勾股定理练习题及答案(终审稿)
勾股定理练习题(含答案)

勾股定理测试题一、选择(30分)1. 下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt△ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt△ABC 的三边, 90=∠C ,则a 2+b 2=c 2. 2. 在下列四组线段中,能组成直角三角形的是( )A 、a=32 b=42 c=52B 、C 、a=9 b=40 c=41D 、a:b:c=1:1:2 3如图,正方形A 的面积是( )A :3600 B :1640 C :400 D :60 4. 已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形 5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定 6. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 33 7. 在Rt △ABC 中,∠B =90°,BC =15,AC =17,以AB 为直径作半圆,则此半圆的面积为( )A .16πB .12πC 10πD .8π 8、在平面直角坐标系中,已知点P 的坐标是(9,12),则OP 的长为( )A :3 B :4 C :5 D :15 9.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( )A .17 B.3 C.17或3 D.以上都不对 10.已知a 、b 、c 是三角形的三边长,如果满足2(6)100a c --=则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形 二.填空(27分)11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 .12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__. 13. 一个直角三角形的三边长的平方和为200,则斜边长为 14.一个三角形三边之比是6:8:10,则按角分类它是 三角形. 15. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___.16. 在Rt △ABC 中,斜边AB=5,则AB 2+BC 2+AC 2=_____. 17.在△ABC 中,AB=12cm , BC=16cm , AC=20cm , 则△ABC 的面积是_____. 18.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC 为直径作半圆,则这个半圆的面积是 .19如图:有一圆柱,它的高等于cm 8,底面直径等于cm4(3=π)在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面与A 相对的B 点处的食物,需要爬行的最短路程大约( )A 、10cmB 、12cmC 、19mD 、20cm三、综合发展:1.(8分)如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米?(先画出示意图,然后再求解)。
(完整版)勾股定理经典例题(含答案)

经典例题透析类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。
解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b=(2) 在△ABC中,∠C=90°,a=40,b=9,c=(3) 在△ABC中,∠C=90°,c=25,b=15,a=举一反三【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?【答案】∵∠ACD=90°AD=13, CD=12∴AC2 =AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB= 4∴AB的长是4.类型二:勾股定理的构造应用2、如图,已知:在中,,,. 求:BC的长.思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有,,再由勾股定理计算出AD、DC的长,进而求出BC的长.解析:作于D,则因,∴(的两个锐角互余)∴(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半).根据勾股定理,在中,.根据勾股定理,在中,.∴.举一反三【变式1】如图,已知:,,于P. 求证:.解析:连结BM,根据勾股定理,在中,.而在中,则根据勾股定理有.∴又∵(已知),∴.在中,根据勾股定理有,∴.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:四边形ABCD的面积。
分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。
勾股定理练习题(含答案)

勾股定理练习题一、基础达标:1. 下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt△ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt△ABC 的三边, 90=∠C ,则a 2+b 2=c 2.2. 如图:有一圆柱,它的高等于cm 8,底面直径等于cm 4(3=π) 在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面与A 相对的B 点处的食物,需要爬行的最短路程大约( ) A 、10cm B 、12cm C 、D 、20cm3. 如果Rt △的两直角边长分别为k 2-1,2k (k >1),那么它的斜边长是( )A 、2k B 、k+1 C 、k 2-1 D 、k 2+14. 已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121 B .120 C .90 D .不能确定6. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( )A .42B .32C .42 或 32D .37 或 337、一直角三角形的一条直角边长是7cm ,另一条直角边与斜边长的和是49cm ,则斜边的长( ) (8题图)B AA 、18cmB 、20cmC 、24cmD 、25cm8.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( )A .17 B.3 C.17或3 D.以上都不对9.已知a 、b 、c 是三角形的三边长,如果满足2(6)100a c --=则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形10.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 .11. 若直角三角形的两条直角边长分别为3cm 、4cm ,则斜边上的高为( )A 、25cmB 、125cmC 、 5 cmD 、512cm 12. 一个直角三角形的三边长的平方和为200,则斜边长为 13.如图,有一块直角三角形纸片,两直角边AC =6cm ,BC=8cm ,先将直角边AC 沿AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD = . 14. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___.15. 在Rt △ABC 中,斜边AB=4,则AB 2+BC 2+AC 2=_____.16.若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 .17.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC 为直径作半圆,则这个半圆的面积是 .18. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是 .19. 2002年8月在北京召开的国际数学家大会的会标取材于我国古代数学家赵爽的《勾股圆方图》,如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正A B方形,如果大正方形的面积是13,小正方形面积是1,直角三角形的较短直角边为a ,较长直角边为b ,那么(a+b )2的值为( )。
(完整版)勾股定理练习题及答案(共6套)

勾股定理课时练(1)8. 一个部件的形状以下图,已知AC=3cm, AB=4cm,BD=12cm。
求 CD的长 .1. 在直角三角形 ABC 中,斜边 AB=1 ,则 AB 2 BC 2 AC 2的值是()2.如图 18-2- 4 所示 ,有一个形状为直角梯形的部件ABCD ,AD ∥ BC,斜腰 DC 的长为10 cm,∠ D=120°,则该部件另一腰 AB 的长是 ______ cm(结果不取近似值) . 第 8 题图3. 直角三角形两直角边长分别为 5 和 12,则它斜边上的高为 _______.9. 如图,在四边形 ABCD中,∠ A=60°,∠ B=∠ D=90°, BC=2,CD=3,求 AB 的长 .4.一根旗杆于离地面12 m处断裂,如同装有铰链那样倒向地面,旗杆顶落于离旗杆地步16 m,旗杆在断裂以前高多少m ?第 9 题图10. 如图,一个牧童在小河的南4km 的 A 处牧马,而他正位于他的小屋 B 的西 8km 北 7km 处,5. 如图,以以下图,今年的冰雪灾祸中,一棵大树在离地面 3 米处折断,树的顶端落在离树杆底部4 他想把他的马牵到小河畔去饮水,而后回家. 他要达成这件事情所走的最短行程是多少?米处,那么这棵树折断以前的高度是米 .“路”3m4m第 5 题图第 2 题图11 如图,某会展中心在会展时期准备将高5m, 长 13m,宽 2m 的楼道上铺地毯 , 已知地毯平方米 18 6. 飞机在空中水平飞翔, 某一时辰恰巧飞到一个男孩子头顶正上方4000 米处 , 过了 20 秒, 飞机距离元,请你帮助计算一下,铺完这个楼道起码需要多少元钱?这个男孩头顶 5000 米, 求飞机每小时飞翔多少千米 ?13m 5m第 11 题12. 甲、乙两位探险者到荒漠进行探险,没有了水,需要找寻水源.为了不致于走散,他们用两部7. 以下图,无盖玻璃容器,高18 cm,底面周长为 60 cm,在外侧距下底 1 cm的点 C 处有一对话机联系,已知对话机的有效距离为15 千米.清晨 8:00 甲先出发,他以 6 千米 / 时的速度向蜘蛛,与蜘蛛相对的容器的上口外侧距张口 1 cm的 F 处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,东行走, 1 小时后乙出发,他以 5 千米 / 时的速度向北前进,上午10: 00,甲、乙二人相距多远?所走的最短路线的长度 . 还可以保持联系吗?第 7 题图第一课时答案:1.A ,提示:依据勾股定理得BC 2 AC 2 1,所以AB 2BC 2 AC 2 =1+1=2 ;2.4 ,提示:由勾股定理可得斜边的长为 5 m,而 3+4-5=2 m ,所以他们少走了 4 步.3. 60 ,提示:设斜边的高为x ,依据勾股定理求斜边为122 52 169 13 ,再利13用面积法得,15 12 1 13 x, x 60 ;2 2 134.解:依题意, AB=16 m, AC=12 m,在直角三角形 ABC 中 ,由勾股定理 ,BC 2AB 2AC 216 212 220 2,所以 BC=20 m ,20+12=32( m ),故旗杆在断裂以前有32 m高.6. 解: 如图 , 由题意得 ,AC=4000 米 , ∠C=90° ,AB=5000 米 , 由勾股定理得BC=50002400023000(米),3所以飞机飞翔的速度为540 (千米/小时)2036007.解:将曲线沿 AB睁开,以下图,过点 C 作 CE⊥ AB于 E.在R t CEF , CEF90 ,EF=18-1-1=16( cm ),1CE=30(cm) ,2. 60CE 2 EF 2 30 2 16 2 34( ) 由勾股定理,得CF=8.解:在直角三角形ABC中,依据勾股定理,得在直角三角形 CBD中,依据勾股定理,得2 2 2 2CD=BC+BD=25+12 =169,所以 CD=13.9.解:延伸 BC、AD交于点 E. (以下图)∵∠ B=90°,∠ A=60°,∴∠ E=30°又∵ CD=3,∴ CE=6,∴ BE=8,设 AB=x,则 AE=2x,由勾股定理。
勾股定理练习题(含答案)

勾股定理练习题一、基础达标:1. 下列说确的是()A. 若a、b、c是厶ABC的三边,贝U a2+ b2= c2;B. 若a、b、c 是Rt△ ABC的三边,贝U a2+ b2= c2;C. 若a、b、c是Rt△ ABC的三边,.A=90:,贝U a2+ b2= c2;2 2 2D. 若a、b、c 是Rt△ ABC的三边,./c =90 打贝U a + b= c .2. Rt △ ABC的三条边长分别是a、b、c,则下列各式成立的是()A. a b =cB. a b cC. a b :: cD. a2b2二c23.如果Rt△的两直角边长分别为k2—1,2k(k >1),那么它的斜边长是()A 2kB k+1 C、k2— 1 D k2+14. 已知a,b,c ABC三边,且满足(a2—b2)(a 2+b2—c2)= 0,则它的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A. 121 B . 120 C . 90 D.不能确定6. △ ABC中, A吐15, AO 13,高AD= 12,则厶ABC勺周长为()A . 42B . 32C . 42 或32D . 37 或337. ※直角三角形的面积为S,斜边上的中线长为d,则这个三角形周长为()(A、d2 S 2d (B).d2 -S-d(C)2 d2 S 2d (D)2.d2 S d8. 在平面直角坐标系中,已知点P的坐标是(3,4),则OP的长为()A: 3B: 4 C : 5 D : -J9 .若△ ABC中, AB=25cm AC=26cm高AD=24贝9 BC的长为()A. 17B.3C.17 或3D. 以上都不对10.已知a、b、c是三角形的三边长,如果满足(a _6)2+ Jb _8 + c_ 10 — 0则三角形的形状是()A:底与边不相等的等腰三角形 B :等边三角形C:钝角三角形 D :直角三角形11 •斜边的边长为17cm, —条直角边长为8cm的直角三角形的面积是_______ .12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为—.13. 一个直角三角形的三边长的平方和为200,则斜边长为 _________14. 一个三角形三边之比是10:8:6,则按角分类它是_____ 三角形.15. 一个三角形的三边之比为5:12:13,它的周长为60,则它的面积是 ______ .16. 在Rt△ ABC中,斜边AB=4 贝U AB+ B C+ AC= _ .17. 若三角形的三个角的比是1:2:3,最短边长为1cm,最长边长为2cm,则这个三角形三个角度数分别是______ ,另外一边的平方是______ .18. 如图,已知• ABC 中,C=90 , BA=15 , BAC =12,以直角边BC为直径作半圆,则这个半、、、、、、圆的面积是_____ . :19. 一长方形的一边长为3cm,面积为12cm,那C A么它的一条对角线长是 ______ .二、综合发展:1. 如图,一个高4m、宽3m的大门,需要在对角线的顶点间加固一个木条,求木条的长.2、有一个直角三角形纸片,两直角边AC=6cm,BC=8cr现将直角边AC沿/ CAB 的角平分线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?E3. 一个三角形三条边的长分别为15cm,20cm,25cm,这个三角形最长边上的高是多少?4•如图,要修建一个育苗棚,棚高h=3m棚宽a=4m棚的长为12m,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?5.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m 高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?15. “中华人民国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70 km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50 m这辆小汽车超速了吗? ________________________________答案:一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案:D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3. 解析:设另一条直角边为x,则斜边为(x+1 )利用勾股定理可得方程,可以求出x •然后再求它的周长.答案:C.4. 解析:解决本题关键是要画出图形来,作图时应注意高AD是在三角形的部还是在三角形的外部,有两种情况,分别求解•答案:C.2 2 25. 解析:勾股定理得到:17 -8 =15,另一条直角边是15,1 215 8 = 60cm 2所求直角三角形面积为2.答案:60cm .6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案:a'十匕? =C2,C,直角,斜,直角.7. 解析:本题由边长之比是10:8:6可知满足勾股定理,即是直角三角形.答案:直角.8. 解析:由三角形的角和定理知三个角的度数,断定是直角三角形.答案:30、360 、90 ,9. 解析:由勾股定理知道:BC2二AB2-AC2= 152-122= 92,所以以直角边BC =9为直径的半圆面积为10.125 n.答案:10.125 n.10. 解析:长方形面积长X宽,即12长X3,长二4,所以一条对角线长为5. 答案:5cm.二、综合发展11. 解析:木条长的平方=门高长的平方+门宽长的平方. 答案:5m .12解析:因为15220^ 252,所以这三角形是直角三角形,设最长边(斜边)1 1x = 12.答上的高为xcm,由直角三角形面积关系,可得-15 20二丄25 x,二2 2案:12cm13. 解析:透最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出•答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:5X 20=100(卅).14. 解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m也就是两树树梢之间的距离是13m,两再利用时间关系式求解.答案:6.5s .15. 解析:本题和14题相似,可以求出BC的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s,可得速度是20m/s=72km/h> 70km/h.答案:这辆小汽车超速了.。
(完整版)勾股定理专题(附答案,全面、精选)

(6) 如图(1),图中的数字代表正方形的面积,则正方形A 的面积为。
3、运用勾股定理进行计算(重难点)(12)如图,一根旗杆在离地面9米处折断倒下,旗杆顶勾股定理一、探索勾股定理【知识点1】勾股定理定理内容:在RT△中,__________________________ 勾股定理的应用:在RT△中,知两边求第三边,关键在于确定斜边或直角典型题型(7)如图(2),三角形中未知边x与y的长度分别是x= ,y= 。
(8)在RtAABC 中,/ C= 90°,若AC= 6, BO 8,则AB的长为( )A、6B、8C、10(9)在直线l上依次摆放着七个正方形已知斜放置的三个正方形的面积分别是D、12(如图4所示)。
1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S I S2 S3 S4= ------------------------ 。
1、对勾股定理的理解(1)已知直角三角形的两条直角边长分别为a, b,斜边长c,则下列关于a,b,c的关系不成立的是( )A、c2- a2=b2C、a2- c2=b2(2) 在直角三角形中,/ 立的是( )A、BC2- AB2=AC2C、AB2+AC2= BC22、应用勾股定理求边长(3) 已知在直角三角形求AC的长.B、c2- b2=a2D、a2+b2= c2A=90°,则下列各式中不成B、BC2- AC2=AB2D、AC2+BC2= AB2AB=10 cm, BC=8 cm ABC中,(4)在直角△中,若两直角边长为a、b,且满足Va- 6a +9 + |b- 4| = 0,则该直角三角形的斜边长为__________3、利用勾股定理求面积(5)已知以直角△的三边为直径作半圆,其中两个半圆的面积为25兀,16兀,求另一个半圆的面积。
【知识点2】勾股定理的验证推导勾股定理的关键在于找面积相等,由面积之间的等量关系并结合图形利用代数式恒等变形进行推导。
(完整版)勾股定理测试题及参考答案

勾股定理测试题一、选择题(每小题4分,共40分)1.以下列各组数为边长能组成直角三角形的是( )A .567,,B .1084,,C .91517,,D .72425,,2. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长( )(A )4 cm (B )8 cm (C )10 cm(D )12 cm3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A)25(B )14 (C )7 (D )7或254.已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )A 。
直角三角形B.等腰三角形C 。
等腰直角三角形D.等腰三角形或直角三角形5.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)6.如图,一个梯子AB 长2.5米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE 的位置上,测得BD 长为0.5米,则梯子顶端A 下落了( )米EA BCDA .0.5B .1C .1.5D .2DCBA5米3米7.一只蚂蚁沿如图所示折线从A点爬到D点,共爬行了()(图中方格边长为1cm)A.12cm B.10cmC.14cm D.以上答案都不对8.△ABC是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a元计算,那么共需要资金().(A)50a元(B)600a元(C)1200a元(D)1500a元9.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行()米A.8米B.10米C.12米D.14米10.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C/处,B C/交AD于E,AD=8,AB=4,则DE的长为().A.3 B.4 C.5 D.6二、填空题(每小题4分,共16分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.12. 在直角三角形ABC中,斜边AB=2,则222AB AC BC++=______。
(完整版)勾股定理练习题(含答案)

勾股定理练习题1. 下列说法正确的是( )2 2 2 2 2 2A.若a、b、c是△ ABC 的二边,贝U a + b = c;B.若a、b、c 是Rt△ ABC的二边,贝U a + b = c;C. 若a、b、c是Rt△ ABC的三边,/A=90。
,贝U a2+ b2= c2;D. 若a、b、c 是Rt A ABC 的三边,N C=90。
,贝U a2+ b2= c2.2. Rt △ ABC的三条边长分别是a、b、c,贝U下列各式成立的是( )A. a b = cB. a b cC. a b :cD. a2 b2 = c23. 如果Rt△的两直角边长分别为k2- 1, 2k (k >1 ),那么它的斜边长是( )A、2kB、k+1C、k2— 1D、k2+12 2 2 2 24. 已知a, b, c ABC二边,且满足(a - b )(a +b - c) = 0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A. 121 B . 120 C . 90 D.不能确定6. △ ABC中,AE 15, AO 13,高At> 12,则^ ABC的周长为( )A . 42B . 32C . 42 或32D . 37 或337. ※直角三角形的面积为S,斜边上的中线长为d,则这个三角形周长为( )(A) J d2十S +2d (B) \l d2-S-d(C) 2jd2+ S +2d (D) 2】d2十S + d8. 在平面直角坐标系中,已知点P的坐标是(3,4),则OP的长为( ) A: 3 B : 4 C : 5 D :方9 .若△ ABC中,AB=25cm AC=26cmW AD=24,则BC的长为( )A. 17B.3C.17 或3D. 以上都不对10.已知a、b、c是三角形的三边长,如果满足(a-6)2+ J b-8+ c-10 | =0则三角形的形状是 ( )A:底与边不相等的等腰三角形 B :等边三角形 C :钝角三角形 D :直角三角形11 .斜边的边长为17cm, 一条直角边长为8cm的直角三角形的面积是 .12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为—.13. 一个直角三角形的三边长的平方和为200,则斜边长为14. 一个三角形三边之比是10:8: 6,则按角分类它是三角形.15. 一个三角形的三边之比为5: 12: 13,它的周长为60,则它的面积是.16. 在Rt △ ABC中,斜边AB=4,则AB2 + B C + AC2=. B17. 如图,已知MBC 中,2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理练习题及答案文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-
一、选择题
1、在Rt△ABC中,∠C=90°,三边长分别为a、b、c,则下列结论中恒成立的是() A、2ab<c2B、2ab≥c2C、2ab>c2D、2ab≤c2
2、已知x、y为正数,且│x2-4│+(y2-3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()
A、5
B、25
C、7
D、15
3、直角三角形的一直角边长为12,另外两边之长为自然数,则满足要求的直角三角形共有()A、4个B、5个C、6个
D、8个
4、下列命题①如果a、b、c为一组勾股数,那么4a、4b、4c仍是勾股数;②如果直角三角形的两边是3、4,那么斜边必是5;③如果一个三角形的三边是
12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是
a、b、c,(a>b=c),那么a2∶b2∶c2=2∶1∶1。
其中正确的是()
A、①②
B、①③
C、①④
D、②④
5、若△ABC的三边a、b、c满足a2+b2+c2+338=10a+24b+26c,则此△为()
A、锐角三角形
B、钝角三角形
C、直角三角形
D、不能确定
6、已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为()
A 、40
B 、80
C 、40或360
D 、80或
360 7、如图,在Rt △ABC 中,∠C=90°,D 为AC 上一点,且DA=DB=5,又△DAB 的面积为10,那么DC 的长是()
A 、4
B 、3
C 、5
D 、4.5 8、如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。
现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与A
E 重合,则CD 等于() A 、2㎝ B 、3㎝ C 、4㎝
D 、5㎝ 9.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是_____________。
10.在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是
________m 。
二.解答题
1.如图,某沿海开放城市A 接到台风警报,在该市正南方向260km 的B 处有一台风中心,沿BC 方向以15km/h 的速度向D 移动,已知城市A 到BC 的距离
AD=100km ,那么台风中心经过多长时间从B 点移到D 点如果在距台风中心30km 的圆形区域内都将有受到台风的破坏的危险,正在D 点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险
A B D C 第7A C D B E 第8题A
B C D
第1题
A D
B C
B ′ A ′
C ′
D ′ 第9题图
2、数组
3、
4、5;
5、12、13;7、24、25;9、40、41;……都是勾股数,若奇数n 为直角三角形的一直角边,用含n 的代数式表示斜边和另一直角边。
并写出接下来的两组勾股数。
3、一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米(3)当梯子的顶端下滑的距离与梯子的底端水平滑动的距离相等时,这时梯子的顶端距地面有多高 4.如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,
BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水
管的费用最节省,并求出总费用是多少?
答案:
1-5DCACC6-8CBB
9、1010、1.5
A
A ′
B A ′ O A B
C D
L 第4题图。