统计学案例——相关回归分析
统计学案例分析

统计学案例分析(总3页)
--本页仅作为文档封面,使用时请直接删除即可--
--内页可以根据需求调整合适字体及大小--
统计学期末考试
y=a+bx
关于江西省GDP与全国GDP的数据分析
一:相关于回归分析
由上图可知:y=
相关系数:R=5836
所以江西省GDP与全国GDP确实存在着线性相关关系
二:时间趋势分析
对比上列数据图表可知:江西省GDP增速在2005年低于全国平均水平,随后逐渐赶超,至2008-
2009年时增速差距最明显,至2014-2015年,江西省GDP增
速又遇到阻碍,低于全国均值
y=a+bx b=
a=y=
故y=+
三:图表分析
对比上列数据图表可知:江西省GDP增速在2005年低于全国平均水平,随后逐渐赶超,至2008-2009年时增速差距最明显,至2014-2015年,江西省GDP增速又遇到阻碍,低于全国均值。
【精品】统计学题目第七章相关与回归分析

1、填空题现象之间的相关关系按相关的程度分有________相关、________相关和_______相关;按相关的方向分有________相关和________相关;按相关的形式分有________相关和________相关;按影响因素的多少分有________相关和________相关。
2、对现象之间变量关系的研究中,对于变量之间相互关系密切程度的研究,称为_______;研究变量之间关系的方程式,根据给定的变量数值以推断另一变量的可能值,则称为_______。
3、完全相关即是________关系,其相关系数为________。
4、在相关分析中,要求两个变量都是_______;在回归分析中,要求自变量是_______,因变量是_______。
5、person相关系数是在________相关条件下用来说明两个变量相关________的统计分析指标。
6、相关系数的变动范围介于_______与_______之间,其绝对值愈接近于_______,两个变量之间线性相关程度愈高;愈接近于_______,两个变量之间线性相关程度愈低.当_______时表示两变量正相关;_______时表示两变量负相关.7、 当变量x 值增加,变量y 值也增加,这是________相关关系;当变量x值减少,变量y 值也减少,这是________相关关系。
8、 在判断现象之间的相关关系紧密程度时,主要用_______进行一般性判断,用_______进行数量上的说明。
9、 在回归分析中,两变量不是对等的关系,其中因变量是_______变量,自变量是_______量。
10、 已知13600))((=----∑y y x x ,14400)(2=--∑x x ,14900)(2=-∑-y y ,那么,x 和y 的相关系数r 是_______。
11、 用来说明回归方程代表性大小的统计分析指标是________指标。
12、 已知1502=xy σ,18=xσ,11=y σ,那么变量x 和y 的相关系数r 是_______.13、 回归方程bx a y c +=中的参数b 是________,估计特定参数常用的方法是_________.14、 若商品销售额和零售价格的相关系数为-0。
统计学原理 相关与回归分析

粮食产量y 随机的
降雨量
土质
种子 耕作技术
X3
X4 X5
可 控 的
(二)相关的种类
完全相关 函数关系是相关关系的一种特例。 不完全相关 相关分析的基本内容
度相 关 密 切 程
y 完全由x的数值唯一确定,函数关系。
不相关
相 关 的 性 质
x、y值变化各自独立,变量间没有相关
关系
正相关 x 负相关
y
x
x2 26896 28900 31329 24336 25600 27556
y2
62540 73695 420857
70225 83521 463382
55696 65025 382469
合计
2114
从表上可以看出,随着个人收入的增加,消 费支出有明显的增长趋势,二者存在一定的依存 关系。正相关关系。 2、相关图(散点图) 直角坐标系第一象限
1、相关表
单变量分组相关表
分组相关表
双变量分组相关表
先做定性分析——相关资料排序——列在一张表上
个人收入x 164 170 177 182 192 207 225 243 265 289
消费支出y 156 160 166 170 178 188 202 218 236 255 1929
xy 25584 27200 29382
yc = 25.32 + 0.7927 300 = 263.13万元
(三)估计标准误差Syx P197
Syx = Syx =
=
(y - yc) 2 n-2 y2 - a y -b xy n-2
382469 -25.32 1929 -0.7927 420857
10 - 2
统计学 相关与回归分析.

2019年4月30日/上午2时57分
《统计学教程》
第9章 相关与回归分析
9.2 一元线性回归
《统计学教程》
第9章 相关与回归分析
9.2 一元线性回归
9.2.1一元线性回归模型
1.理论模型
从回归模型的一般形式,式(9.2)出发,一元线性回归模型可以表
述为
9.2.3 一元线性回归方程的拟合优度
9.2.4 一元线性回归方程的显著性检验
9.2.5 运用一元线性回归方程进行估计
9.3 多元线性回归
9.3.1 多元线性回归模型
9.3.2 多元线性回归方程的最小二乘估计
9.3.3 多元线性回归方程的拟合优度
2019年4月30日/上午2时57分
《统计学教程》
第9章 相关与回归分析
借助散点图还可以概略地区分和识别变量之间的非线性相关的具体类 型,为回归分析确定回归方程的具体形式提供依据,这也是散点图的重 要功能。例如,通过散点图展示的图形特征,初步地分辨出相关关系是 直线,还是二次曲线、三次曲线、指数曲线、对数曲线、S曲线等。所 以,散点图不仅是相关分析,也是回归分析中经常使用的最简便的基本 分析工具。
相关系数的正负取值取决于Lxy的正负。
并且,当相关系数的绝对值越是趋近于1,表明变量和变量的相关程 度越高,称之为强相关;反之,当相关系数的绝对值越是趋近于0,表 明变量和变量的相关程度越低,称之为弱相关。
2019年4月30日/上午2时57分
《统计学教程》
第9章 相关与回归分析
9.1 相关关系
例9.2 根据例9.1的表9.1中的数据。 表9.1某证券市场价格指数与A证券价格
1800
回归分析中的案例分析解读(十)

回归分析是统计学中一种重要的分析方法,用于探究自变量和因变量之间的关系。
在实际应用中,回归分析常常用于预测、解释和控制变量。
本文将通过几个实际案例,对回归分析进行深入解读和分析。
案例一:销售数据分析某电商平台想要分析不同广告投放对销售额的影响,他们收集了一段时间内的广告投放数据和销售额数据。
为了进行分析,他们利用回归分析建立了一个模型,以广告费用作为自变量,销售额作为因变量。
通过回归分析,他们发现广告费用与销售额之间存在着显著的正相关关系,即广告费用的增加会带动销售额的增加。
通过该分析,电商平台可以更好地制定广告投放策略,优化营销预算,提高销售效益。
案例二:医疗数据分析一家医疗机构收集了一组患者的基本信息、生活习惯以及健康指标等数据,希望通过回归分析来探究生活习惯对健康指标的影响。
他们建立了一个回归模型,以吸烟、饮酒、饮食习惯等自变量,健康指标作为因变量。
通过回归分析,他们发现吸烟和饮酒对健康指标有负向影响,而良好的饮食习惯与健康指标呈正相关关系。
这些发现可以帮助医疗机构更好地进行健康干预和宣教,促进患者的健康改善。
案例三:金融数据分析一家金融机构收集了一段时间内的股票价格、市场指数等数据,希望通过回归分析来探究市场指数对股票价格的影响。
他们建立了一个回归模型,以市场指数作为自变量,股票价格作为因变量。
通过回归分析,他们发现市场指数与股票价格存在着较强的正相关关系,即市场指数的波动会对股票价格产生显著影响。
这些结果可以帮助金融机构更好地进行投资策略的制定和风险控制。
通过以上案例分析,我们可以看到回归分析在不同领域的应用。
回归分析不仅可以帮助人们理解变量之间的关系,还可以用于预测和控制变量。
在实际应用中,我们需要注意回归分析的假设条件、模型选择和结果解释等问题,以确保分析的准确性和可靠性。
在回归分析中,我们需要注意变量选择、模型拟合度和结果解释等问题。
另外,回归分析也有一些局限性,比如无法确定因果关系、对异常值敏感等问题。
统计学 第 七 章 相关与回归分析

(一)回归分析与相关分析的关系
回归分析与相关分析是研究现象 之间相互关系的两种基本方法。
区别:
1、相关分析研究两个变量之间相关的 方向和相关的密切程度。但是相关分析不 能指出两变量相互关系的具体形式,也无 法从一个变量的变化来推测另一个变量的 变化关系。
2、按研究变量多少分为单相关和 复相关
单相关即一元相关,亦称简单相 关,是指一个因变量与一个自变量 之间的依存关系。复相关又称多元 相关,是指一个因变量与两个或两 个以上自变量之间的复杂依存关系。
3、按相关形式分为线性相关和非 线性相关
从相关图上观察:观察的样本点的 分布近似表现为直线形式,即观察点近 似地分布于一直线的两边,则称此种相 关为直线相关或线性相关。如果这些样 本点近似地表现为一条曲线,则称这种 相关为曲线相关或非线性相关(curved relationship).
不确定性的统计关系 —相关关系
Y= f(X)+ε (ε为随机变量)
在这种关系中,变量之间的关系值 是随机的,当一个(或几个)变量的值 确定以后,另一变量的值虽然与它(们) 有关,但却不能完全确定。然而,它们
之间又遵循一定的统计规律。
相关关系的例子
▪ 商品的消费量(y)与居民收入(x)
之间的关系
▪ 商品销售额(y)与广告费支出(x)
▲相关系数只反映变量间的线性相关程度,不 能说明非线性相关关系。
▲相关系数不能确定变量的因果关系,也不能 说明相关关系具体接近于哪条直线。
例题1: 经验表明:商场利润额与 其销售额之间存在相关关系。下表为 某市12家百货公司的销售额与利润额 统计表,试计算其相关系数。
应用统计学教案相关与回归分析

应用统计学教案相关与回归分析教案章节一:相关性概念教学目标:1. 理解相关性的概念。
2. 掌握相关系数的使用和计算。
教学内容:1. 相关性的定义和类型。
2. 相关系数的概念和计算方法。
3. 相关系数的解读和应用。
教学活动:1. 引入相关性的概念,通过实例讲解相关性的不同类型。
2. 讲解相关系数的定义和计算方法,通过实际数据进行演示。
3. 练习计算相关系数,并解读和应用相关系数的结果。
教学资源:1. 相关性概念的实例和数据。
2. 相关系数计算的软件或工具。
教学评估:1. 学生参与课堂讨论和实例分析的情况。
2. 学生完成相关系数计算和解读练习的情况。
教案章节二:回归分析基础教学目标:1. 理解回归分析的概念和目的。
教学内容:1. 回归分析的概念和目的。
2. 线性回归模型的定义和建立方法。
3. 线性回归模型的应用和解释。
教学活动:1. 引入回归分析的概念和目的,通过实例讲解回归分析的应用。
2. 讲解线性回归模型的定义和建立方法,通过实际数据进行演示。
3. 练习建立线性回归模型,并解释和应用回归模型的结果。
教学资源:1. 回归分析的实例和数据。
2. 线性回归模型计算的软件或工具。
教学评估:1. 学生参与课堂讨论和实例分析的情况。
2. 学生完成线性回归模型建立和解释练习的情况。
教案章节三:回归分析进阶教学目标:1. 理解多元线性回归模型的概念和应用。
2. 掌握多元线性回归模型的建立和解释。
教学内容:1. 多元线性回归模型的概念和应用。
2. 多元线性回归模型的建立方法。
教学活动:1. 引入多元线性回归模型的概念和应用,通过实例讲解多元线性回归模型的应用。
2. 讲解多元线性回归模型的建立方法,通过实际数据进行演示。
3. 练习建立多元线性回归模型,并解释和评估回归模型的结果。
教学资源:1. 多元线性回归模型的实例和数据。
2. 多元线性回归模型计算的软件或工具。
教学评估:1. 学生参与课堂讨论和实例分析的情况。
2. 学生完成多元线性回归模型建立和解释练习的情况。
统计学第7章 相关与回归分析 (2)

20 50 20 30 50 20 50 40 20 80 40 20 50 80 30 单位成本(元/小时) 16 16 18 16 15 18 15 14 16 14 15 16 14 15 15
完成量(小时)
整理后有
20 20 20 20 20 20 20 20 20 30 30 30 30 30 40 单位成本(元/小时) 15 16 16 16 16 18 18 18 18 15 15 15 16 16 14
rXY
样本相关系数
通过X和Y的样本观测值去估计样本相关系 数变量X和Y的样本相关系数通常用 r 表示
r
rXY
( x x )( y y ) (x x) ( y y)
2
2
特点:样本相关系数是根据从总体中抽取的随机样 本的观测值计算出来的,是对总体相关系数 的估计,它是个随机变量。
例:为了研究分析某种劳务产品完成量与其单位 产品成本之间的关系,调查30个同类服务公司得到的 原始数据如表。 相关表:将自变量x的数值按照从小到大的顺序,并 配合因变量y的数值一一对应而平行排列的表。
20 30 20 20 40 30 40 80 80 50 40 30 20 80 50 单位成本(元/小时) 18 16 16 15 16 15 15 14 14 15 15 16 18 14 14
根据相关关系的方向划分
1、正相关。指两个因素(或变量)之间的变化方向 一致,都是呈增长或下降的趋势。即自变量x的值 增加(或减少),因变量y的值也相应地增加(或 减少),这样的关系就是正相关。例如,工业总 产值增加,企业税利总额也随之增加;家庭消费 支出随收入增加而增加等。 2、负相关。指两个因素或变量之间变化方向相反, 即自变量的数值增大(或减小),因变量随之减 小(或增大)。 如劳动生产率提高,产品成本降 低;产品成本降低,企业利润增加等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《统计学》案例——相关回归分析案例一质量控制中的简单线性回归分析1、问题的提出某石油炼厂的催化装置通过高温及催化剂对原料的作用进行反应,生成各种产品,其中液化气用途广泛、易于储存运输,所以,提高液化气收率,降低不凝气体产量,成为提高经济效益的关键问题。
通过因果分析图和排列图的观察,发现回流温度是影响液化气收率的主要原因,因此,只有确定二者之间的相关关系,寻找适当的回流温度,才能达到提高液化气收率的目的。
经认真分析仔细研究,确定了在保持原有轻油收率的前提下,液化气收率比去年同期增长1个百分点的目标,即达到12.24%的液化气收率。
2、数据的收集目标值确定之后,我们收集了某年某季度的回流温度与液化气收率的30组数据(如上表),进行简单直线回归分析。
3.方法的确立设线性回归模型为εββ++=x y 10,估计回归方程为x b b y10ˆ+= 将数据输入计算机,输出散点图可见,液化气收率y 具有随着回流温度x 的提高而降低的趋势。
因此,建立描述y 与x 之间关系的模型时,首选直线型是合理的。
从线性回归的计算结果,可以知道回归系数的最小二乘估计值b 0=21.263和b 1=-0.229,于是最小二乘直线为x y229.0263.21ˆ-= 这就表明,回流温度每增加1℃,估计液化气收率将减少0.229%。
(3)残差分析为了判别简单线性模型的假定是否有效,作出残差图,进行残差分析。
从图中可以看到,残差基本在-0.5—+0.5左右,说明建立回归模型所依赖的假定是恰当的。
误差项的估计值s=0.388。
(4)回归模型检验 a.显著性检验在90%的显著水平下,进行t 检验,拒绝域为︱t ︱=︱b 1/ s b1︱>t α/2=1.7011。
由输出数据可以找到b 1和s b1,t=b 1/ s b1=-0.229/0.022=-10.313,于是拒绝原假设,说明液化气收率与回流温度之间存在线性关系。
b.拟合度检验判定系数r 2=0.792。
这意味着液化气收率的样本变差大约有80%可以由它与回流温度的线性关系来解释。
2r r ==-0.89这样,r 值为y 与x 之间存在中高度的负线性关系提供了进一步的证据。
由于n ≥30,我们近似确定y 的90%置信区间为:s z y)(ˆ2α±=21.263-0.229x ±1.282×0.388 = 21.263-0.229x ± 0.4974、结果分析由回归直线图可知,要保持液化气收率在12.24%以上,回流温度必须控制在34℃以下。
因为装置工艺卡片要求回流温度在33—40℃之间,为确保液化气质量合格,可以将回流温度控制在33—34℃之间。
为此,应当采取各项有效措施,改善外部操作环境,将液化气收率控制在目标值范围内。
案例二:轿车生产与GDP等关系研究中国的轿车生产是否与GDP、城镇居民人均可支配收入、城镇居民家庭恩格尔系数、私人载客汽车拥有量、公路里程等都有密切关系?如果有关系,它们之间是种什么关系?关系强度如何?(数据见《中国统计年鉴》)(1)分析轿车生产量与私人载客汽车拥有量之间的关系:首先,求的因变量轿车生产量y和自变量私人载客汽车拥有量x1的相关系数r=0.992018,说明两者间存在一定的线性相关关系且正相关程度很强。
然后以轿车生产量为因变量y,私人载客汽车拥有量x1为自变量进行一元线性回归分析,结果如下:①由回归统计中的R=0.984101看出,所建立的回归模型对样本观测值的拟合程度很好;②估计出的样本回归函数为:ŷ=1.775687+0.206783x1,说明私人载客汽车拥有量每增加1万辆,轿车生产量增加2067.83辆;③由上表中â和βˆ的p值分别是0.709481543和6.60805E-15,显然â的p值大于显著性水平α=0.05,不能拒绝原假设α=0,而βˆ的p值远小于显著性水平α=0.05,拒绝原假设β=0,说明私人载客汽车拥有量对轿车生产量有显著影响。
(2)分析轿车生产量与城镇居民家庭恩格尔系数之间的关系:首先,求的因变量轿车生产量y和自变量城镇居民家庭恩格尔系数x2的相关系数r=-0.77499,说明两者间存在一定的线性相关关系但负相关程度一般。
然后以轿车生产量为因变量y,城镇居民家庭恩格尔系数x2为自变量进行一元线性回归分析,结果如下:由回归统计中的R=0.600608看出,所建立的回归模型对样本观测值的拟合程度一般,综合其相关系数值可知此二者关系不太符合所建立的线性模型,说明二者间没有密切的线性相关关系。
(3)分析轿车生产量与公路里程之间的关系:首先,求的因变量轿车生产量y和自变量公路里程x3的相关系数r=0.941214,说明两者间存在一定的线性相关关系且正相关程度较强。
然后以轿车生产量为因变量y,公路里程x3为自变量进行一元线性回归分析,结果如下:①由回归统计中的R=0.885883看出,所建立的回归模型对样本观测值的拟合程度较好;②估计出的样本回归函数为:ŷ=-125.156+1.403022x3,说明公路里程每增加1万公里,轿车生产量增加1.403022万辆;③由上表中â和βˆ的p值分别是5.64E-05和1.82E-08,显然â和βˆ的p 值均远小于显著性水平α=0.05,拒绝原假设α=0、β=0,但由于β对两者的影响更为显著,所以可以说明公路里程对轿车生产量有显著影响。
(4)分析轿车生产量与GDP之间的关系:首先,求的因变量轿车生产量y和自变量GDP x4的相关系数r=0.939995,说明两者间存在一定的线性相关关系且正相关程度较强。
然后以轿车生产量为因变量y,GDP x4为自变量进行一元线性回归分析,结果如下:①由回归统计中的R=0.88359看出,所建立的回归模型对样本观测值的拟合程度较好;②估计出的样本回归函数为:ŷ=-70.7127+0.001829x4,说明GDP每增加1亿元,轿车生产量增加18.29辆;③由上表中â和βˆ的p值分别是0.001534和2.11E-08,显然â和βˆ的p 值均小于显著性水平α=0.05,拒绝原假设α=0、β=0,但由于β对两者的影响更为显著,所以可以说明GDP对轿车生产量有较显著影响。
(5)分析轿车生产量与城镇居民人均可支配收入x5之间的关系:首先,求的因变量轿车生产量y和自变量城镇居民人均可支配收入x5的相关系数r=0.917695,说明两者间存在一定的线性相关关系且正相关程度较强。
然后以轿车生产量为因变量y,城镇居民人均可支配收入x5为自变量进行一元线性回归分析,结果如下:①由回归统计中的R=0.842164看出,所建立的回归模型对样本观测值的拟合程度较好;②估计出的样本回归函数为:ŷ=-92.9054+0.032928x5,说明城镇居民人均可支配收入每增加1元,轿车生产量增加329.28辆;③由上表中â和βˆ的p值分别是0.001444和2.12E-07,显然â和βˆ的p 值均小于显著性水平α=0.05,拒绝原假设α=0、β=0,但由于β对两者的影响更为显著,所以可以说明城镇居民人均可支配收入对轿车生产量有显著影响。
案例三:子女身高与父母身高的回归分析1、问题的提出早在19世纪后期,英国生物学家Galton通过观察1078个家庭中父亲、母亲身高的平均值x和其中一个成年儿子身高y,建立了关于父母身高与子女身高的线性方程:y=33.73+0.516x从方程可以看出,子女身高有回归平均的倾向。
那么,时隔一百多年后的今天,人类的物质生活和精神生活都已发生巨大的变化,父母身高与子女身高之间将呈现出什么样的关系呢?在现实生活中,我们都知道父母身高对子女身高是有影响的,但父亲与母亲的影响分别有多大?他们对儿子和女儿的影响程度是否相同?能否用定量的形式回答这个问题呢?如果可以利用回归方法,进一步揭示父亲身高、母亲身高与子女身高之间量化关系的秘密,将有助于那些关注自己后代身高的年轻父母们进行早期预测,同时也可为那些未婚青年男女在选择理想配偶时提供科学的参考依据。
2、数据的收集为了问题的研究,我们要求所调查的家庭满足下列条件:(1)家庭中有一个或多个子女(2)家庭成员身体健康,发育正常,无先天性和遗传性疾病,无残疾(3)子女的年龄均在23岁(含23岁)以上。
考虑到调查范围的广泛性,我们随机抽取了机关干部、职员、工人、农民、城市居民、军人、大学生家庭,并特意选择了一所全国招生的院校应届毕业生,他们来自于全国各地,家庭背景相对复杂,这样使得样本更具代表性。
在收回的410份(发放460份)调查表中,符合要求的有290个家庭,其中,有儿子405人,有女儿270人。
3、方法的确定根据所收集的数据,应用二元回归分析方法,研究父亲身高、母亲身高与儿子或女儿身高的关系。
(1)建立回归方程设X1为父亲身高,X2为母亲身高,Y为儿子或女儿身高。
则父母身高与子女身高的回归模型为:Y=β0+β1X1+β2X2+ε根据样本数据建立估计二元回归方程:yˆ=b0+b1x1+b2x2(2)显著性检验对回归方程进行F检验,拒绝区域为F﹥Fα(2,n-3);对回归系数进行t 检验,拒绝区域为t﹥tα/2(n-3)。
(3)预测若某一家庭父亲和母亲身高分别为x10和x20,则子女身高的点估计为:yˆ=b0+b1x10+b2x20区间估计方法已超出大纲要求,在此不要求。
4、结果分析(1)父母身高对儿子身高的影响yˆ=53.640+0.368x1+0.349x2显著性检验:在α=0.01的显著水平下,F=62.714﹥Fα(2,400)=4.68t1=7.85﹥tα/2(400)=2.689t2=6.71﹥tα/2(400)=2.689结果说明回归方程显著,两个偏回归系数显著。
因此,所建立回归方程是有意义的,即父母身高与儿子身高有显著的线性关系。
(2)父母身高对女儿身高的影响yˆ=47.140+0.249x1+0.455x2显著性检验:在α=0.01的显著水平下,F=46.81﹥Fα(2,300)=4.68t1=4.92﹥tα/2(300)=2.68t2=7.61﹥tα/2(300)=2.689结果说明回归方程显著,回归系数显著,故所建立回归方程有效,即女儿身高与父母身高有显著的线性关系,特别是母亲身高对女儿身高的影响更为重要。
(3)从以上结果可以看出,在某种程度上,父母身高对子女身高有重要影响,且在不同时期,子女身高有回归平均身高的趋势,即个子矮的父母,其子女身高未必低于自己,个子高的父母,其子女身高未必高于自己。
下表给出了部分家庭子女身高的预测值,其中,区间估计的把握程度为95%。