XPS技术及其在材料微方面中的应用讲解

合集下载

xps的原理与应用

xps的原理与应用

XPS的原理与应用1. 什么是XPS?X射线光电子能谱(X-ray Photoelectron Spectroscopy,XPS)是一种表面分析技术,用于研究材料的化学成分和电子状态。

它是通过照射材料表面的X射线,测量材料表面电子的能量分布来获取信息的。

XPS不仅可以得到材料的元素组成,还可以了解元素的氧化态、表面化学键的环境等信息。

2. XPS的工作原理XPS是基于光电效应的原理工作的。

当X射线照射到材料表面时,X射线与材料中的原子发生相互作用,其中一部分X射线被吸收,其中一部分被散射。

被吸收的X射线能量大约为束缚能与X射线能量之差。

被吸收的X射线能量足以使得材料中的原子电子跃迁到一个能量较高的态。

这些电子以一定的能量和角度从材料表面逸出,并被称为光电子。

这些逸出的光电子的能量将与原子或分子的电子能级有关,从而可以得出材料的化学成分和表面状态。

3. XPS的仪器和组成部分XPS仪器由以下主要部分组成: - X射线源:提供光源,可以是一台X射线管或是一台恒温恒流的X射线源。

- 分析仪器:用于分析逸出的光电子的能量和角度分布。

- 探测器:用于接收并测量逸出的光电子,常用的探测器有多道探测器和球面能量分析器(Hemispherical Energy Analyzer)。

- 数据采集和处理系统:用于采集并分析探测器接收到的光电子信号。

4. XPS的应用领域4.1 表面化学组成分析XPS的主要应用是对材料的表面化学成分进行分析。

通过测量光电子的能量分布,可以判断样品中的元素种类和数量,甚至可以确定元素的氧化态。

4.2 元素深度分析通过控制X射线的能量,可以实现不同深度的元素分析。

这种能量调谐的XPS称为角分辨X射线光电子能谱(Angle Resolved XPS,ARXPS)。

通过ARXPS技术,可以研究材料的表面成分和深层成分的分布情况。

4.3 表面化学键分析XPS还可以提供材料表面化学键的信息。

xps的原理及应用

xps的原理及应用

XPS的原理及应用1. XPS的概述X射线光电子能谱(X-ray Photoelectron Spectroscopy,XPS)是一种常用的表征材料表面和界面化学组成的表面分析技术。

它基于X射线和光电效应,通过测量样品表面的光电子能谱来分析元素的种类、化学状态和表面含量。

2. XPS的原理XPS技术的原理是通过X射线照射样品表面,使得样品表面的原子发生光电效应产生光电子。

根据光电子的能量分布和强度,可以确定样品表面的化学元素的种类和含量,以及其化学态。

XPS的原理主要包括以下几个方面:2.1 X射线的作用通过使用X射线可激发样品表面的原子产生光电效应。

X射线的能量在几百电子伏特到几千电子伏特之间,具有良好的穿透性。

X射线在样品表面与原子和电子相互作用,并将电子从样品中抽取出来,形成光电子。

2.2 光电子的能量测量测量光电子的能量分布以及强度,可以确定元素的种类、含量和化学状态。

光电子的能量与其从样品中脱离所需的能量差有关。

根据能量的分布和峰形,可以得到样品表面的元素种类和含量,以及其他化学信息。

2.3 分辨能量的测量XPS技术具有较高的分辨能力,可以测量不同元素之间的能级差异。

通过测量不同元素的光电子能谱,可以确定元素的化学状态,如氧化态、还原态等。

3. XPS的应用XPS技术在材料科学、化学、物理学等领域有广泛的应用。

以下是XPS技术的一些主要应用:3.1 表面化学分析XPS技术可以用于对材料表面的化学组成进行分析。

通过测量光电子能谱,可以确定材料表面的元素种类和化学状态,以及各元素的含量。

这对于研究材料的性质、表面改性和表面反应具有重要意义。

3.2 薄膜分析XPS技术可以用于薄膜的分析。

通过测量光电子能谱,可以确定薄膜的元素组成、界面结构和化学状态。

这对于研究薄膜的制备和性能具有重要意义。

3.3 腐蚀和氧化研究XPS技术可以用于腐蚀和氧化的研究。

通过测量光电子能谱,可以确定材料表面的化学状态和含量的变化,以及腐蚀和氧化过程中的反应机制。

关于XPS的原理和应用

关于XPS的原理和应用

关于XPS的原理和应用1. 前言X射线光电子能谱(X-Ray Photoelectron Spectroscopy,简称XPS)是一种广泛应用于材料科学、表面物理和化学研究的表征手段。

本文将介绍XPS的基本原理和其在各个领域中的应用。

2. 基本原理XPS基于光电效应原理,利用固体表面的吸收或发射光子的能量差来研究固体表面的化学组成和元素态。

下面是XPS的基本原理:•X射线入射:在实验中,X射线入射到样品表面,与样品中的原子或分子发生相互作用。

•光电子发射:当入射X射线的能量超过样品中原子的束缚能时,会产生光电子的发射。

•能量分析:发射的光电子经过分析器进行能量分析,得到光电子能谱。

•特征能量:通过分析光电子能谱中的特征能量和峰形,可以得到样品的化学组成、表面电荷状态等信息。

3. 应用领域XPS具有高灵敏度和高分辨率的优势,在各个领域中得到了广泛应用。

以下是几个常见的应用领域:3.1. 表面化学分析XPS可以通过分析样品表面的化学组成和化学状态,提供有关表面反应性和化学性质的信息。

在材料科学、催化剂研究和纳米技术等领域中,XPS被广泛用于表面化学分析。

3.2. 材料研究XPS在材料科学中起着至关重要的角色。

通过分析材料的表面元素组成、改变和反应,可以研究材料的结构、性质和性能。

在材料表面改性、材料界面研究等方面,XPS的应用非常广泛。

3.3. 薄膜分析XPS可以用于分析薄膜的物理、化学和电学性质。

通过对不同深度的XPS分析,可以揭示薄膜的结构和成分随深度的变化情况。

薄膜的质量、化学反应和界面效应等方面可以通过XPS得到详细的信息。

3.4. 表面修饰技术XPS可用于评估表面修饰技术的效果和性能。

在金属材料、导电聚合物等方面的研究中,通过分析表面的元素分布和化学组成,可以评估表面修饰技术对材料性能的改善。

3.5. 生物医药领域在生物医药领域,XPS可以用于分析生物材料表面的成分和结构,如药物载体材料、生物传感器等。

XPS在材料研究中的应用

XPS在材料研究中的应用

XPS在材料研究中的应用摘要本文总结了X射线光电子能谱(XPS)的分析原理、研究进展,并介绍了几种XPS在材料研究中的应用分析实例。

关键词XPS,材料,分析1 前言XPS的起源最早可追溯到人们对光电子的研究。

1954年,以瑞典Uppsala大学k.Siegbahn 教授为首的研究中心首次准确测定光电子的动能,不久观测到了元素的化学位移。

由于XPS 能够根据元素的化学位移分析出材料的化学状态,曾被命名为化学分析用电子能谱,即ESCA(ElectronSpectroscopy for Chemical Analysis)。

20世纪70年代末,XPS开始涉足有机物、高分子材料及木质材料领域,80年代末,XPS 的灵敏度及分辨率有了显著提高,现代XPS 正在向着单色、小面积、成像三方向发展。

XPS 以其灵敏度高、破坏性小、制样简单的优点及定性强、能够分析材料表面元素组成及元素化学价态的特点而成为木质材料研究领域中一项重要分析手段。

XPS 基本原理是利用X 射线辐照样品,在样品表面发生光电效应,产生光电子,如图1。

通过对出射光电子能量分布分析,得到电子结合能的分布信息,进而实现对表面元素组成及价态分析。

XPS采样深度与光电子的能量和材料性质有关,在深度为光电子的平均自由程λ 的3 倍处,达到最佳,对金属约为0.5~2 nm;无机物1~3 nm;有机物1~10 nm。

运用XPS 可对木质材料进行定性及定量分析。

图1 X 射线光电子能谱的光电效应原理图图2 XPS 实验装置示意图(a)和光电子能级图(b)2 XPS在材料研究中应用实例X射线光电子能谱XPS (X-ray Photoelectron Spectroscopy)也被称作化学分析用电子能谱ESCA(Electron Spectroscopy for Chemical Analysis),其基本原理在单色(或准单色)X 射线照射下,测量材料表面所发射的光电子能谱来获取表面化学成分、化学态、分子结构等方面的信息。

说明xps分析的原理应用及特点

说明xps分析的原理应用及特点

说明XPS分析的原理应用及特点1. 引言X射线光电子能谱(X-ray photoelectron spectroscopy,简称XPS)是一种用于分析材料表面化学成分和化学状态的非破坏性表征技术。

本文将对XPS分析的原理、应用和特点进行说明。

2. 原理XPS利用高能X射线轰击材料表面,通过测量材料表面逸出的光电子能谱来获得有关材料化学成分和化学状态的信息。

其基本原理如下: - X射线入射:高能X 射线束通过X射线源作用在样品表面,激发样品表面原子的束缚电子。

- 光电子逸出:激发的束缚电子获得足够的能量克服束缚力,从样品表面逸出成为自由电子。

- 能谱检测:逸出的光电子根据能量不同形成能谱,通过能量分辨仪进行检测和分析。

- 数据分析:通过对能谱的峰位、峰面积和峰形等进行分析,可以获得样品表面元素的组成和化学状态信息。

3. 应用XPS技术在多个领域有广泛的应用,以下列举几个常见的应用场景:3.1 表面成分分析XPS可以准确测量材料表面的元素组成和化学状态,可以表征材料的成分。

在材料科学、化学、生物医学等领域中,XPS被广泛用于表面成分分析。

3.2 化学反应分析XPS能够跟踪材料表面化学反应的过程和机制,通过观察化学反应前后材料表面的变化,可以获得有关反应的信息。

3.3 材料表面状态研究XPS可以研究材料表面的电荷状态、化学键形成和断裂等变化。

这对于了解样品在化学、电子学等方面的性质具有重要意义。

3.4 腐蚀和污染研究XPS可以追踪材料表面腐蚀和污染的过程,分析腐蚀和污染物的成分和形态。

这对于材料保护、环境保护等方面具有重要意义。

4. 特点XPS作为一种高精准度的表征技术,具有以下特点:4.1 高分辨率XPS能够实现较高的能量分辨率,可以准确测定光电子能谱的峰位和峰形,从而得到更准确的表征数据。

4.2 高灵敏度XPS对材料表面的元素非常敏感,可以检测到较低浓度的元素。

这对于分析痕量元素具有重要意义。

xps的工作原理及应用

xps的工作原理及应用

XPS的工作原理及应用简介XPS(X-ray Photoelectron Spectroscopy,X射线光电子能谱)是一种表征材料表面元素及化学状态的表征手段。

它利用X射线照射样品表面,通过分析样品表面电子的能量分布来获取元素的信息。

XPS广泛应用于材料科学、表面化学、纳米科学等领域,为研究材料性质和表面反应机制提供了重要的手段。

工作原理XPS的工作原理主要基于X射线的相互作用原理。

当样品表面被X射线照射时,元素的内层电子就会吸收掉X射线的能量,从而使得这部分电子逸出,并成为光电子。

根据光电子能量与逸出深度的关系,可以得到元素的能谱信息。

XPS通常使用单色X射线源作为光源,这样可以确保X射线的能量单一。

在照射样品的同时,通过调整束缚电压,可以选择性地使得不同能量的光电子进入能谱仪。

能谱仪中的能谱分析器可以将光电子按照能量进行分离,并触发一个探测器进行信号采集。

应用领域物质表面化学性质研究XPS可以分析材料表面的元素组成和化学状态,为研究物质的表面化学性质提供了直接的手段。

通过分析元素的价态和化学键的形态,可以了解材料的催化性能、电化学性能、界面反应机理等信息。

表面形貌研究XPS可以对材料表面的形貌进行表征。

例如,可以通过分析材料表面元素浓度的变化,来研究材料表面的退化情况、污染物的分布等。

同时,还可以通过表面化学计量知识,研究表面形貌与功能之间的联系。

薄膜生长与界面反应研究XPS可以对薄膜生长和界面反应过程进行研究。

由于XPS具有高表面灵敏度和高化学状态分辨率,可以实时监测材料表面的化学变化,以及材料界面的结构和性质变化。

这对于薄膜生长过程的优化和界面反应机理的理解具有重要意义。

环境科学研究XPS可以用于环境科学领域的研究。

例如,它可以分析空气中的颗粒物表面成分,了解大气污染的来源和演化过程。

同时,XPS还可以研究水中污染物的吸附与解吸过程,为环境治理提供科学依据。

结论XPS是一种非常重要的表面分析技术,可以提供元素组成和化学状态的详细信息。

xps的原理及其应用

xps的原理及其应用

XPS的原理及其应用1. XPS的概述XPS(X-ray Photoelectron Spectroscopy)是一种表面分析技术,它通过入射X射线照射样品,测量材料中逸出的电子能谱来分析样品的元素组成和化学状态。

XPS主要基于光电效应原理和荷电屏蔽效应原理进行分析。

2. XPS的基本原理XPS利用入射X射线激发样品表面的原子,使其逸出的电子被收集和分析。

电子逸出的能量与样品中原子的化学状态密切相关,通过测量电子能谱,可以了解样品的元素组成、化学状态、氧化还原状态等信息。

具体而言,XPS的基本原理如下: - X射线源:XPS使用具有高能量的X射线作为激发源,常用的是具有镓或铝阳极的X射线源。

- 入射X射线:X射线通过X射线源发出,并照射到样品的表面。

- 光电子逸出:入射X射线与样品原子发生相互作用,使电子从原子的内层轨道逸出,逸出的电子称为光电子。

- 荷电屏蔽效应:逸出的光电子在穿越样品表面时,会受到其他原子的屏蔽作用,从而发生能量损失。

- 检测和分析:逸出的光电子根据能量进行分析和检测,得到电子能谱图,通过分析电子能谱,可以确定样品的化学成分和状态。

3. XPS的应用领域XPS具有非常广泛的应用领域,以下列举了几个典型的应用场景:3.1 表面化学分析XPS可以用于对材料表面的化学成分进行分析,从而了解材料的表面组成、含量和化学状态。

这对于材料研究、表面处理和质量控制非常重要。

3.2 薄膜研究XPS可以评估和分析薄膜材料的表面成分和溢出问题,帮助研究人员更好地理解薄膜的性能和稳定性。

3.3 界面分析XPS可以揭示材料的界面特性,例如界面反应、沉积物和缺陷等。

这对于理解材料的界面性质、界面失效和界面反应具有重要意义。

3.4 催化剂研究XPS可以用于催化剂的表征和性能评估,帮助研究人员了解催化剂的表面组成、氧化状态和反应机制。

3.5 生物材料研究XPS可以用于分析生物材料的表面化学成分和功能基团,帮助研究人员了解生物材料的表面性质和相互作用机制。

XPS在材料分析中的应用

XPS在材料分析中的应用

小结
经过长期研究开发,XPS表面分析技术已经成为 一种常用而又有效的仪器分析方法。同时可以看出, 在实际分析检测过程中,为了准确、完整了解表面分 析,仅采用一种分析方法是不够的,应采用多种分析 手段,以期从不同角度分析表面特征,获得更完善的 信息
Thank you!!!
当α= 90°时,XPS的采样深度最深, XPS的采样深度较深时,主要收集的是 次表面的成分
图七,Si3N4样品表面的硅主要以SiO2物 种存在。在掠射角逐渐增大时 , Si3N4 的峰强度也在增大,说明样品内部主要 成分是Si3N4
元素价带谱分析
在C60中,π键的共轭度较小,其 三个分裂峰的强度较强。而在碳 纳米管和石墨中由于共轭度较大, 特征结构不明显。 从图上还可见,在C60分子的价 带谱上还存在其他三个分裂峰, 这些是由C60分子中的π键所产生。 从图上可见,在石墨,碳纳米管 和C60分子的价带谱上都有三个 基本峰。这三个峰均是由共轭键 产生的。
Eb⎯特定原子轨道上的结合能,eV;
φs⎯逸出功,eV
XPS的分析技术特点 : (1)非破坏性; (2)可以研究有机物等表面;
(3)真空要求相对较低;
(4)能进行元素化合态和电子能带结构分析。
仪器构成
具体应用
表面元素定性分析
从图4可以看出,在薄膜表 面主要有Ti、N、C、O和 Al元素存在。Ti、N的信号 较弱,而O的信号很强。 这结果表明形成的薄膜主 要是氧化物,氧的存在会 影响Ti(CN)x薄膜的形成
XPS表面分析技术在材料 研究中的应用
徐泽 1131109079
前言
分析原理
仪器构成 具体应用
前言
表面分析技术是通过研究微观粒子与表面的相互作用获得表面信息, 研究物质表面的形貌、化学组成、原子结构、原子态等信息
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

XPS分析技术及其在材料微分析方面中的应用摘要:本文介绍了X 射线光电子能谱(XPS)分析技术的基本原理、技术特点、研究进展、分析仪器构成以及在材料微分析方面的实际应用。

关键词:XPS分析技术;微分析;应用1、引言:近年来,利用各种物理、化学或机械的工艺过程改变基材表面状态、化学成分、组织结构或形成特殊的表面覆层,优化材料表面,以获得原基材表面所不具备的某些性能,如高装饰性、耐腐蚀、抗高温氧化、减摩、耐磨、抗疲劳性及光、电、磁等,达到特定使用条件对产品表面性能的要求的各种表面特殊功能处理技术得到迅速发展;对表面分析技术发展提出更高要求[1]。

材料表面分析业已发展为一种常用的仪器分析方法,特别是对于固体材料的分析和元素化学价态分析。

目前常用的表面成分分析方法有:X射线光电子能谱(XPS),俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。

AES分析主要应用于物理方面的固体材料科学的研究,而XPS的应用面则广泛得多,更适合于化学领域的研究[2]。

SIMS和ISS由于定量效果较差,在常规表面分析中的应用相对较少[3]。

但近年随着飞行时间质谱(TOF-SIMS)的发展,使得质谱在表面分析上的应用也逐渐增加。

X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。

该方法是在六十年代由瑞典科学家Kai Siegbahn 教授发展起来。

三十多年的来,X射线光电子能谱无论在理论上和实验技术上都已获得了长足的发展。

XPS已从刚开始主要用来对化学元素的定性分析,业已发展为表面元素定性、半定量分析及元素化学价态分析的重要手段。

XPS的研究领域也不再局限于传统的化学分析,而扩展到现代迅猛发展的材料学科。

目前该分析方法在日常表面分析工作中的份额约50%,是一种最主要的表面分析工具。

在X射线源上,已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源[6];传统的固定式X射线源也发展到电子束扫描金属靶所产生的可扫描式X射线源;X射线的束斑直径也实现了微型化,最小- 1 -的束斑直径已能达到6μm使得XPS在微区分析上的应用得到了大幅度的加强。

图像XPS技术的发展,大大促进了XPS在新材料研究上的应用。

在谱仪的能量分析检测器方面,也从传统的单通道电子倍增器检测器发展到位置灵敏检测器和多通道检测器,使得检测灵敏度获得了大幅度的提高。

计算机系统的广泛采用,使得采样速度和谱图的解析能力也有了很大的提高[4]。

由于XPS具有很高的表面灵敏度,适合于有关涉及到表面元素定性和定量分析方面的应用,同样也可以应用于元素化学价态的研究。

此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。

因此,XPS方法可广泛应用于化学化工,材料,机械,电子材料等领域。

本文介绍了X 射线光电子能谱(XPS)的基本分析原理、技术特点、研究进展、分析仪器构成以及在材料研究中应用情况,旨在增强对XPS 表面分析技术系统了解。

2、XPS 的分析原理、技术特点及研究进展:2.1 XPS 的基本原理[1]X射线光电子能谱XPS (X-ray Photoelectron Spectroscopy)也被称作化学分析用电子能谱ESCA(Electron Spectroscopy for Chemical Analysis),其基本原理在单色(或准单色)X 射线照射下,测量材料表面所发射的光电子能谱来获取表面化学成分、化学态、分子结构等方面的信息;XPS 理论首先是由瑞典皇家科学院院士、乌普萨拉大学物理研究所所长K.Siegbahn 教授创立的,并于1954 年研制成世界上第一台双聚焦磁场式光电子能谱仪,精确测定了元素周期表中各种原子的内层电子结合能。

2.1.1 光电效应在光的照射下,电子从金属表面逸出的现象,称为光电效应。

如下图所示:根据Einstein的能量关系式有:hν = E B + E K其中:ν—光子的频率;h—普朗克常量;E B—内层电子的轨道结合能或电离能;E K—被入射光子所激发出的光电子的动能。

实际的X射线光电子能谱仪中的能量关系为:hν= E B + E K + Φs + A其中:Φs—谱仪的功函数,光电子逸出表面所需能量;A—样品的功函数,光电子输运过程中因非弹性散射而损失的能量。

可见,当入射X射线能量一定,测出功函数和电子的动能,即可求出电子的结合能。

由于只有表面处的光电子才能从固体中逸出,因而测得的电子结合能必然反应了表面化学成份的情况。

样品经X射线辐照后,从表面出射的光电子的强度是与样品中该原子的浓度有线性关系,可以利用它进行元素的半定量分析。

鉴于光电子的强度不仅与原子的浓度有关,还与光电子的平均自由程、样品的表面光洁度,元素所处的化学状态,X射线源强度以及仪器的状态有关。

因此,XPS技术一般不能给出所分析元素的绝对含量,仅能提供各元素的相对含量。

由于元素的灵敏度因子不仅与元素种类有关,还与元素在物质中的存在状态,仪器的状态有一定的关系,因此不经校准测得的相对含量也会存在很大的误差。

2.1.2 逃逸深度(λm)与俄歇电子相同,只有那些来自表面附近在逃逸深度以内的光电子才没有经过散射而损失能量,才对确定E B的谱峰有所贡献。

对于XPS 有用的光电子能量为:100~1200eV;λm =0.5~2.0 nm(金属);λm=4~10nm(高聚物)。

而逃逸深度与逸出角有关:λ = λmθcos;其中θ为探测角,出射方向与面法线夹角。

当θ= 0垂直表面射出的电子来自最大逸出深度;当θ≈ 90o,近似平行于表面射出的电子纯粹来自最外表面几个原子层。

因而改变探测角θ可调整表面灵敏度。

XPS是一种表面灵敏的分析方法,具有很高的表面检测灵敏度,可以达到10-3原子单层,但对于体相检测灵敏度仅为0.1%左右。

XPS是一种表面灵敏的分析技术,其表面采样深度为2.0~5.0 nm,它提供的仅是表面上的元素含量,与体相成分会有很大的差别。

而它的采样深度与材料性质、光电子的能量有关,也同样品表面和分析器的角度有关。

2.1.3 化学位移由于原子所处的化学环境不同而引起的内层电子结合能的变化,在谱图上表现为谱峰的位移,这一现象称为化学位移。

虽然出射的光电子的结合能主要由元素的种类和激发轨道所决定,但由于原子外层电子的屏蔽效应,芯能级轨道上的电子的结合能在不同的化学环境中是不一样的,有一些微小的差异。

这种结合能上的微小差异就是元素的化学位移,它取决于元素在样品中所处的化学环境。

一般,元素获得额外电子时,化学价态为负,该元素的结合能降低。

反之,当该元素失去电子时,化学价为正,XPS的结合能增加。

利用这种化学位移可以分析元素在该物种中的化学价态和存在形式。

元素的化学价态分析是XPS分析的最重要的应用之一。

2.2 XPS分析技术特点[2]与其他表面分析技术相比,具有以下几个特点:非破坏性;可以研究有机物等表面;真空要求相对较低;能进行元素化合态和电子能带结构分析。

在XPS 分析中,由于采用的X 射线激发源的能量较高,不仅可以激发出原子价轨道中的价电子,还可以激发出芯能级上的内层轨道电子,其出射光电子的能量仅与入射光子的能量及原子轨道结合能有关。

因此,对于特定的单色激发源和特定的原子轨道,其光电子的能量是特征的。

当固定激发源能量时,其光电子的能量仅与元素的种类和所电离激发的原子轨道有关。

因此,我们可以根据光电子的结合能定性分析物质的元素种类。

2.3 XPS分析技术研究进展20世纪40年代瑞典Uppsala大学在β-射线谱取得重大进展,K.Siegbahn 建造了一台能测量电子动能的XPS仪器,其鉴别能力达10-15。

三十多年的来,X 射线光电子能谱无论在理论上和实验技术上都已获得了长足的发展。

XPS已从刚开始主要用来对化学元素的定性分析,发展成为表面元素定性、半定量分析及元素化学价态分析的重要手段。

XPS 的研究领域也不再局限于传统的化学分析,而扩展到现代迅猛发展的材料学科。

目前该分析方法在日常表面分析工作中的份额约50%,是一种最主要的表面分析工具[3]。

在XPS 谱仪技术发展方面也取得了巨大的进展。

在X射线源上,已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源;传统的固定式X 射线源也发展到电子束扫描金属靶所产生的可扫描式X射线源;X射线的束斑直径也实现了微型化,最小的束斑直径已能达到6 mm 大小,使得XPS在微区分析上的应用得到了大幅度的加强。

图像XPS技术的发展,大大促进了XPS在新材料研究上的应用。

在谱仪的能量分析检测器方面,也从传统的单通道电子倍增器检测器发展到位置灵敏检测器和多通道检测器,使得检测灵敏度获得了大幅度的提高。

计算机系统的广泛采用,使得采样速度和谱图的解析能力也有了很大的提高。

3、XPS仪器结构和工作原理[7]XPS仪器主要由超高真空系统、进样系统、激发源、电子能量分析器和探测电子的监测器等几个部分组成。

3.1超高真空系统在X射线光电子能谱仪中必须采用超高真空系统,主要是出于两方面的原因。

首先,XPS是一种表面分析技术,如果分析室的真空度很差,在很短的时间内试样的清洁表面就可以被真空中的残余气体分子所覆盖。

其次,由于光电子的信号和能量都非常弱,如果真空度较差,光电子很容易与真空中的残余气体分子发生碰撞作用而损失能量,最后不能到达检测器。

在X射线光电子能谱仪中,为了使分析室的真空度能达到3×10-8Pa,一般采用三级真空泵系统。

前级泵一般采用旋转机械泵或分子筛吸附泵,极限真空度能达到10-2Pa;采用油扩散泵或分子泵,可获得高真空,极限真空度能达到10-8Pa;而采用溅射离子泵和钛升华泵,可获得超高真空,极限真空度能达到10-9Pa。

这几种真空泵的性能各有优缺点,可以根据各自的需要进行组合。

现在的新型X射线光电子能谱仪,普遍采用机械泵-分子泵-溅射离子泵-钛升华泵系列,这样可以防止扩散泵油污染清洁的超高真空分析室。

3.2 快速进样室X射线光电子能谱仪多配备有快速进样室,其目的是在不破坏分析室超高真空的情况下能进行快速进样。

快速进样室的体积很小,以便能在5~10分钟内能达到10-3Pa的高真空。

有一些谱仪,把快速进样室设计成样品预处理室,可以对样品进行加热,蒸镀和刻蚀等操作。

3.3 X射线激发源在普通的XPS谱仪中,一般采用双阳极靶激发源。

常用的激发源有Mg Kα X 射线、光子能量为1253.6eV 和Al Kα X射线、光子能量为1486.6eV。

没经单色化的X射线的线宽可达到0.8eV,而经单色化处理以后,线宽可降低到0.2 eV,并可以消除X射线中的杂线和韧致辐射。

相关文档
最新文档