﹣5)]#(﹣2)=6;②(a*b)#c=c(a*b);③a*(b#a)=(a*b)#a;④若x>0,且满足(1*x)#(1#x)=1,则x=.正确的是①②④(填序号即可)【分析】先读懂题意,根据题意求出每个式子的左边和右边,再判断是否正确即可.【解答】解:∵[2+(﹣5)]#(﹣2)=(﹣3)#(﹣2)=6,∴①正确;∵(a*b)#c=(a+b)#c=(a+b)c=ac+bc,c(a*b)=c(a+b)=ac+bc,∴②正确;∵a*(b#a)=a*ab=a+ab,(a*b)#a=(a+b)#a=(a+b)a=a2+ab,∴③错误;∵(1*x)#(1#x)=1,∴(1+x)#(x)=1,(1+x)x=1,x2+x﹣1=0,解得:x2=,x2=,∵x>0,∴x=,∴④正确.故答案为:①②④.【点评】本题考查了整式的混合运算,解一元二次方程,有理数的混合运算的应用,能正确根据运算法则和新运算进行化简和计算是解此题的关键.三、解答题19、(1)(山西)解方程:2(x﹣3)2=x2﹣9.【分析】方程移项后,提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:2(x﹣3)2﹣(x+3)(x﹣3)=0,分解因式得:(x﹣3)(2x﹣6﹣x﹣3)=0,解得:x1=3,x2=9.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解法是解本题的关键.(2)解方程:m2﹣6m﹣9991=0;【分析】①先进行配方,然后直接开平方求出方程的解;【解答】解:①∵m2﹣6m﹣9991=0,∴m2﹣6m+9﹣9﹣9991=0,∴(m﹣3)2=10000,∴m﹣3=±100,∴m1=103,m2=﹣97;20、解方程:(x2﹣5)2﹣3(x2﹣5)﹣4=0;【分析】把x2﹣5看成一个整体,利用因式分解法解方程即可;【解答】解:∵(x2﹣5)2﹣3(x2﹣5)﹣4=0,∴(x2﹣5)2﹣3(x2﹣5)+﹣﹣4=0,∴(x2﹣5﹣)2=,∴x2﹣=±,∴x2=,∴x2=或x2=,x=±2或x=±3,∴x1=2,x2=﹣2,x3=3,x4=﹣3;四、解答题21、(朝阳)为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.【分析】设每个粽子的定价为x元,由于每天的利润为800元,根据利润=(定价﹣进价)×销售量,列出方程求解即可.【解答】解:设每个粽子的定价为x元时,每天的利润为800元.根据题意,得(x﹣3)(500﹣10×)=800,解得x1=7,x2=5.∵售价不能超过进价的200%,∴x≤3×200%.即x≤6.∴x=5.答:每个粽子的定价为5元时,每天的利润为800元.【点评】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22、(梅州)关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1、x2.(1)求实数k的取值范围.(2)若方程两实根x1、x2满足x1+x2=﹣x1x2,求k的值.【分析】(1)根据根与系数的关系得出△>0,代入求出即可;(2)根据根与系数的关系得出x1+x2=﹣(2k+1),x1x2=k2+1,根据x1+x2=﹣x1x2得出﹣(2k+1)=﹣(k2+1),求出方程的解,再根据(1)的范围确定即可.【解答】解:(1)∵原方程有两个不相等的实数根,∴△=(2k+1)2﹣4(k2+1)>0,解得:k>,即实数k的取值范围是k>;(2)∵根据根与系数的关系得:x1+x2=﹣(2k+1),x1x2=k2+1,又∵方程两实根x1、x2满足x1+x2=﹣x1x2,∴﹣(2k+1)=﹣(k2+1),解得:k1=0,k2=2,∵k>,∴k只能是2.【点评】本题考查了根与系数的关系和根的判别式的应用,能正确运用性质进行计算是解此题的关键,题目比较好,难度适中.23、(重庆校级模拟)阅读下列材料:(1)关于x的方程x2﹣3x+1=0(x≠0)方程两边同时乘以得:即,(2)a3+b3=(a+b)(a2﹣ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2).根据以上材料,解答下列问题:(1)x2﹣4x+1=0(x≠0),则=4, =14, =194;(2)2x2﹣7x+2=0(x≠0),求的值.【分析】(1)模仿例题利用完全平方公式即可解决.(2)模仿例题利用完全平方公式以及立方和公式即可.【解答】解;(1)∵x2﹣4x+1=0,∴x+=4,∴(x+)2=16,∴x2+2+=16,∴x2+=14,∴(x2+)2=196,∴x4++2=196,∴x4+=194.故答案为4,14,194.(2)∵2x2﹣7x+2=0,∴x+=,x2+=,∴=(x+)(x2﹣1+)=×(﹣1)=.【点评】本题考查一元一次方程的解、完全平方公式、立方和公式,解决问题的关键是灵活应用完全平方公式,记住两边平方不能漏项(利用完全平方公式整体平方),属于中考常考题型.24、(鄂州)关于x的方程(k﹣1)x2+2kx+2=0.(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k﹣1)x2+2kx+2=0的两个根,记S=+x1+x2,S的值能为2吗?若能,求出此时k的值;若不能,请说明理由.【分析】(1)分两种情况讨论:①当k=1时,方程是一元一次方程,有实数根;②当k ≠1时,方程是一元二次方程,所以证明判别式是非负数即可;(2)由韦达定理得x1+x2=﹣,x1x2=,代入到+x1+x2=2中,可求得k 的值.【解答】解:(1)当k=1时,原方程可化为2x+2=0,解得:x=﹣1,此时该方程有实根;当k≠1时,方程是一元二次方程,∵△=(2k)2﹣4(k﹣1)×2=4k2﹣8k+8=4(k﹣1)2+4>0,∴无论k为何实数,方程总有实数根,综上所述,无论k为何实数,方程总有实数根.(2)由根与系数关系可知,x1+x2=﹣,x1x2=,若S=2,则+x1+x2=2,即+x1+x2=2,将x1+x2、x1x2代入整理得:k2﹣3k+2=0,解得:k=1(舍)或k=2,∴S的值能为2,此时k=2.【点评】本题主要考查一元二次方程的定义、根的判别式、根与系数的关系,熟练掌握方程的根与判别式间的联系,及根与系数关系是解题的关键.五、解答题25、(荆州)已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.(1)求k的取值范围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.【分析】(1)先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出k的取值;(2)先把k=m+2,n=1代入方程②化简,由方程②有两个整数实根得△是完全平方数,列等式得出关于m的等式,由根与系数的关系和两个整数根x1、x2得出m=1和﹣1,再根据方程有两个整数根得△>0,得出m>0或m<﹣,符合题意,分别把m=1和﹣1代入方程后解出即可.(3)根据(1)中k的取值和k为负整数得出k=﹣1,化简已知所给的等式,并将两根和与积代入计算得出m的等式,并由根的判别式组成两式可做出判断.【解答】解:(1)∵关于x的分式方程的根为非负数,∴x≥0且x≠1,又∵x=≥0,且≠1,∴解得k≥﹣1且k≠1,又∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0中2﹣k≠0,∴k≠2,综上可得:k≥﹣1且k≠1且k≠2;(2)∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0有两个整数根x1、x2,且k=m+2,n=1时,∴把k=m+2,n=1代入原方程得:﹣mx2+3mx+(1﹣m)=0,即:mx2﹣3mx+m﹣1=0,∴△>0,即△=(﹣3m)2﹣4m(m﹣1),且m≠0,∴△=9m2﹣4m(m﹣1)=m(5m+4)>0,则m>0或m<﹣;∵x1、x2是整数,k、m都是整数,∵x1+x2=3,x1x2==1﹣,∴1﹣为整数,∴m=1或﹣1,由(1)知k≠1,则m+2≠1,m≠﹣1∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0,x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3;(3)|m|≤2成立,理由是:由(1)知:k≥﹣1且k≠1且k≠2,∵k是负整数,∴k=﹣1,(2﹣k)x2+3mx+(3﹣k)n=0且方程有两个实数根x1、x2,∴x1+x2=﹣==﹣m,x1x2==n,x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),x12﹣x1k+x22﹣x2k=x1x2﹣x1k﹣x2k+k2,x12+x22═x1x2+k2,(x1+x2)2﹣2x1x2﹣x1x2=k2,(x1+x2)2﹣3x1x2=k2,(﹣m)2﹣3×n=(﹣1)2,m2﹣4n=1,n=①,△=(3m)2﹣4(2﹣k)(3﹣k)n=9m2﹣48n≥0②,把①代入②得:9m2﹣48×≥0,m2≤4,则|m|≤2,∴|m|≤2成立.【点评】本题考查了一元二次方程的根与系数的关系,考查了根的判别式及分式方程的解;注意:①解分式方程时分母不能为0;②一元二次方程有两个整数根时,根的判别式△为完全平方数.25、(韶关模拟)如图,点A(2,2)在双曲线y1=(x>0)上,点C在双曲线y2=﹣(x<0)上,分别过A、C向x轴作垂线,垂足分别为F、E,以A、C为顶点作正方形ABCD,且使点B在x轴上,点D在y轴的正半轴上.(1)求k的值;(2)求证:△BCE≌△ABF;(3)求直线BD的解析式.【解答】(1)解:把点A(2,2)代入y1=,得:2=,∴k=4;(2)证明:∵四边形ABCD是正方形,∴BC=AB,∠ABC=90°,BD=AC,∴∠EBC+∠ABF=90°,∵CE⊥x轴,AF⊥x轴,∴∠CEB=∠BFA=90°,∴∠BCE+∠EBC=90°,∴∠BCE=∠ABF,在△BCE和△ABF中,,∴△BCE≌△ABF(AAS);(3)解:连接AC,作AG⊥CE于G,如图所示:则∠AGC=90°,AG=EF,GE=AF=2,由(2)得:△BCE≌△ABF,∴BE=AF=2,CE=BF,设OB=x,则OE=x+2,CE=BF=x+2,∴OE=CE,∴点C的坐标为:(﹣x﹣2,x+2),代入双曲线y2=﹣(x<0)得:﹣(x+2)2=﹣9,解得:x=1,或x=﹣5(不合题意,舍去),∴OB=1,BF=3,CE=OE=3,∴EF=2+3=5,CG=1=OB,B(﹣1,0),AG=5,在Rt△BOD和Rt△CGA中,,∴Rt△BOD≌Rt△CGA(HL),∴OD=AG=5,∴D(0,5),设直线BD的解析式为:y=kx+b,把B(﹣1,0),D(0,5)代入得:,。
华东师大版九年级数学上册第22章一元二次方程单元测试卷-带参考答案

华东师大版九年级数学上册第22章一元二次方程单元测试卷-带参考答案一、单选题1.若一元二次方程22(36)40a x a -+-=的常数项是0,则a 的值是( )A .2或-2B .2C .-2D .42.若关于x 的方程mx 2-2x+1=0是一元二次方程,则( )A .m>0B .m≥0C .m=1D .m≠03.已知一元二次方程的一般式为 20(0)ax bx c a ++=≠ ,则一元二次方程x 2-5=0中b 的值为( )A .1B .0C .-5D .54.某产品成本价为100万元,由于改进技术,成本连续降低,每次降低 x %,连续两次降低后成本为64万元,则 x 的值为( )A .10B .15C .18D .205.给出以下方程的解题过程,其中正确的有( )①解方程12(x ﹣2)2=16,两边同时开方得x ﹣2=±4,移项得x 1=6,x 2=﹣2;②解方程x (x ﹣ 12 )=(x ﹣ 12 ),两边同时除以(x ﹣ 12 )得x =1,所以原方程的根为x 1=x 2=1;③解方程(x ﹣2)(x ﹣1)=5,由题得x ﹣2=1,x ﹣1=5,解得x 1=3,x 2=6;④方程(x ﹣m )2=n 的解是x 1=m + n ,x 2=m ﹣n . A .0个 B .2个 C .3个 D .4个6.一种商品原价100元,经过两次降价后的售价是60元,设平均每次降价的百分率为 x ,那么所列方程正确的是( )A .()2601100x +=B .()6012100x +=C .()2100160x -= D .()1001260x -= 7.用配方法解一元二次方程x 2-4x+3=0时可配方得( )A .(x -2)2=7B .(x -2)2=1C .(x+2)2=1D .(x+2)2=28.如图,学校课外生物小组试验园地的形状是长40米、宽34米的矩形,为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为960平方米.则小道的宽为多少米?若设小道的宽为x 米,则根据题意,列方程为( )A .()()40234960x x --=B .2403440342960x x x ⨯--+=C .()()40342960x x --=D .403440234960x x ⨯--⨯=9.一元二次方程 220x x c ++= 有两个相等的实数根,那么实数 c 的取值为( ).A .1c >B .1c ≥C .1c =D .1c <10.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x ,则可以列方程为( )A .3(1)10x +=B .23(1)10x +=C .233(1)10x ++=D .233(1)3(1)10x x ++++=二、填空题11.方程 (2)4310m m x x m ++++= 是关于x 的一元二次方程,则m= .12.为把我市创建成全国文明城市,某社区积极响应市政府号召,准备在 一块正方形的空地上划出部分区域栽种鲜花,如图中的阴影“┛”带,鲜花带一边宽1m.另一边宽2m ,剩余空地的面积为18m 2,求原正方形空地的边长 x m ,可列方程为 .13.某小组同学,新年时每人互送贺年卡一张,共送贺年卡56张,这个小组共有 人. 14.若x 1、x 2是一元二次方程x 2-3x-3=0的两个根,则,x 1+x 2的值是三、计算题15.(1)x 2﹣3x=10 (2)3x 22x ﹣4=0.四、解答题16.夏津某一企业2014年完成工业总产值100万元,如果要在2016年达到169万元,那么2014年到2016年的工业总产值年平均增长率是多少?计划2018年工业总产值要达到280万元,若继续保持上面的增长率,该目标是否可以完成?17.解方程:x 2+4x ﹣2=018.某市百货商店服装部在销售中发现“米奇”童装平均每天可售出20件,每件获利40元。
【期末复习】九年级上《第22章一元二次方程》单元评估试卷有答案

期末专题复习:华师大版九年级数学上册第22章一元二次方程单元评估检测试卷一、单选题(共10题;共30分)1.方程的解是()A. B. C. , D. ,2.已知x=1是方程x2+bx﹣2=0的一个根,则方程的另一个根是()A. 1B. 2C. ﹣2D. ﹣13.某超市1月份的营业额是0.2亿元,第一季度的营业额共1亿元.如果平均每月增长率为x,则由题意列方程应为().A. 0.2(1+x)2=1B. 0.2+0.2×2x=1C. 0.2+0.2×3x=1D. 0.2×[1+(1+x)+(1+x)2]=14.华为手机营销按批量投入市场,第一次投放20000台,第三次投放80000台,每次按相同的增长率投放,设增长率为x,则可列方程()A. 20000(1+x)2=80000B. 20000(1+x)+20000(1+x)2=80000C. 20000(1+x2)=80000D. 20000+20000(1+x)+20000(1+x)2=800005.已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n=()A. 6B. 7C. 8D. 96.在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是()A. (80+2x)(50+2x)=5400B. (80-x)(50-x)=5400C. (80+x)(50+x)=5400D. (80-2x)(50-2x)=54007.方程3x2-x=2的两根之和与两根之积分别是()A. 1和2B. -1和-2C. 和D. 和8.十年后,2003班学生聚会,见面时相互间均握了一次手,好事者统计:一共握了780次.你认为这次聚会的同学有()人。
A. 38B. 39C. 40D. 419.已知m,n是一元二次方程x2-4x-3=0的两个实数根,则为().A. -1B. -3C. -5D. -710.已知,则m2+n2的值为()A. -4或2B. -2或4C. -4D. 2二、填空题(共10题;共30分)11.一元二次方程2x2﹣3x+1=0的解为________.12.有三个连续的自然数,已知其中最大的一个数比另外两个数的积还大1,那么这个最大的数是________.13.已知x=1是关于x的一元二次方程2x2+kx-1=0的一个根,则实数k值是________。
九年级上第22章一元二次方程测试题及答案

一元二次方程 单元测试卷时间:120分钟 满分;120分一、选择题(每题3分;共30分)1.已知x=1是一元二次方程x 2-2mx+1=0的一个解;则m 的值是( )A .1B .0C .0或1D .0或-12.已知a 、b 为一元二次方程0922=-+x x 的两个根;那么b a a -+2的值为( )(A )-7 (B )0 (C )7 (D )113.根据下列表格中二次函数2y ax bx c =++的自变量x 与函数值y 的对应值;判断方程20ax bx c ++=(0a a b c ≠,,,为常数)的一个解x 的范围是( )A. B.C.6.18 6.19x << D.6.19 6.20x <<4.等腰三角形的底和腰是方程x 2-6x+8=0的两根;则这个三角形的周长为( )A.8B.10C.8或10D.不能确定5.某城市2007年底已有绿化面积300公顷;经过两年绿化;绿化面积逐年增加;到底增加到363公顷.设绿化面积平均每年的增长率为x ;由题意;所列方程正确的是A .300(1+x )=363B .300(1+x )2=363C .300(1+2x )=363D .363(1-x )2=3006.现定义某种运算()a b a a b ⊗=>;若2(2)2x x x +⊗=+;那么x 的取值范围是( )(A )12x -<<(B )2x >或1x <-(C )2x > (D )1x <-7、已知a b ,是关于x 的一元二次方程210x nx +-=的两实数根;则式子b a a b +的值是( )A .22n +B .22n -+C .22n -D .22n -- 8、用配方法将代数式a 2+4a -5变形;结果正确的是( )A.(a +2)2-1B. (a +2)2-5C. (a +2)2+4D. (a +2)2-99、关于x 的一元二次方程222310x x a --+=的一个根为2;则a 的值是( )A .1BC .D .10、某商品经过两次连续降价;每件售价由原来的55元降到了35元.设平均每次降价的百分率为x ;则下列方程中正确的是( )A .55 (1+x )2=35B .35(1+x )2=55C .55 (1-x )2=35D .35(1-x )2=55二、填空题(每题3分;共30分)11.已知一元二次方程有一个根是2;那么这个方程可以是 (填上你认为正确的一个方程即可).12.已知实数x 满足4x 2-4x+l=0;则代数式2x+x21的值为________. 13.如果αβ、是一元二次方程23 1 0x x +-=的两个根;那么2+2ααβ-的值是___________。
第22章 一元二次方程 华东师大版数学九年级上册单元测试卷(含答案)
第22章 一元二次方程时间:90分钟满分:100分一、选择题(每小题3分,共30分) 1.一元二次方程2x2-1=4x化成一般形式后,常数项是-1,一次项系数是( )A.-4B.-2C.4D.22.若方程(m-1)x|m|+1-2x=3是关于x的一元二次方程,则m的值为( )A.1B.-1C.±1D.不存在3.将一元二次方程x2+4x+2=0配方后可得到方程( )A.(x-2)2=2B.(x+2)2=6C.(x-2)2=6D.(x+2)2=24.若4a-2b+c=0,则一元二次方程ax2-bx+c=0(a≠0)必有一根是( )A.0B.无法确定C.-2D.25.若关于x的方程x2-kx-3=0的一个根是3,则方程的另一个根是( )A.-1B.1C.2D.-26.如果两数的差为3,积为88,那么这两个数中较大的一个数为( )A.8B.-11C.11或-8D.-11或87.将一条长为20 cm的铁丝剪成两段,并以每一段铁丝的长度为周长各自做成一个正方形.若两个正方形的面积之和为12.5 cm2,则这两段铁丝的长度分别是( )A.5 cm,15 cmB.12 cm,8 cmC.4 cm,16 cmD.10 cm,10 cm8.小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=3,解出其中一个根是x=-1.他核对时发现所抄的c值比原方程的c值小2,则原方程的根的情况是( )A.不存在实数根B.有两个不相等的实数根C.有一个根是x=-1D.有两个相等的实数根9.如果m,n是一元二次方程x2+x=4的两个实数根,那么多项式2n2-mn-2m的值是( )A.16B.14C.10D.610.形如x2+10x=39的方程,求正数解的几何方法是:如图(1),先构造一个x 面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为52)2×4=64,则该方程的正数解为的矩形,得到大正方形的面积为39+(5264-5×2=3.小明尝试用此方法解关于x的方程x2+8x+c=0时,构造出如2图(2)所示的正方形.已知图(2)中阴影部分的面积和为36,则该方程的正数解为( )图(1) 图(2)A.213-2B.2C.213-4D.25二、填空题(每小题3分,共18分)11.如果x=2是关于x的一元二次方程x2=c的一个根,那么该方程的另一个根是 .12.请写出一个二次项系数为2的一元二次方程,使得两根分别是-2和1: .13.若a是方程x2-3x+1=0的一个根,则a2-3a+3a= .a2+114.鸡瘟是一种传播速度很快的传染病,一轮传染为一天时间,某养鸡场于某日发现一例,两天后发现共有169只鸡患有这种病.若每只病鸡传染健康鸡的只数均为x,则可列方程为 .15.以比方程x2-5x-2=0的两根均大3的数为根的方程是 .16.如图,在△ABC中,∠B=90°,AB=8 cm,BC=6 cm,点P从点A开始,沿AB边向点B以1 cm/s的速度移动,点Q从点B开始,沿BC边向点C 以2 cm/s的速度移动.如果点P,Q分别从点A,B同时出发,当一个点到达目的地时,所有运动停止.经过 s,△PBQ的面积等于15 cm2.三、解答题(共52分)17.(每小题4分,共12分)用适当的方法解下列方程:(1)y(y-1)=2-2y;(2)5x2-8x=-5;(3)(x+2)2-8(x+2)+16=0.18.(7分)已知关于x的一元二次方程ax2+bx+1=0.2(1)当b=a+1时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,请写出一组满足条件的a,b的值,并求出此时方程的根.19.(7分)如图,有一块长20 cm、宽10 cm的长方形铁皮,在它的四个角分别剪去一个大小完全相同的小正方形,用剩余的部分做成一个底面积为96 cm2的无盖长方体盒子,求剪去的小正方形的边长是多少.20.(8分)观察下列一元二次方程:第1个方程x2+x-2=0的根为1和-2;;第2个方程2x2+x-3=0的根为1和-32;第3个方程3x2+x-4=0的根为1和-43……(1)第2 022个方程是 ,根为 ;(2)直接写出第n个方程与它的根并验证根的正确性.21.(8分)原定于2021年8月在四川成都举行的第31届世界大学生夏季运动会延期至2022年举办,此次成都大运会吉祥物是一只名叫“蓉宝”的大熊猫.(1)据市场调研发现,某工厂今年四月份共生产200个“蓉宝”玩具,该工厂为增大生产量,计划平均每月的生产量都比前一个月增加20%,则该工厂在今年第二季度共生产 个“蓉宝”玩具;(2)已知某商店以30元的单价购入一批“蓉宝”玩具准备进行销售,据市场分析,若每个“蓉宝”玩具售价60元,则平均每天可售出40个;若每个“蓉宝”玩具每降价1元,则平均每天可多售出8个.若商店想平均每天盈利2 000元,则销售单价应定为多少元?22.(10分)阅读并完成下列问题:任意给定一个矩形A,是否存在另一矩形B,使它的周长和面积分别是已知矩形周长和面积的一半?(1)当已知矩形A的两边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边长分别是x和y,由题意可得方程组x+y=72, xy=3,消去y,得2x2-7x+6=0.∵Δ=49-48=1>0,∴x1= ,x2= ,∴满足要求的矩形B存在.(2)如果已知矩形A的两边长分别为2和1,那么请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的两边长分别为m和n,那么请你研究当m,n满足什么条件时,矩形B存在,并说明理由.参考答案与解析第22章 一元二次方程1.A 2x 2-1=4x,移项得2x 2-4x-1=0,即一次项系数是-4.2.B 由题意得|m|+1=2,且m-1≠0,解得m=-1.3.D 将方程x 2+4x+2=0移项,得x 2+4x=-2,配方得x 2+4x+22=-2+22,即(x+2)2=2.4.D ∵4a-2b+c=0,∴a×22-b×2+c=0,∴方程ax 2-bx+c=0(a ≠0)必有一根为2.5.A 设方程的另一个根为a,则根据根与系数的关系得3a=-3,解得a=-1.另解1:(公式法)将x=3代入,得9-3k-3=0,解得k=2,∴原方程为x 2-2x-3=0,利用公式法解方程得x=2±162,∴x=3或-1.另解2:(代入验证法)将x=3代入,得9-3k-3=0,解得k=2,∴原方程为x 2-2x-3=0.将x=-1代入方程,等式成立,故x=-1是方程的另一个根.6.C 设较小的数为x,则较大的数为x+3,根据题意得x(x+3)=88,即x 2+3x-88=0,则(x-8)(x+11)=0,解得x=8或-11,∴x+3=11或-8,∴较大的数为11或-8.7.D 设铁丝剪成两段后其中一段为x cm,则另一段为(20-x)cm,由题意得(x 4)2+(20―x 4)2=12.5.解得x 1=x 2=10,此时20-x=10.∴这两段铁丝的长度都是10 cm.8.A ∵小刚在解关于x 的方程ax 2+bx+c=0(a≠0)时,只抄对了a=1,b=3,解出其中一个根是x=-1,∴(-1)2-3+c=0,解得c=2,故原方程中c=4,则Δ=9-4×1×4=-7<0,∴原方程不存在实数根.9.B ∵n 是一元二次方程x 2+x=4的根,∴n 2+n=4,即n 2=-n+4.∵m,n 是一元二次方程x 2+x=4的两个实数根,∴m+n=-1,mn=-4,∴2n 2-mn-2m=2(-n+4)-mn-2m=-2(m+n)-mn+8=2+4+8=14.10.C 8÷4=2,结合题图(2),先构造一个面积为x 2的正方形,再以正方形的边长为一边向外构造四个面积为2x 的矩形,得到大正方形的面积为36+22×4=36+16=52,∴该方程的正数解为52-2×2=213-4.11.x=-212.2x2+2x-4=0 由题意得2(x-1)(x+2)=0,化简,得2x2+2x-4=0.13.0 ∵a是方程x2-3x+1=0的一个根,∴a2-3a+1=0,则a2-3a=-1,a2+1= 3a,∴原式=-1+1=0.14.1+x+x(x+1)=169或(1+x)2=169 由每只病鸡传染健康鸡的只数均为x,得第一轮传染x只,第二轮传染x(x+1)只,依题意得1+x+x(x+1)= 169,即(1+x)2=169.15.x2-11x+22=0 设方程x2-5x-2=0的两根分别为x1,x2,则以x1+3,x2+3为根的方程是(x-3)2-5(x-3)-2=0,整理得x2-11x+22=0.(8-x)×2x=15,解16.3 设经过x s,△PBQ的面积等于15 cm2.由题意,得12得x1=3,x2=5.点P从点A运动到点B所需时间:8÷1=8(s).点Q从点B 运动到点C所需时间:6÷2=3(s),∴0<x≤3.故经过3 s,△PBQ的面积等于15 cm2.17.解:(1)整理方程,得y(y-1)+2(y-1)=0,(2分)因式分解,得(y+2)(y-1)=0,解得y1=-2,y2=1.(4分) (2)移项,得5x2-8x+5=0.∵a=5,b=-8,c=5,∴Δ=b2-4ac=64-100=-36<0,(2分)∴方程无实数根.(4分) (3)(整体思想)把(x+2)看成一个整体,令x+2=t,则t2-8t+16=0,整理,得(t-4)2=0,解得t1=t2=4,∴x1=x2=2.(4分)=b2-2a,18.解:(1)Δ=b2-4a×12∵b=a+1,∴Δ=(a+1)2-2a=a2+2a+1-2a=a2+1>0,∴原方程有两个不相等的实数根.(3分) (2)∵方程有两个相等的实数根,∴Δ=b2-2a=0,即b2=2a.(4分)=0,(5分)取a=2,b=2,则方程为2x2+2x+12.(7分)解得x1=x2=-12(a,b 的取值不唯一,解也不唯一,正确即可)19.解:设剪去的小正方形的边长是x cm,则做成的无盖长方体盒子的底面长为(20-2x)cm,宽为(10-2x)cm,依题意得(20-2x)(10-2x)=96,整理得x 2-15x+26=0,解得x 1=2,x 2=13.(4分)∵10-2x>0,∴x<5,∴x=2.答:剪去的小正方形的边长是2 cm.(7分)20.解:(1)2 022x 2+x-2 023=0 1和-20232022(3分)(2)第n 个方程是nx 2+x-(n+1)=0,其根为1和-n +1n .(5分)验证:当x=1时,nx 2+x-(n+1)=n+1-n-1=0.当x=-n +1n 时,nx 2+x-(n+1)=n·(-n +1n )2-n +1n -(n+1)=n 2+2n +1―n ―1―n 2-n n =0.(8分)21.解:(1)728(3分)解法提示:200+200×(1+20%)+200×(1+20%)2=200+200×1.2+200×1.44=200+240+288=728(个).(2)设每个“蓉宝”玩具降价x 元,则每个“蓉宝”玩具的销售利润为(60-x-30)=(30-x)元,每天可售出(40+8x)个,依题意得(30-x)(40+8x)=2 000,整理得x 2-25x+100=0,解得x 1=5,x 2=20.(6分)当x=5时,60-x=60-5=55;当x=20时,60-x=60-20=40.答:商店要想平均每天盈利2 000元,销售单价应定为40元或55元.(8分)22.解题思路:(1)直接利用求根公式计算即可;(2)先消去b,得到关于a 的一元二次方程,用一元二次方程的根的判别式判断即可;(3)消去q,得到关于p 的一元二次方程,再根据一元二次方程的根的判别式大于或等于0,求出m,n 满足的条件.解:(1)32 2(2分)(2)设所求矩形的两边长分别是a 和b,由题意,得a +b =32,ab =1,消去b,得2a 2-3a+2=0.∵Δ=9-16=-7<0,∴不存在满足要求的矩形B.(5分)(3)当m,n满足(m-n)2-4mn≥0时,矩形B存在.(6分)理由如下:设所求矩形的两边长分别是p和q,由题意,得p+q=m+n2,pq=mn2,消去q,得2p2-(m+n)p+mn=0,∴Δ=[-(m+n)]2-8mn=(m-n)2-4mn.(7分)当Δ≥0时,存在满足要求的矩形B,即当(m-n)2-4mn≥0时,矩形B存在.(10分)。
2022-2023学年华东师大版九年级数学上册《第22章一元二次方程》单元综合达标测试题(附答案)
2022-2023学年华东师大版九年级数学上册《第22章一元二次方程》单元综合达标测试题(附答案)一.选择题(共8小题,满分40分)1.要使方程(a﹣3)x2+(b+1)x+c=0是关于x的一元二次方程,则()A.a≠0B.a≠3C.a≠3且b≠﹣1D.a≠3且b≠﹣1且c≠02.已知方程x2+2x﹣8=0的解是x1=2,x2=﹣4,那么方程(x+1)2+2(x+1)﹣8=0的解是()A.x1=1,x2=5B.x1=1,x2=﹣5C.x1=﹣1,x2=5D.x1=﹣1,x2=﹣53.若a是方程x2﹣x﹣1=0的一个根,则﹣a3+2a+2021的值为()A.2020B.﹣2020C.2021D.﹣20214.已知α,β是方程x2+2022x+1=0的两个根,则代数式(1+2023α+α2)(1+2026β+β2)的值是()A.4B.3C.2D.15.用配方法解一元二次方程x2﹣8x+7=0时,方程可变形为()A.(x﹣4)2=7B.(x﹣8)2=57C.(x﹣4)2=9D.(x﹣4)2=25 6.若关于x的一元二次方程(k﹣2)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k>3B.k<3C.k>﹣3且k≠2D.k<3且k≠2 7.关于x的一元二次方程(k+1)x2﹣x+k2﹣2k﹣3=0有一个根为0,则k的值是()A.3B.1C.1或﹣3D.﹣1或38.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,设每个支干长出x个小分支,则下列方程中正确的是()A.1+x2=91B.(1+x)2=91C.1+x+x2=91D.1+(1+x)+(1+x)2=91二.填空题(共8小题,满分40分)9.若一元二次方程ax2﹣bx﹣2021=0有一根为x=﹣1,则a+b=.10.已知一菱形的两条对角线长分别是方程x2﹣10x+21=0的两根,则菱形的面积是.11.在解一元二次方程x2+px+q=0时,小明看错了系数p,解得方程的根为1和﹣3;小红看错了系数q,解得方程的根为4和﹣2,则p=,q=.12.如果关于x的一元二次方程x2﹣x+k=0有两个不相等的实数根,那么k的取值范围是.13.已知关于x的方程a(x+c)2+b=0(a,b,c为常数,a≠0)的两根分别为﹣2,1,那么关于x的方程a(x+c﹣2)2+b=0的两根分别为,c=.14.一个直角三角形的两条直角边的边长相差7cm,且三角形的面积为30cm2,则该三角形的斜边长为.15.已知实数a是元二次方程x2﹣2021x+1=0的根,求代数式a2﹣2020a﹣的值为.16.某年级举行篮球比赛,赛制为单循环赛,即每一个球队都和其他的球队进行一场比赛,已知共举行了28场比赛,那么参加比赛的球队数共有个.三.解答题(共5小题,满分40分)17.解下列方程:(1)3x2+4x+1=0(配方法);(2)2(x﹣3)2=x(x﹣3)(适当方法).18.已知关于x的方程x2﹣(3k+1)x+2k2+2k=0.(1)求证:无论k取何值,方程总有实数根;(2)若等腰三角形的底边长3,另两边长恰好是这个方程的两根,求此三角形的周长.19.今年某村农产品喜获丰收,该村村委会在网上直播销售优质农产品礼包,今年1月份销售该农产品礼包256包,2、3月该礼包十分畅销,销售量持续走高,在售价不变的基础上,3月份的销售量达到400包.(1)若设2、3两个月销售量的月平均增长率为x,求x的值;(2)若农产品礼包每包进价25元,原售价为每包40元,该村在今年4月进行降价促销,经调查发现,若该农产品礼包每包每降价1元,月销售量可增加5袋,当农产品礼包每包降价多少元时,这种农产品在4月份可获利4250元?20.我们在求代数式y2+4y+8的最小值时,可以考虑用如下法求得:解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0,∴(y+2)2+4≥4∴y2+4y+8的最小值是4.请用上面的方法解决下面的问题:(1)代数式m2+2m+4的最小值为;(2)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?21.2022年北京冬奥会吉祥物冰墩墩和雪容融在一开售时,就深受大家的喜欢.某供应商今年2月第一周购进一批冰墩墩和雪容融,已知一个冰墩墩的进价比一个雪容融的进价多40元,购买20个冰墩墩和30个雪容融的价格相同.(1)今年2月第一周每个冰墩墩和雪容融的进价分别是多少元?(2)今年2月第一周,供应商以100元每个售出雪容融140个,150元每个售出冰墩墩120个.第二周供应商决定调整价格,每个雪容融的售价在第一周的基础上下降了m元,每个冰墩墩的价格不变,由于冬奥赛事的火热进行,第二周雪容融的销量比第一周增加了m个,而冰墩墩的销量比第一周增加了0.2m个,最终商家获利5160元,求m.参考答案一.选择题(共8小题,满分40分)1.解:根据一元二次方程的定义中二次项系数不为0得,a﹣3≠0,a≠3.故选:B.2.解:把方程(x+1)2+2(x+1)﹣8=0看作关于(x+1)的一元二次方程,∵方程x2+2x﹣8=0的解是x1=2,x2=﹣4,∴x+1=2或x+1=﹣4,解得x=1或x=﹣5,∴方程(x+1)2+2(x+1)﹣8=0的解为x1=1,x2=﹣5.故选:B.3.解:∵a是方程x2﹣x﹣1=0的一个根,∴a2﹣a﹣1=0,∴a2=a+1,∴a3=a(a+1)=a2+a=a+1+a=2a+1,∴﹣a3+2a+2021=﹣(2a+1)+2a+2021=﹣2a﹣1+2a+2021=2020.故选:A.4.解:∵α,β是方程x2+2022x+1=0的两个根,∴αβ=1,α2+2022α+1=0,β2+2022β+1=0,∴(1+2023α+α2)(1+2026β+β2)=a•4β=4αβ=4×1=4.故选:A.5.解:x2﹣8x+7=0,移项,得x2﹣8x=﹣7,配方,得x2﹣8x+16=﹣7+16,(x﹣4)2=9,故选:C.6.解:∵关于x的一元二次方程(k﹣2)x2﹣2x+1=0有两个不相等的实数根,∴Δ=4﹣4(k﹣2)>0,且k﹣2≠0,解得:k<3且k≠2.故选:D.7.解:把x=0代入(k+1)x2﹣x+k2﹣2k﹣3=0得k2﹣2k﹣3=0,解得k1=﹣1,k2=3,因为k+1≠0,所以k的值为3.故选:A.8.解:由题意可得,1+x+x•x=1+x+x2=91.故选:C.二.填空题(共8小题,满分40分)9.解:把x=﹣1代入一元二次方程ax2﹣bx﹣2021=0得:a+b﹣2021=0,即a+b=2021.故答案是:2021.10.解:方程x2﹣10x+21=0,分解因式得:(x﹣3)(x﹣7)=0,所以x﹣3=0或x﹣7=0,解得:x=3或x=7,则菱形的面积为×3×7=10.5.故答案为:10.5.11.解:∵小明看错了系数p,解得方程的根为1和﹣3,∴q=1×(﹣3)=﹣3,∵小红看错了系数q,解得方程的根为4和﹣2,∴﹣p=4﹣2=2,∴p=﹣2,故答案为:﹣2、﹣3.12.解:∵关于x的一元二次方程x2﹣x+k=0有两个不相等的实数根,∴Δ=(﹣)2﹣4k>0,且2k+1≥0,解得﹣≤k<.故答案为:﹣≤k<.13.解:根据题意知,x﹣2=﹣2或x﹣2=1,解得x1=0,x2=3,∵方程a(x+c)2+b=0(a,b,c为常数,a≠0)的两根分别为﹣2,1,∴a(﹣2+c)2+b=0或a(1+c)2+b=0,∴(﹣2+c)2=﹣或(1+c)2=﹣,∴﹣2+c+1+c=0,解得,c=0.5,故答案为:x1=0,x2=3;0.5.14.解:设较短直角边的长为xcm,则较长直角边的长为(x+7)cm,依题意得:x(x+7)=30,整理得:x2+7x﹣60=0,解得:x1=5,x2=﹣12(不合题意,舍去).∴该三角形的斜边长===13(cm).故答案为:13cm.15.解:∵a是方程x2﹣2021x+1=0根,∴a2﹣2021a+1=0,∴a2=2021a﹣1,∴原式=2021a﹣1﹣2020a﹣=a﹣1﹣a=﹣1.故答案是:﹣1.16.解:设参加比赛的球队数共有x个,依题意,得:x(x﹣1)=28,解得:x1=8,x2=﹣7(不合题意,舍去).故答案是:8.三.解答题(共5小题,满分40分)17.解:(1)3x2+4x=﹣1,,,,,;(2)2(x﹣3)2﹣x(x﹣3)=0;(x﹣3)[2(x﹣3)﹣x]=0,x﹣3=0或2x﹣6﹣x=0x1=3,x2=6.18.(1)证明:∵Δ=b2﹣4ac=[﹣(3k+1)]2﹣4•(2k2+2k)=k2﹣2k+1=(k﹣1)2≥0,∴无论k取何值,方程总有实数根;(2)解:∵等腰三角形的底边长3,∴另两边长即为等腰三角形的腰长,∵另两边长恰好是这个方程的两根,∴该方程有两个相等的实数根,∴Δ=b2﹣4ac=[﹣(3k+1)]2﹣4•(2k2+2k)=k2﹣2k+1=(k﹣1)2=0,解得k=1,将k=1代入方程,得x2﹣4x+4=0,解得:x1=x2=2.此时△ABC三边为3,2,2;所以周长为3+2+2=7.19.解:(1)依题意得:256(1+x)2=400,解得:x1=0.25=25%,x2=﹣2.25(不合题意,舍去).答:x的值为25%.(2)设农产品礼包每包降价m元,则每包的销售利润为(40﹣m﹣25)元,月销售量为(400+5m)包,依题意得:(40﹣m﹣25)(400+5m)=4250,整理得:m2+65m﹣350=0,解得:m1=5,m2=﹣70(不合题意,舍去).答:当农产品礼包每包降价5元时,这种农产品在4月份可获利4250元.20.解:(1)m2+2m+4=m2+2m+1+3=(m+1)2+3,∵(m+1)2≥0,∴(m+1)2+3≥3,∴m2+2m+4的最小值是3,故答案为:3;(2)设花园的面积为S,由题意得:S=x(20﹣2x)=﹣2x2+20x=﹣2(x2﹣10x)=﹣2(x2﹣10x+25﹣25)=﹣2(x﹣5)2+50,∵﹣2(x﹣5)2≤0,∴﹣2(x﹣5)2+50≤50,∴当x=5时,S最大=50,答:当x=5时,花园的面积最大,最大面积是50平方米.21.解:(1)设今年2月第一周每个冰墩墩的进价为x元,每个雪容融的进价为y元,依题意得:,解得:.答:今年2月第一周每个冰墩墩的进价为120元,每个雪容融的进价为80元.(2)依题意得:(100﹣m﹣80)(140+m)+(150﹣120)(120+0.2m)=5160,整理得:m2+114m﹣1240=0,解得:m1=10,m2=﹣124(不合题意,舍去).答:m的值为10.。
第22章 一元二次方程 华东师大版九年级数学上册单元测试卷(含答案)
第22章测试卷一、选择题:本大题共10小题,每小题3分,合计30分.1. 用公式法解一元二次方程3x2﹣4x=8时,化方程为一般式,当中的a,b,c依次为( )A.3,﹣4,8B.3,﹣4,﹣8C.3,4,﹣8D.3,4,8【答案】B解:∵3x2﹣4x=8,∴3x2﹣4x﹣8=0,则a=3,b=﹣4,c=﹣8,故选:B.2. (2020秋•内乡县期末)设a,b是方程x2+x﹣2021=0的两个实数根,则a2+b2+a+b的值是( )A.0B.2020C.4040D.4042【答案】D【分析】根据一元二次方程的解及根与系数的关系可得出a2+a=2021、b2+b=2021、a+b =﹣1,将其代入则a2+b2+a+b中即可求出结论.解:∵a,b是方程x2+x﹣2020=0的两个实数根,∴a2+a=2021、b2+b=2021、a+b=﹣1,∴则a2+b2+a+b=(a2+a)+(b2+b)=2021+2021=4042.故选:D.3. (2020秋•洛阳新安期中)某食品厂七月份生产面包52万个,第三季度生产面包共196万个,若x满足的方程是52+52(1+x)+52(1+x)2=196,则x表示的意义是( )A.该厂七月份的增长率B.该厂八月份的增长率C.该厂七、八月份平均每月的增长率D.该厂八、九月份平均每月的增长率【答案】D【分析】一般增长后的量=增长前的量×(1+增长率),根据方程结合题意确定x的意义即可.解:依题意得八、九月份的产量为52(1+x)、52(1+x)2,∴52+52(1+x)+52(1+x)2=196中的x表示的意义是该厂八、九月份平均每月的增长率,故选:D.4. (2020秋•宛城区期末)欧几里得的《原本》记载,方程x2+ax=b2的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=BC.则该方程的一个正根是( )A.AC的长B.CD的长C.AD的长D.BC的长【答案】C【分析】在Rt△ABC中,由勾股定理可得出AC2+BC2=AB2,结合AB=AD+BD,AC=b,BD=BC=,即可得出AD2+aAD=b2,进而可得出AD的长是方程x2+ax=b2的一个正根.解:在Rt△ABC中,由勾股定理可得AC2+BC2=AB2.∵AC=b,BD=BC=,∴b2+()2=(AD+)2=AD2+aAD+()2,∴AD2+aAD=b2.∵AD2+aAD=b2与方程x2+ax=b2相同,且AD的长度为正数,∴AD的长是方程x2+ax=b2的一个正根.故选:C.5. (2020驻马店新蔡期中)已知等腰三角形的三边长分别为a,b,4,且a,b是关于x的一元二次方程x2-12x+m+2=0的两根,则m的值是()A. 34B.30C.30或34D.30或36【答案】A.【解析】分两种情况讨论:①若4为等腰三角形底边长,则a,b是两腰,∴方程x2-12x+m+2=0有两个相等实根,∴△=(-12)2-4×1×(m+2)=136-4m=0,∴m=34.此时方程为x2-12x+36=0,解得x1=x2=6.∴三边为6,6,4,满足三边关系,符合题意.②若4为等腰三角形腰长,则a,b中有一条边也为4,∴方程x2-12x+m+2=0有一根为4.∴42-12×4+m+2=0,解得,m=30.此时方程为x2-12x+32=0,解得x1=4,x2=8.∴三边为4,4,8,不满足三边关系,故舍去.综上,m的值为34.6. 如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P在AB上以1cm/s的速度向B点移动,点Q在BC上以2cm/s的速度向C 点移动.当点Q移动到点C后停止,点P也随之停止移动.下列时刻中,能使△PBQ的面积为15cm2的是( )A.2s B.3s C.4s D.5s【答案】B【分析】设当运动时间为t秒时,△PBQ的面积为15cm2,利用三角形面积的计算公式,可得出关于t的一元二次方程,解之即可得出t值,再结合当点Q移动到点C后停止点P 也随之停止移动,即可确定t值.解:设当运动时间为t秒时,△PBQ的面积为15cm2,依题意得:×(8﹣t)×2t=15,整理得:t2﹣8t+15=0,解得:t1=3,t2=5.又∵2t≤6,∴t≤3,∴t=3.故选:B.7.(2020•南阳南召期中)用换元法解方程+=2时,若设=y,则原方程可化为关于y的方程是( )A.y2﹣2y+1=0B.y2+2y+1=0C.y2+y+2=0D.y2+y﹣2=0【答案】A【分析】方程的两个分式具备倒数关系,设=y,则原方程化为y+=2,再转化为整式方程y2-2y+1=0即可求解.【解析】把=y代入原方程得:y+=2,转化为整式方程为y2﹣2y+1=0.故选:A.8.(2020·湖北荆州·中考真题)定义新运算,对于任意实数a,b满足,其中等式右边是通常的加法、减法、乘法运算,例如,若(k为实数)是关于x的方程,则它的根的情况是()A.有一个实根B.有两个不相等的实数根C.有两个相等的实数根D.没有实数根【答案】B【分析】将按照题中的新运算方法展开,可得,所以可得,化简得:,,可得,即可得出答案.【解析】解:根据新运算法则可得:,则即为,整理得:,则,可得:,;,方程有两个不相等的实数根;故答案选:B.9.(2020·洛阳孟津期末)关于x的一元二次方程有两个实数根,,则k的值()A.0或2B.-2或2C.-2D.2【答案】D【分析】将化简可得,,利用韦达定理,,解得,k=±2,由题意可知△>0,可得k=2符合题意.解:由韦达定理,得:=k-1,,由,得:,即,所以,,化简,得:,解得:k=±2,因为关于x的一元二次方程有两个实数根,所以,△==〉0,k=-2不符合,所以,k=2故选D. 10.(2021·驻马店新蔡期末)将关于的一元二次方程变形为,就可以将表示为关于的一次多项式,从而达到“降次”的目的,又如…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:,且,则的值为()A.B.C.D.【答案】C【分析】先求得,代入即可得出答案.【解析】∵,∴,,∴=====,∵,且,∴,∴原式=,故选:C.二、填空题:本大题共5小题,每小题3分,合计15分.11. 一元二次方程的根是_____.【答案】【分析】利用因式分解法把方程化为x-3=0或x-2=0,然后解两个一次方程即可.【解析】解:或,所以.故答案为.12.(2021·南阳邓州期中)已知关于x的一元二次方程有两个相等的实数根,则的值等于_______.【答案】2.【分析】根据“关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根”,结合根的判别式公式,得到关于a和c的等式,整理后即可得到的答案.【解析】解:根据题意得:△=4﹣4a(2﹣c)=0,整理得:4ac﹣8a=﹣4,4a(c﹣2)=﹣4,∵方程ax2+2x+2﹣c=0是一元二次方程,∴a≠0,等式两边同时除以4a得:,则,故答案为2.13. 1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x步,则可列方程为_____.【答案】x(x﹣12)=864.【分析】由长和宽之间的关系可得出宽为(x-12)步,根据矩形的面积为864平方步,即可得出关于x的一元二次方程,此题得解.解:∵长为x步,宽比长少12步,∴宽为(x﹣12)步.依题意,得:x(x﹣12)=864.14.(2020·2020·周口商水期末)如图是一张长,宽的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是的有盖的长方体铁盒.则剪去的正方形的边长为______.【答案】【分析】根据题意设出未知数,列出三组等式解出即可.【解析】设底面长为a,宽为b,正方形边长为x,由题意得:,解得a=10-2x,b=6-x,代入ab=24中得:(10-2x)(6-x)=24,整理得:2x2-11x+18=0.解得x=2或x=9(舍去).故答案为2.15. (2021·洛阳偃师期中)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,其中一个根为另一个根的,则称这样的方程为“半根方程”.例如方程x2﹣6x+8=0的根为的x1=2,x2=4,则x1=x2,则称方程x2﹣6x+8=0为“半根方程”.若方程ax2+bx+c=0是“半根方程”,且点P(a,b)是函数y=x图象上的一动点,则的值为 .三、解答题:本大题共8小题,合计75分.第16题8分,第17、18、19、20题每题9分,第21、22题每题10分,第23题11分16. (2020·南阳镇平期中)(1)用配方法解方程;(2)用公式法解方程:.解:(1)移项得:x2-2x=2,配方得:x2-2x+1=2+1,(x-1)2=3,开方得:,,,所以原方程的解为:,;(2)∵a=1,b=2,c=-5,,∴,∴.17. (2020秋•北京期末)已知关于x的方程mx2+nx﹣2=0(m≠0).(1)求证:当n=m﹣2时,方程总有两个实数根;(2)若方程两个相等的实数根都是整数,写出一组满足条件的m,n的值,并求此时方程的根.【分析】(1)根据根的判别式符号进行判断;(2)根据判别式以及一元二次方程的解法即可求出答案.(1)证明:△=(m﹣2)2﹣4m×(﹣2)=m2+4m+4=(m+2)2≥0,∴方程总有两个实数根;(2)由题意可知,m≠0△=n2﹣4m×(﹣2)=n2+8m=0,即:n2=﹣8m.以下答案不唯一,如:当n=4,m=﹣2时,方程为x2﹣2x+1=0.解得x1=x2=1.18. (2020秋•洛阳偃师期中)如图,某居民小区改造,计划在居民小区的一块长50米,宽20米的矩形空地内修建两块相同的矩形绿地,使得两块矩形绿地之间及周边留有宽度相等的人行通道,且两块矩形绿地的面积之和为原矩形空地面积的,求人行通道的宽度是多少米?【分析】设人行通道的宽度是x米,则两块绿地可合成长为(50﹣3x)米、宽为(20﹣2x)米的矩形,根据两块矩形绿地的面积之和为原矩形空地面积的,即可得出关于x的一元二次方程,解方程即可.【解答】解:设人行通道的宽度是x米,则两块绿地可合成长为(50﹣3x)米、宽为(20﹣2x)米的矩形,根据题意得:(50﹣3x)(20﹣2x)=×50×20,整理得:x1=25(舍去),x2=,∴x=.答:人行通道的宽度是米.19. (2020•南阳镇平模拟)在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全同学共通过多少次电话呢?我们可以用下面的方式来解决问题.用点分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x与通电话次数y之间的关系用如图模型表示:(1)填写上图中第四个图中y的值为_______,第五个图中y的值为_______.(2)通过探索发现,通电话次数y与该班级人数x之间的关系式为_____,当时,对应的______.(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生?【答案】(1)10,15;(2),1128;(3)20【分析】(1)观察图形,可以找出第四和第五个图中的y值;(2)根据y值随x值的变化,可找出,再代入可求出当时对应的y值;(3)根据(2)的结论结合九年级1班全体女生相互之间共通话190次,即可得出关于x的一元二次方程,解之取其正值即可得出结论.解:(1)观察图形,可知:第四个图中y的值为10,第五个图中y的值为15.故答案为:10;15.(2)∵,∴,当时,.故答案为:;1128.(3)依题意,得:,化简,得:,解得:(不合题意,舍去).答:该班共有20名女生.20. (2020秋•南阳市三中校级月考)阅读下面材料:若设关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,那么由根与系数的关系得:x1+x2=﹣,x1x2=.∵,∴=a[x2﹣(x1+x2)x+x1x2]=a(x﹣x1)(x﹣x2).于是,二次三项式就可以分解因式ax2+bx+c=a(x﹣x1)(x﹣x2).(1)请用上面的方法将多项式4x2+8x﹣1分解因式.(2)判断二次三项式2x2﹣4x+7在实数范围内是否能利用上面的方法因式分解,并说明理由.(3)如果关于x的二次三项式mx2﹣2(m+1)x+(m+1)(1﹣m)能用上面的方法分解因式,试求出m的取值范围.【分析】(1)令多项式等于0,得到一个一元二次方程,利用公式法求出方程的两解,代入ax2+bx+c=a(x﹣x1)(x﹣x2)中即可把多项式分解因式;(2)令二次三项式等于0,找出其中的a,b及c,计算出b2﹣4ac,发现其值小于0,所以此方程无解,故此二次三项式不能利用上面的方法分解因式;(3)因为此二次三项式在实数范围内能利用上面的方法分解因式,所以令此二次三项式等于0,得到的方程有解,即b2﹣4ac大于等于0,列出关于m的不等式,求出不等式的解集即可得到m的取值范围.解:(1)令4x2+8x﹣1=0,∵a=4,b=8,c=﹣1,b2﹣4ac=64+16=80>0,∴x1=,x2=,则4x2+8x﹣1=4(x﹣)(x﹣);(2)二次三项式2x2﹣4x+7在实数范围内不能利用上面的方法分解因式,理由如下:令2x2﹣4x+7=0,∵b2﹣4ac=(﹣4)2﹣56=﹣40<0,∴此方程无解,则此二次三项式不能用上面的方法分解因式;(3)令mx2﹣2(m+1)x+(m+1)(1﹣m)=0,由此二次三项式能用上面的方法分解因式,即有解,∴b2﹣4ac=4(m+1)2﹣4m(m+1)(1﹣m)≥0,化简得:(m+1)[4(m+1)+4m(m﹣1)]≥0,即4(m+1)(m2+1)≥0,∵m2+1≥1>0,∴m+1≥0,解得m≥﹣1,又m≠0,1﹣m≠0则m≥﹣1且m≠0且m≠1时,此二次三项式能用上面的方法分解因式.21. (2020·南阳镇平期中)如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”,例如,一元二次方程x2+x =0的两个根是x1=0,x2=﹣1,则方程x2+x=0是“邻根方程”;(1)通过计算,判断下列方程是否是“邻根方程”.①x2﹣x﹣12=0;②x2﹣9x+20=0;(2)已知关于x的方程x2+(m﹣1)x﹣m=0(m是常数)是“邻根方程”,求m的值.解:(1)①分解因式得:(x﹣4)(x+3)=0,解得:x=4或x=﹣3,∵4≠﹣3+1,∴x2﹣x﹣12=0不是“邻根方程”;②分解因式得:(x﹣4)(x﹣5)=0,解得:x=4或x=5,∵5=4+1,∴x2﹣9x+20=0是“邻根方程”;(2)分解因式得:(x+m)(x﹣1)=0,解得:x=﹣m或x=1,∵方程程x2+(m﹣1)x﹣m=0(m是常数)是“邻根方程,∴﹣m=1+1或﹣m=1﹣1,∴m=0或﹣2.22. (2020•鹤壁市期末)发现思考:已知等腰三角形ABC的两边分别是方程x2﹣7x+10=0的两个根,求等腰三角形ABC三条边的长各是多少?下边是涵涵同学的作业,老师说他的做法有错误,请你找出错误之处并说明错误原因.涵涵的作业解:x2﹣7x+10=0a=1 b=﹣7 c=10∵b2﹣4ac=9>0∴x==∴x1=5,x2=2所以,当腰为5,底为2时,等腰三角形的三条边为5,5,2.当腰为2,底为5时,等腰三角形的三条边为2,2,5.探究应用:请解答以下问题:已知等腰三角形ABC的两边是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m=2时,求△ABC的周长;(2)当△ABC为等边三角形时,求m的值.解:错误之处:当2为腰,5为底时,等腰三角形的三条边为2、2、5.错误原因:此时不能构成三角形.(1)当m=2时,方程为x2﹣2x+=0,∴x1=,x2=.当为腰时,+<,∴、、不能构成三角形;当为腰时,等腰三角形的三边为、、,此时周长为++=.答:当m=2时,△ABC的周长为.(2)若△ABC为等边三角形,则方程有两个相等的实数根,∴△=(﹣m)2﹣4(﹣)=m2﹣2m+1=0,∴m1=m2=1.答:当△ABC为等边三角形时,m的值为1.23.(2020·内蒙古赤峰·中考真题)阅读理解:材料一:若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实教x,y,z构成“和谐三数组”.材料二:若关于x的一元二次方程ax2+bx +c= 0(a≠0)的两根分别为,,则有,.问题解决:(1)请你写出三个能构成“和谐三数组”的实数;(2)若,是关于x的方程ax2+bx +c= 0 (a,b,c均不为0)的两根,是关于x的方程bx+c=0(b,c均不为0)的解.求证:x1,x2,x3可以构成“和谐三数组”;(3)若A(m,y1) ,B(m + 1,y2) ,C(m+3,y3)三个点均在反比例函数的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m的值.【答案】(1),2,3(答案不唯一);(2)见解析;(3)m=﹣4或﹣2或2.【分析】(1)根据“和谐三数组”的定义可以先写出后2个数,取倒数求和后即可写出第一个数,进而可得答案;(2)根据一元二次方程根与系数的关系求出,然后再求出,只要满足=即可;(3)先求出三点的纵坐标y1,y2,y3,然后由“和谐三数组”可得y1,y2,y3之间的关系,进而可得关于m的方程,解方程即得结果.解:(1)∵,∴,2,3是“和谐三数组”;故答案为:,2,3(答案不唯一);(2)证明:∵,是关于x的方程ax2+bx +c= 0 (a,b,c均不为0)的两根,∴,,∴,∵是关于x的方程bx+c=0(b,c均不为0)的解,∴,∴,∴=,∴x1,x2,x3可以构成“和谐三数组”;(3)∵A(m,y1) ,B(m + 1,y2) ,C(m+3,y3)三个点均在反比例函数的图象上,∴,,,∵三点的纵坐标y1,y2,y3恰好构成“和谐三数组”,∴或或,即或或,解得:m=﹣4或﹣2或2.若关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2019,则一元二次方程a(x﹣1)2+b(x﹣1)=﹣2必有一根为( )A.2017B.2020C.2019D.2018B已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是直角三角形时,求k的值.(1)证明:∵△=[﹣(2k+1)]2﹣4×(k2+k)=1>0,∴方程有两个不相等的实数根.(2)解:∵x2﹣(2k+1)x+k2+k=0,即(x﹣k)[x﹣(k+1)]=0,解得:x1=k,x2=k+1.当BC为直角边时,k2+52=(k+1)2,解得:k=12;当BC为斜边时,k2+(k+1)2=52,解得:k1=3,k2=﹣4(不合题意,舍去).答:k的值为12或3.。
华师版九年级数学上册【第22章 一元二次方程】单元试卷及解析
)
)
A.a≥2 B.a≤2 C.a>2 D.a<2 6.股票每天的涨、跌幅均不能超过 10%,即当涨了原价的 10%后,便不能再涨,叫作涨停; 当跌了原价的 10%后,便不能再跌,叫作跌停.已知一只股票某天跌停,之后两天时间又涨 回到原价.若这两天此股票股价的平均增长率为 x,则 x 满足的方程是( ) 11 A.(1+x)2= 10 10 11 B.(1+x)2= C.1+2x= 9 10 10 D.1+2x= 9
(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;
(3)如果△ABC 是等边三角形,试求这个一元二次方程的根.
24.(7 分)已知 x1,x2 是关于 x 的一元二次方程 x2+(3a-1)x+2a2-1=0 的两个实数根,使 得(3x1-x2)(x1-3x2)=-80 成立,求实数 a 的值.
3
华师版九年级数学上册【第 22 章 一元二次方程】单元试卷及解析
25.(8 分)某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长 25m),另外三边用木栏 围成,木栏长 40m. (1)若养鸡场面积为 200m2,求养鸡场靠墙的一边长.
(2)养鸡场面积能达到 250m2 吗?如果能,请给出设计方案;如果不能,请说明理由.
21.(6 分)某地区 2013 年投入教育经费 2500 万元,2015 年投入教育经费 3025 万元. (1)求 2013 年至 2015 年该地区投入教育经费的年平均增长率;
2
华师版九年级数学上册【第 22 章 一元二次方程】单元试卷及解析
(2)根据(1)所得的年平均增长率,预计 2016 年该地区将投入教育经费多少万元.
22.(8 分)已知关于 x 的一元二次方程(x-3)(x-2)=|m|. (1)求证:对于任意实数 m,方程总有两个不相等的实数根;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末专题复习:华师大版九年级数学上册第22章一元二次方程单元评估检测试卷一、单选题(共10题;共30分)1.方程的解是()A. B. C. , D. ,2.已知x=1是方程x2+bx﹣2=0的一个根,则方程的另一个根是()A. 1B. 2C. ﹣2D. ﹣13.某超市1月份的营业额是0.2亿元,第一季度的营业额共1亿元.如果平均每月增长率为x,则由题意列方程应为().A. 0.2(1+x)2=1B. 0.2+0.2×2x=1C. 0.2+0.2×3x=1D. 0.2×[1+(1+x)+(1+x)2]=14.华为手机营销按批量投入市场,第一次投放20000台,第三次投放80000台,每次按相同的增长率投放,设增长率为x,则可列方程()A. 20000(1+x)2=80000B. 20000(1+x)+20000(1+x)2=80000C. 20000(1+x2)=80000D. 20000+20000(1+x)+20000(1+x)2=800005.已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n=()A. 6B. 7C. 8D. 96.在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是()A. (80+2x)(50+2x)=5400B. (80-x)(50-x)=5400C. (80+x)(50+x)=5400D. (80-2x)(50-2x)=54007.方程3x2-x=2的两根之和与两根之积分别是()A. 1和2B. -1和-2C. 和D. 和8.十年后,2003班学生聚会,见面时相互间均握了一次手,好事者统计:一共握了780次.你认为这次聚会的同学有()人。
A. 38B. 39C. 40D. 419.已知m,n是一元二次方程x2-4x-3=0的两个实数根,则为().A. -1B. -3C. -5D. -710.已知,则m2+n2的值为()A. -4或2B. -2或4C. -4D. 2二、填空题(共10题;共30分)11.一元二次方程2x2﹣3x+1=0的解为________.12.有三个连续的自然数,已知其中最大的一个数比另外两个数的积还大1,那么这个最大的数是________.13.已知x=1是关于x的一元二次方程2x2+kx-1=0的一个根,则实数k值是________。
14.生物兴趣小组的同学,将自己收集的标本向其他同学各赠送1件,全组共互赠了182件,如果全组有x 名同学,则方程为________(不解方程)15.一元二次方程x2+mx+2m=0的两个实根分别为x1,x2,若x1+x2=1,则x1x2=________ .12 16.若关于 的一元二次方程 有两个实数根,那么 的取值范围是________. 17.已知关于x 的一元二次方程 有实数根,若k 为非负整数,则k 等于________. 18.若一元二次方程ax 2-bx-2015=0有一根为x=-1,则a+b=________.19.若关于x 的一元二次方程kx 2+4x ﹣2=0有两个不相等的实数根,则k 的取值范围是________. 20.一次棋赛,有n 个女选手和9n 个男选手,每位参赛者与其 个选手各对局一次,计分方式为:胜者的2分,负者得0分,平局各自得1分。
比赛结束后统计发现所有参赛男选手的分数和是所有女选手的分数和的4倍,则n 的所有可能值是________.三、解答题(共8题;共60分)21.解下列一元二次方程(1)5x ﹣2=(2﹣5x )(3x+4)(2)4(x+3)2=25(x ﹣2)222.已知关于x 的一元二次方程mx 2﹣(m+1)x+1=0.(1)求证:此方程总有两个实数根;(2)若m 为整数,当此方程的两个实数根都是整数时,求m 的值.23.如图,利用一面墙(墙的长度不限),另三边用20m 长的篱笆围成一个积为50m 2的矩形场地,求矩形的长和宽各是多少.24.我市一家电子计算器专卖店每只进价13元,售价20元,为了扩大销售,该店现规定,凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的全部20只计算器都按照每只19元计算,但是最低价为每只16元。
问一次卖多少只获得的利润为120元?25.已知一水池的容积V (公升)与注入水的时间t (分钟)之间开始是一次函数关系,表中记录的是这段时间注入水的时间与水池容积部分对应值.(2)从t 为25分钟开始,每分钟注入的水量发生变化了,到t 为27分钟时,水池的容积为726公升,如果这两分钟中的每分钟注入的水量增长的百分率相同,求这个百分率.26.黄岩某校搬迁后,需要增加教师和学生的寝室数量,寝室有三类,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍.(1)若2018年学校寝室数为64个,以后逐年增加,预计2020年寝室数达到121个,求2018至2020年寝室数量的年平均增长率;(2)若三类不同的寝室的总数为121个,则最多可供多少师生住宿?27.(2017•滨州)根据要求,解答下列问题:(1)解答下列问题①方程x2﹣2x+1=0的解为________;②方程x2﹣3x+2=0的解为________;③方程x2﹣4x+3=0的解为________;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为________;②关于x的方程________的解为x1=1,x2=n.(3)请用配方法解方程x2﹣9x+8=0,以验证猜想结论的正确性.28.某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高1元,其每天的销售量就减少20件.(1)当售价定为12元时,每天可售出________件;(2)要使每天利润达到640元,则每件售价应定为多少元?3答案解析部分一、单选题1.【答案】D2.【答案】C3.【答案】D4.【答案】A5.【答案】C6.【答案】D7.【答案】D8.【答案】C9.【答案】D10.【答案】D二、填空题11.【答案】x1= ,x2=112.【答案】313.【答案】-114.【答案】x(x﹣1)=18215.【答案】﹣216.【答案】且17.【答案】118.【答案】201519.【答案】k>﹣2且k≠020.【答案】1三、解答题21.【答案】(1)解:原式=(2﹣5x)+(2﹣5x)(3x+4)=0∴(2﹣5x)(1+3x+4)=0解得:x1= x2=﹣(2)解:4(x+3)2﹣25(x﹣2)2=0,[2(x+3)+5(x﹣2)][2(x+3)﹣5(x﹣2)]=0,∴(2x﹣1)(x﹣1)=0∴x= 或x=122.【答案】(1)证明:△=[﹣(m+1)]2﹣4m=(m﹣1)2.∵(m﹣1)2≥0,∴△≥0.∴该方程总有两个实数根;(2)解:x=.∴x1=1,x2=.当m为整数1或﹣1时,x2为整数,即该方程的两个实数根都是整数,∴m的值为1或﹣1.23.【答案】解:设矩形与墙平行的一边长为xm,则另一边长为(20﹣x)m.4根据题意,得(20﹣x)x=50,解方程,得x=10.当x=10时,(20﹣x)=5.答:矩形的长为10m,宽为5m.24.【答案】解:设一次卖x只,所获得的利润为120元,根据题意得:x[20-13-0.1(x-10)]=120解之得:x=20或x=60(舍去)。
(因为最多降价到16元,所以60舍去。
)答:一次卖20只时利润可达到120元。
25.【答案】解:(1)设V关于t的函数关系式为V=kt+b,由题意,得,解得:.则这段时间时V关于t的函数关系式是V=20t+100;(2)设这个百分率为x,根据题意得:600(1+x)2=726,解得:x1=0.1=10%,x2=﹣2.1(舍去).答:这个百分率为10%.26.【答案】(1)解:设2018至2020年寝室数量的年平均增长率为x,根据题意得:64(1+x)2=121,解得:x1=0.375=37.5%,x2=﹣2.375(不合题意,舍去).答:2018至2020年寝室数量的年平均增长率为37.5%。
(2)解:设双人间有y间,可容纳人数为w人,则四人间有5y间,单人间有(121﹣6y)间,∵单人间的数量在20至30之间(包括20和30),∴,解得:15 ≤y≤16 .根据题意得:w=2y+20y+121﹣6y=16y+121,∴当y=16时,16y+121取得最大值为377.答:该校的寝室建成后最多可供377名师生住宿。
27.【答案】(1)x1=x2=1;x1=1,x2=2;x1=1,x2=3(2)1、8;x2﹣(1+n)x+n=0(3)x²-9x=-8 x²-9x+ =-8+(x- )²=x- =所以所以猜想正确。
28.【答案】(1)160(2)解:设每件售价定为元,由题意,得,5解得,.答:要使每天利润达到640元,则每件售价应定为16或12元. 6。