XPS原理及分析

合集下载

XPS原理及分析

XPS原理及分析

XPS原理及分析在材料科学、化学、物理学等众多领域中,X 射线光电子能谱(XPS)是一种极为重要的表面分析技术。

它能够为我们提供有关材料表面元素组成、化学状态以及电子结构等丰富而有价值的信息。

XPS 的基本原理建立在光电效应之上。

当一束具有一定能量的 X 射线照射到样品表面时,会将样品原子中的内层电子激发出来,形成光电子。

这些光电子具有特定的动能,其大小取决于入射 X 射线的能量以及被激发电子所在的原子轨道的结合能。

结合能是 XPS 分析中的一个关键概念。

它代表了将一个电子从原子的某个能级中移走所需的能量。

不同元素的原子,其各个能级的结合能是特定且固定的,就像每个人都有独特的指纹一样。

通过测量光电子的动能,我们可以根据能量守恒原理计算出其结合能。

然后,将所得的结合能与已知元素的标准结合能进行对比,就能确定样品表面存在哪些元素。

不仅如此,XPS 还能够提供有关元素化学状态的信息。

同一元素在不同的化学环境中,其结合能会发生微小的变化,这种变化被称为化学位移。

比如,氧化态的变化会导致结合能的改变。

通过对化学位移的分析,我们可以了解元素的价态、化学键的类型以及化合物的组成等重要信息。

在进行 XPS 分析时,仪器的组成和工作方式也十分关键。

XPS 仪器通常包括 X 射线源、样品室、能量分析器和探测器等主要部分。

X 射线源产生用于激发光电子的 X 射线,常用的有单色化的Al Kα 和Mg Kα 射线。

样品室用于放置和处理样品,要确保样品在分析过程中的稳定性和纯净度。

能量分析器则负责将不同动能的光电子分开,以便准确测量其能量。

探测器则将光电子信号转化为电信号,进而被计算机处理和分析。

为了获得准确可靠的 XPS 数据,样品的制备和处理至关重要。

样品表面必须清洁、平整,无污染物和氧化层。

对于一些特殊的样品,可能需要进行预处理,如离子溅射、退火等操作,以获得真实反映样品本征性质的结果。

在数据分析方面,首先要对原始数据进行校正,包括荷电校正和能量标度校正。

XPS原理及分析

XPS原理及分析

XPS原理及分析在现代材料科学和表面分析领域中,X 射线光电子能谱(XPS)是一种极其重要的分析技术。

它能够为我们提供有关材料表面化学组成、元素价态以及化学环境等丰富而关键的信息。

XPS 的基本原理基于爱因斯坦的光电效应。

当一束 X 射线照射到样品表面时,它具有足够的能量将样品中的原子内层电子激发出来,形成光电子。

这些光电子的能量分布与样品中原子的电子结合能直接相关。

电子结合能是指将一个电子从原子的某个能级中移到无穷远处所需的能量。

不同元素的原子,其内层电子的结合能是特定的,而且同一元素在不同化学环境中,其电子结合能也会有所差异。

这就为 XPS 分析元素组成和化学状态提供了基础。

具体来说,通过测量从样品表面发射出的光电子的能量,我们可以确定样品中存在哪些元素。

每种元素都有其独特的一系列结合能特征峰。

比如,碳元素在不同的化学环境中,其结合能可能在 2846 eV 左右(纯碳),但如果与氧形成某些化学键,结合能就会发生偏移。

在进行 XPS 分析时,首先需要将待分析的样品放入高真空的分析室中。

这是因为光电子非常容易与空气中的分子发生碰撞而损失能量,从而影响测量结果的准确性。

X 射线源通常采用铝(Al)或镁(Mg)的靶材,产生的 X 射线具有特定的能量。

这些 X 射线照射到样品表面后,激发出来的光电子经过能量分析器进行分析。

能量分析器可以将不同能量的光电子按照能量大小进行分离,并最终由探测器检测到。

得到的 XPS 谱图中,横坐标通常表示光电子的结合能,纵坐标则表示光电子的相对强度。

通过对谱图中峰的位置、形状和强度的分析,可以获得大量有关样品的信息。

对于元素的定性分析,我们主要依据特征峰的位置来确定样品中存在的元素种类。

而对于定量分析,则需要根据峰的强度来计算各元素的相对含量。

但这并不是简单的比例关系,因为不同元素的光电子发射截面、仪器的传输效率等因素都会对强度产生影响,所以需要采用特定的校正方法来进行准确的定量分析。

关于XPS的原理和应用

关于XPS的原理和应用

关于XPS的原理和应用1. 前言X射线光电子能谱(X-Ray Photoelectron Spectroscopy,简称XPS)是一种广泛应用于材料科学、表面物理和化学研究的表征手段。

本文将介绍XPS的基本原理和其在各个领域中的应用。

2. 基本原理XPS基于光电效应原理,利用固体表面的吸收或发射光子的能量差来研究固体表面的化学组成和元素态。

下面是XPS的基本原理:•X射线入射:在实验中,X射线入射到样品表面,与样品中的原子或分子发生相互作用。

•光电子发射:当入射X射线的能量超过样品中原子的束缚能时,会产生光电子的发射。

•能量分析:发射的光电子经过分析器进行能量分析,得到光电子能谱。

•特征能量:通过分析光电子能谱中的特征能量和峰形,可以得到样品的化学组成、表面电荷状态等信息。

3. 应用领域XPS具有高灵敏度和高分辨率的优势,在各个领域中得到了广泛应用。

以下是几个常见的应用领域:3.1. 表面化学分析XPS可以通过分析样品表面的化学组成和化学状态,提供有关表面反应性和化学性质的信息。

在材料科学、催化剂研究和纳米技术等领域中,XPS被广泛用于表面化学分析。

3.2. 材料研究XPS在材料科学中起着至关重要的角色。

通过分析材料的表面元素组成、改变和反应,可以研究材料的结构、性质和性能。

在材料表面改性、材料界面研究等方面,XPS的应用非常广泛。

3.3. 薄膜分析XPS可以用于分析薄膜的物理、化学和电学性质。

通过对不同深度的XPS分析,可以揭示薄膜的结构和成分随深度的变化情况。

薄膜的质量、化学反应和界面效应等方面可以通过XPS得到详细的信息。

3.4. 表面修饰技术XPS可用于评估表面修饰技术的效果和性能。

在金属材料、导电聚合物等方面的研究中,通过分析表面的元素分布和化学组成,可以评估表面修饰技术对材料性能的改善。

3.5. 生物医药领域在生物医药领域,XPS可以用于分析生物材料表面的成分和结构,如药物载体材料、生物传感器等。

XPS数据分析方法

XPS数据分析方法

XPS数据分析方法XPS数据分析方法指的是通过使用X射线光电子能谱(XPS)来研究材料表面元素的组成、化学状态、分布以及电荷状态等信息的一种分析方法。

XPS是一种非破坏性的表面分析技术,主要用于材料科学、化学、物理、能源等领域的表面和界面分析。

下面是关于XPS数据分析方法的一些内容。

1.XPS原理XPS是基于光电离现象的一种分析技术。

当实验样品暴露在具有一定能量的X射线束下时,样品表面的原子会被激发,其中部分电子会被激发到费米能级以上,形成X射线光电子。

这些光电子经电场作用会被收集并形成能谱。

通过分析能谱可以得到样品表面元素的信息。

2.XPS数据处理XPS实验获得的原始数据包含了来自不同元素的能量信号,以及其他噪声信号。

数据处理旨在提取出有用的能量信号,并将其定性和定量分析。

常见的数据处理步骤包括信号峰形辨认、能量校正、背景修正和分峰拟合等。

3.峰形辨认峰形辨认是将实验数据中的峰与相应的元素进行匹配的过程。

每个元素具有特定的光电子能量,因此可以通过比较实验获得的能谱与已知元素的能谱进行匹配,确定元素的存在。

4.能量校正能谱中的能量量度需要进行校正,以获得准确的能谱峰位置。

能量校正的常用方法是通过硬币吸收边界(coinicidence absorption edge)或内部参考能谱进行校正。

这样可以消除能量测量中的偏差。

5.背景修正实验信号中常常会包含一些背景信号,如弹性散射信号、底部信号等。

这些背景信号对于准确的数据分析来说是干扰因素,需要进行背景修正。

背景修正的方法可以是线性背景修正或曲线拟合法。

6.分峰拟合分峰拟合是基于已知的能量峰进行曲线拟合,以确定元素在样品中的化学状态和相对丰度。

常见的拟合函数包括高斯函数、洛伦兹函数和Pseudo-Voigt函数等。

7.数据分析通过对能谱的峰进行定量分析,可以获得材料表面元素的组成和相对丰度。

此外,还可以通过分析峰的形状和位置得到元素的化学状态信息。

通过与已知物质的对比,可以推测样品的化学成分,并深入了解材料的特性。

说明xps分析的原理应用及特点

说明xps分析的原理应用及特点

说明XPS分析的原理应用及特点1. 引言X射线光电子能谱(X-ray photoelectron spectroscopy,简称XPS)是一种用于分析材料表面化学成分和化学状态的非破坏性表征技术。

本文将对XPS分析的原理、应用和特点进行说明。

2. 原理XPS利用高能X射线轰击材料表面,通过测量材料表面逸出的光电子能谱来获得有关材料化学成分和化学状态的信息。

其基本原理如下: - X射线入射:高能X 射线束通过X射线源作用在样品表面,激发样品表面原子的束缚电子。

- 光电子逸出:激发的束缚电子获得足够的能量克服束缚力,从样品表面逸出成为自由电子。

- 能谱检测:逸出的光电子根据能量不同形成能谱,通过能量分辨仪进行检测和分析。

- 数据分析:通过对能谱的峰位、峰面积和峰形等进行分析,可以获得样品表面元素的组成和化学状态信息。

3. 应用XPS技术在多个领域有广泛的应用,以下列举几个常见的应用场景:3.1 表面成分分析XPS可以准确测量材料表面的元素组成和化学状态,可以表征材料的成分。

在材料科学、化学、生物医学等领域中,XPS被广泛用于表面成分分析。

3.2 化学反应分析XPS能够跟踪材料表面化学反应的过程和机制,通过观察化学反应前后材料表面的变化,可以获得有关反应的信息。

3.3 材料表面状态研究XPS可以研究材料表面的电荷状态、化学键形成和断裂等变化。

这对于了解样品在化学、电子学等方面的性质具有重要意义。

3.4 腐蚀和污染研究XPS可以追踪材料表面腐蚀和污染的过程,分析腐蚀和污染物的成分和形态。

这对于材料保护、环境保护等方面具有重要意义。

4. 特点XPS作为一种高精准度的表征技术,具有以下特点:4.1 高分辨率XPS能够实现较高的能量分辨率,可以准确测定光电子能谱的峰位和峰形,从而得到更准确的表征数据。

4.2 高灵敏度XPS对材料表面的元素非常敏感,可以检测到较低浓度的元素。

这对于分析痕量元素具有重要意义。

XPS原理及分析

XPS原理及分析

XPS原理及分析X射线光电子能谱(XPS)是一种表面分析技术,利用X射线入射样品表面,通过测量样品表面上逸出的光电子的能谱来确定样品表面元素的化学性质及其表面态的信息。

XPS技术具有高表面敏感性、定性和定量分析的能力,因此在材料科学、化学、地球科学、生物医学和环境科学等领域得到广泛应用。

XPS原理基于“薄物质”理论,即在入射X射线束与物质相互作用时,只有较薄表面层中的电子才能逃逸到空间中并被探测器所接收。

这是由于较低能的光电子受到表面电势井的束缚,而高能电子则受到较深层电势井的束缚,因此只有能量较高的光电子能够逃逸。

通过测量逸出光电子的能谱,可以得到逸出光电子的能量和强度信息,进一步分析可以确定元素的化学状态和表面化学键的信息。

XPS分析的过程包括样品的准备、X射线的入射和光电子的测量。

首先,样品必须准备成纯度较高的固体或薄膜,并且表面应该光滑、洁净,避免杂质和氧化层的影响。

然后,通过X射线源入射样品表面,激发样品表面的光电子,并且通过能量分析器将光电子按能量进行分散。

最后,光电子通过一个探测器接收并进行能谱测量。

XPS技术可以提供多种信息。

首先,通过测量各元素光电子能谱的能量峰位置,可以确定样品表面的元素组成。

其次,通过能峰的形状和峰的宽度,可以得到元素的化学状态和价态信息。

此外,还可以测量光电子的相对强度,用于定量分析元素的表面含量。

最后,通过X射线光电子能谱成像技术,可以获得样品表面的化学状态和形貌分布信息。

XPS技术具有许多优点。

首先,具有高表面敏感性,能够测量样品表面几个纳米的深度范围。

其次,可以进行原位和无损分析,不需要对样品进行特殊处理或破坏性操作。

此外,具有化学态信息和定量分析的能力,可以提供元素和化学键的详细信息。

最后,XPS技术还可以进行X射线光电子能谱成像,可以获得元素和化学状态的空间分布图像。

总之,XPS技术是一种强大的表面分析技术,具有高表面敏感性、定性和定量分析的能力,已经在多个领域得到广泛应用。

xps的原理及其应用

xps的原理及其应用

XPS的原理及其应用1. XPS的概述XPS(X-ray Photoelectron Spectroscopy)是一种表面分析技术,它通过入射X射线照射样品,测量材料中逸出的电子能谱来分析样品的元素组成和化学状态。

XPS主要基于光电效应原理和荷电屏蔽效应原理进行分析。

2. XPS的基本原理XPS利用入射X射线激发样品表面的原子,使其逸出的电子被收集和分析。

电子逸出的能量与样品中原子的化学状态密切相关,通过测量电子能谱,可以了解样品的元素组成、化学状态、氧化还原状态等信息。

具体而言,XPS的基本原理如下: - X射线源:XPS使用具有高能量的X射线作为激发源,常用的是具有镓或铝阳极的X射线源。

- 入射X射线:X射线通过X射线源发出,并照射到样品的表面。

- 光电子逸出:入射X射线与样品原子发生相互作用,使电子从原子的内层轨道逸出,逸出的电子称为光电子。

- 荷电屏蔽效应:逸出的光电子在穿越样品表面时,会受到其他原子的屏蔽作用,从而发生能量损失。

- 检测和分析:逸出的光电子根据能量进行分析和检测,得到电子能谱图,通过分析电子能谱,可以确定样品的化学成分和状态。

3. XPS的应用领域XPS具有非常广泛的应用领域,以下列举了几个典型的应用场景:3.1 表面化学分析XPS可以用于对材料表面的化学成分进行分析,从而了解材料的表面组成、含量和化学状态。

这对于材料研究、表面处理和质量控制非常重要。

3.2 薄膜研究XPS可以评估和分析薄膜材料的表面成分和溢出问题,帮助研究人员更好地理解薄膜的性能和稳定性。

3.3 界面分析XPS可以揭示材料的界面特性,例如界面反应、沉积物和缺陷等。

这对于理解材料的界面性质、界面失效和界面反应具有重要意义。

3.4 催化剂研究XPS可以用于催化剂的表征和性能评估,帮助研究人员了解催化剂的表面组成、氧化状态和反应机制。

3.5 生物材料研究XPS可以用于分析生物材料的表面化学成分和功能基团,帮助研究人员了解生物材料的表面性质和相互作用机制。

XPS原理及分析

XPS原理及分析
• 根据结合能数值标识谱图中最强的、代表样品中主体 元素的强光电子线,并且与元素内层电子结合能的标
准值仔细核对,并找出与此匹配的其他弱光电子线和
俄歇线群;
• 最后标出余下较弱的谱线,标识方法同上,标识它们 应想到可能来自微量元素或杂质元素的信号,也可能 来自强的Kb x射线等卫星峰的干扰;
• 对那些反复核对但没有归属的谱线,可能是鬼线;
精选课件ppt
12
精选课件ppt
13
4、XPS信息深度
精选课件ppt
14
5、化学位移
同种原子由于处于不同的化学环境,引起内壳层电子结合 能的变化,在谱图上表现为谱线的位移,这种现象称为化学 位移。
所谓某原子所处化学环境不同,一是指与它结合的元素种 类和数量不同,二是指原子具有不同的价态。
原子内壳层电子的结合能随原子氧化态的增高而增大;氧 化态愈高,化学位移也愈大。
精选课件ppt
17
1. x射线源: • 要求:
– 能量足够激发芯电子层; – 强度产生足够的光电子通量; – 线宽(决定XPS峰的半高宽FWHM)尽量窄; • Mg、Al源 – Mg Ka;Al Ka – Mg/Al双阳极x射线源
精选课件ppt
18
2. 电子能量分析器:核心部 件
• 2种结构:
– 筒镜分析器CMA:点传输率很 高,有很高信噪比。XPS为提高 分辨率,将2个同轴筒镜串联
精选课件ppt
38
• 深度剖析 – 惰性气体离子束刻蚀法: • 同AES、SIMS
精选课件ppt
20
四、xps谱图
典型谱图 横坐标:电子束缚能(能直接反映电子壳层/能级结构) 或动能;eV 纵坐标:cps(Counts per second),相对光电子流 强度 谱峰直接代表原子轨道的结合能
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

XPS:定量分析方法-4

深度剖析

倾转样品法:z深度处发射的电子要经z/cosq 的路程才能离开表面,逃逸几率随exp(-z/lm) 而减少,∴改变倾斜角度可进行深度剖析

深度剖析

惰性气体离子束刻蚀法:
同AES、SIMS
1:Co 2: Al 3: C 4: O
Co-Ni-Al多层磁带材料
耗时36h
1、光电效应
当一束能量为hν的单色光与原子发生相互作用, 而入射光量子的能量大于原子某一能级电子的结合能 时,发生电离: M + hν= M*+ + e光电效应过程同时满足能量守恒和动量守恒, 入射光子和光电子的动量之间的差额是由原子的反冲 来补偿的。 光电效应的几率随着电子同原子核结合的加紧而很 快的增加,所以只要光子的能量足够大,被激发的总 是内层电子。外层电子的光电效应几率就会很小,特 别是价带,对于入射光来说几乎是“透明”的。
三、XPS装置

组成:

x射线源
样品台
电子能量分析器 电子探测和倍增器 数据处理与控制
真空系统
核心部件:激发源; 能量分析器;和电子 探测器
仪器说明
仪器名称:X射线光电子能谱仪 产品型号:Kratos AXIS Ultra DLD 生产厂家:日本岛津-KRATOS公司
1.
Al靶
11.8eV 20.1eV 23.4eV 69.7eV 3.3 0.42 0.28 2.0
D、能量损失线
光电子能量损失谱线是由于光电子在穿过样品表面时发生
非弹性碰撞,能量损失后在谱图上出现的伴峰
特征能量损失的大小与样品有关;能量损失峰的强度取决
于:样品特性、穿过样品的电子动能

能量损失线
光电效应截面s与原子序数Z的关系 Z
元素
3
4
5
6
7
8
9
11
12
s
Li 1.1
Be 4.2
B 114
F Na Mg 100 195 266
2、原子能级的划分

量子数表示电子运动状态

主量子数n : 电子能量主要(并非完全)取决于n; n

电子能量
n =1, 2, 3, …;通常以K(n=1), L(n=2),M(n=3)…表示 相同的n表示相同的电子壳层
二氧化硅中O1s的能量损失峰
Al的2s的能量损失峰 a:清洁表面;b:氧化表面
E、电子的振激(Shake up)线和振离线(Shake off)
在光电发射中,由于内壳层形成空位,原子中心电位发生突
变引起价壳层电子的跃迁,出现两个结果:
若价壳层电子跃迁到更高能级的束缚态称为电子的振激 若价壳层电子跃迁到非束缚的连续状态成了自由电子,则称为电子的
Mg Ka射线的卫星峰

x射线卫星线
Al Ka 、Mg Ka卫星峰离主光电子峰的位移和相对强度 射线名称 Mg靶
高动能端位 移 相对强度 高动能端位 移 相对强度
Ka1,2
0eV 100 0eV 100
Ka3
8.4eV 9.2 9.8eV 7.8
Ka4
Ka5
Ka6
Kb
10.2eV 17.5eV 20.0eV 48.5eV 5.1 0.8 0.5 2.0
若 l
若 l
=0,则j = 1/2 ;
=1,则j = l ± 1/2 = 3/2或1/2 ; >0的各亚壳 XPS出现双峰
除s亚壳层不发生自旋分裂外,凡l
层都将分裂成两个能级
自旋——轨道劈裂
自旋-轨道劈裂
l=1 l=3
l=0
l=2
3、电子结合能
一个自由原子或离子的结合能,等于将此电子从所在的能 级转移到无限远处所需的能量。

光电子发射示意图
光电子动能: Ek= hμ- Eb-Φsp ( Φsp是功函数)

光电效应截面s衡量原子中各能级发射光电子的几率
s 为某能级的电子对入射光子有效能量转换面积,也可表示 为一定能量的光子与原子作用时从某个能级激发出一个电子 的几率。
s与电子所在壳层的平均半径r、入射光子频率n和原子序数Z 等因素有关。在入射光子能量一定的条件下,同一原子中半 径越小的壳层s越大;电子结合能与入射光子能量越接近 s越 大。对不同原子同一壳层的电子,原子序数越大,光电效应 截面s越大。

对单相、均一、无限厚的固体表面,从光电发射物理过程,可导出谱线强 度公式:
fo:x射线强度(光子数/cm2· s)
3
I = f A Q yD 0 0 e r :被测元素原子密度(原子数/cm )
Q:待测谱线对应的轨道光电离截面(cm2) A0:被测试样有效面积(cm2) :试样的电子逃逸深度(cm) F:考虑入射和出射电子间夹角变化影响的校正因子 y:形成特定能量光电过程效率 D:能量分析器对发射电子的检测效率
X射线光电子能谱分析
一、概述

X射线光电子谱是重要的表面分析技术之一。它不 仅能探测表面的化学组成,而且可以确定各元素 的化学状态,因此,在化学、材料科学及表面科 学中得以广泛地应用。

X射线光电子能谱是瑞典Uppsala大学K.Siegbahn 及其同事经过近20年的潜心研究而建立的一种分 析方法。他们发现了内层电子结合能的位移现象, 解决了电子能量分析等技术问题,测定了元素周 期表中各元素轨道结合能,并成功地应用于许多 实际的化学体系,K.Siegbahn因此获1981诺贝尔奖。
最后标出余下较弱的谱线,标识方法同上,标识它们 应想到可能来自微量元素或杂质元素的信号,也可能 来自强的Kb x射线等卫星峰的干扰; 对那些反复核对但没有归属的谱线,可能是鬼线;


2、XPS定量分析方法

将谱线强度信号→元素含量,即将峰的面积→相应元素的浓度。 直接用光电子的强度进行定量分析,误差大,∵不同壳层的光电子截面不同, 光电离的几率不同。 元素灵敏度因子法——半经验
4、XPS信息深度
5、化学位移
同种原子由于处于不同的化学环境,引起内壳层电子结合 能的变化,在谱图上表现为谱线的位移,这种现象称为化学 位移。 所谓某原子所处化学环境不同,一是指与它结合的元素种 类和数量不同,二是指原子具有不同的价态。 原子内壳层电子的结合能随原子氧化态的增高而增大;氧 化态愈高,化学位移也愈大。
二、X射线光电子能谱分析的基本原理
电子能谱分析是一种研究物质表层元素组成与离子 状态的表面分析技术,其基本原理是用单色射线照射 样品,使样品中原子或分子的电子受激发射,然后测 量这些电子的能量分布。通过与已知元素的原子或离 子的不同壳层的电子的能量相比较,就可确定未知样 品表层中原子或离子的组成和状态。

俄歇线
OKLL、CKLL

KLL:左边代表起始空穴的电子层,中间代表填补起始空穴的电子所属的电子层,右边代 表发射俄歇电子的电子层
C、XPS卫星线

用来照射样品的单色x射线并非单色, 常规Al/Mg Ka1,2射线里混杂Ka3,4,5,6和Kb 射线,它们分别是阳极材料原子中的L2 和L3能级上的6个状态不同的电子和M 能级的电子跃迁到K层上产生的荧光x射 线效应。这些射线统称XPS卫星线。
Ti及TiO2中2p3/2峰的峰位及2p1/2和2p3/2之间的距离
B、俄歇线

原子中的一个内层电子光致电离射出后,内层留下 一空穴,原子处于激发态。激发态离子要向低能转 化而发生驰豫;驰豫通过辐射跃迁释放能量。

辐射出的的射线波长在x射线区
x射线荧光
跃迁使另一电子激发成自由电子 俄歇电子

多以谱线群方式出现
Cx = ∴某元素所占原子分数为:

子为1。
x
(i )
=
(I x / Sx )
(I i / Si )
元素灵敏度因子法因受多因素影响,不可能很准确

谱线强度的确定
几何作图法:
峰面积=峰高 半峰宽
称重法:沿谱线
ACEDBFA剪下,称重 (纸均匀)
机械积分法: 电子计算机拟合

角量子数l :决定电子云的几何形状;不同的l将电子壳层分成几个亚层,即能级。

L与n有关,给定n后, l=0, 1, 2,…,( n -1);通常以s(l=0), p(l=1), d(l=2), f(l=3), …表示 在给定壳层的能级上, l 电子能量略
磁量子数ml :决定电子云在空间的伸

x射线源: 要求:
能量足够激发芯电子层;


强度产生足够的光电子通量;
线宽(决定XPS峰的半高宽FWHM)尽量窄;


Mg、Al源
Mg Ka;Al Ka Mg/Al双阳极x射线源
2.
电子能量分析器:核心部 件

2种结构:

筒镜分析器CMA:点传输率很高, 有很高信噪比。XPS为提高分辨 率,将2个同轴筒镜串联
扫描时间长 通过能小 扫描步长小 扫描期间几十电子伏特内 以强光电子线为主
得到的是谱线的精细结构:

离子价态分析:
铜红玻璃与CuO不相似;
铜红玻璃与CuCl相似
→铜红玻璃为+1价
铜红玻璃、化学试剂CuO和CuCl

元素不同离子价态比例:
每一拟合曲线代表一钛离子的不同价态;
每一拟合曲线峰面积代表一钛离子的强度;
展方向(取向);
给定l 若l
后, ml 取+l 和-l 之间的任何整 数, ml =l, l-1, …, 0, -1, …, - l ; =0,则ml =0;若l =1,则ml =1,0,-1。
相关文档
最新文档