多组分体系热力学知识讲解
合集下载
第4章 多组分热力学

第四章 多组分系统热力学
前面所讨论的是:单组分单相(两相)系统或多 组分组成恒定的系统。 但常见系统绝大部分是:多组分变组成系统。因 此必须研究处理多组分系统。
多组分系统除了两个变量之外,还需确定各组分 的物质的量才能确定系统的状态。 多组分系统分为:单相、多相
本章主要讨论多组分单相系统。
1
第四章 多组分系统热力学
B
dA SdT pdV BdnB
B
•适用条件 W ' 0 ,单相系统
31
2.多组分单相系统的热力学公式
•广义定义
B
U nB
S ,V ,nC
H nB
S , p,nC
A nB
T ,V ,nC
G nB
T , p,nC
保持特征变量和除B以外其它组分不变,某热力
学函数随其物质的量 nB的变化率称为化学势。
2 偏摩尔量相对于某一组分而言,本身是强度量;
3 偏摩尔量与浓度有关,与系统的总量无关。
4 偏摩尔量 X B ( nX,B )下T ,标p,n必C 须是
。T , p, nC
15
2.偏摩尔量
•偏摩尔量的物理意义
•两种理解 1 在恒温恒压下,于极大量的某恒定组成的系统中加
入1mol组分B时所引起系统广度量X的改变量。
混合物的摩尔体积:
Vm
xB M B /
B
Vm xBVB
B
21
5.吉布斯—杜亥姆方程
X
X
dX
( T
) p,nB
dT
(
p
)T ,nB
dp
B
X BdnB
•恒温恒压多组分系统
dX X BdnB
B
前面所讨论的是:单组分单相(两相)系统或多 组分组成恒定的系统。 但常见系统绝大部分是:多组分变组成系统。因 此必须研究处理多组分系统。
多组分系统除了两个变量之外,还需确定各组分 的物质的量才能确定系统的状态。 多组分系统分为:单相、多相
本章主要讨论多组分单相系统。
1
第四章 多组分系统热力学
B
dA SdT pdV BdnB
B
•适用条件 W ' 0 ,单相系统
31
2.多组分单相系统的热力学公式
•广义定义
B
U nB
S ,V ,nC
H nB
S , p,nC
A nB
T ,V ,nC
G nB
T , p,nC
保持特征变量和除B以外其它组分不变,某热力
学函数随其物质的量 nB的变化率称为化学势。
2 偏摩尔量相对于某一组分而言,本身是强度量;
3 偏摩尔量与浓度有关,与系统的总量无关。
4 偏摩尔量 X B ( nX,B )下T ,标p,n必C 须是
。T , p, nC
15
2.偏摩尔量
•偏摩尔量的物理意义
•两种理解 1 在恒温恒压下,于极大量的某恒定组成的系统中加
入1mol组分B时所引起系统广度量X的改变量。
混合物的摩尔体积:
Vm
xB M B /
B
Vm xBVB
B
21
5.吉布斯—杜亥姆方程
X
X
dX
( T
) p,nB
dT
(
p
)T ,nB
dp
B
X BdnB
•恒温恒压多组分系统
dX X BdnB
B
04 多组分系统热力学

什么是稀溶液的凝固点?
固态纯溶剂从稀溶液中开始析出的温度。
设纯溶剂的凝固点为
Tf*
溶液中溶剂的凝固点为 Tf
稀溶液中,由于非挥发性溶质的加入,溶
剂的蒸气压下降,所以凝固点也下降。
Tf Tf* Tf > 0 称为凝固点降低值
纯溶剂和稀溶液中溶剂的蒸气压如下图所示
pA
C
O*
D
O
B
Tf Tf*
T
溶剂凝固点下降示意图
4. 该定律适用于溶质是不挥发的非电解质。
5. 当A和B两种液体形成理想的液态混合物时, 都可以使用Raoult定律,即
pA pA* xA
pB pB* xB
二、 Henry定律
Henry定律(Henry’s Law)
1803年,英国化学家Henry根据实验总结出另 一条经验定律:
“在一定温度和平衡状态下,气体在液态溶剂 中的溶解度(用摩尔分数 x 表示)与该气体的平衡 分压 p 成正比”。
Raoult定律(Raoult’s Law) 1887年,法国化学家Raoult从实验中归纳出一
个经验定律: “定温下,在稀溶液中,溶剂的蒸气压等于纯溶
剂蒸气压 pA* 乘以溶液中溶剂的摩尔分数 xA ”
用公式表示为:
pA pA* xA
一、 Raoult定律
pA pA* xA
如果溶液中只有A,B两个组分, xA xB 1
态物质称为溶剂,气态或固态物质称为溶质。
如果都具有相同状态,则把含量多的一种称为 溶剂,含量少的称为溶质。
溶剂和溶质要用不同方法处理,他们的标准态、 化学势的表示式不同,服从不同的经验定律。
如果在溶液中含溶质很少,这种溶液称为稀溶 液,常用符号“∞”表示。
多组分体系热力学解析

体系中的组分对某热力学性质的贡献.
三.
化学势
• 定义: 偏摩尔吉布斯自由能为化学势 (chemical potential)
•
i=(G/ni)T,p,n(j≠i) (5)
• i : i物质的化学势. • 化学势也是一种偏摩尔量, 因为G的偏摩 尔量在化学中特别重要, 在计算中常常出 现, 故人们特意定义它为化学势.
(1)
•求Z的全微分: • dZ=(Z/T)dT+(Z/p)dp+∑(Z/ni)T,p,n(j≠i)dni •对于恒温, 恒压过程, 上式变为: •
Z dZ dni i ni T , p ,n ji
dT=0 dp=0
• 定义: •
Zi,m= (Z/ni)T,p,n(j≠i)
=TdS-pdV+∑idni
• 比较(7)式和上式, 可得:
•
i=(U/ni)S,V,n(j≠i)
• 上式也是化学势的定义式, 与(5)是等价的.
• 多组分体系的Gibbs关系式 :
• (适用于达力平衡, 热平衡,只作体积
功的均相体系) • dU=TdS-pdV+∑idni (8)
•
• •
dH=TdS+Vdp+∑idni
dF=-SdT-pdV+∑idni dG=-SdT+Vdp+∑idni (11)
(9)
(10)
• 化学势的四个等价的定义式: •
• • •
i=(U/ni)S,V,n(j≠i) (12)
i=(H/ni)S,p,n(j≠i) (13) i=(F/ni)T,V,n(j≠i) (14) i=(G/ni)T,p,n(j≠i) (15)
物理化学 第四章 多组分系统热力学

Vm
T,p一定
V*m,C VC
V*m,B VB
d c· b·
0 B
a xC
C
图4.1.2 二组分液态混合物的 偏摩尔体积示意图
若B,C形成真实液态混合物: 则混合物体积为由V*m,B至V*m,C的曲线。对于任一 组成a时,两组分的偏摩尔体积可用下法表示: 过组成点a所对应的系统体积点d作Vm-xC曲线的 切线,此切线在左右两纵坐标上的截距即分别 为该组成下两组分的偏摩尔体积VB,VC。
B
系统中各广度量的偏摩尔量: 对于多组分系统中的组分B,有: 偏摩尔体积: VB=(ƽV/ƽnB)T,p,n C 偏摩尔热力学能: UB=(ƽU/ƽnB)T,p,n C 偏摩尔焓: HB=(ƽH/ƽnB)T,p,n C 偏摩尔熵: SB=(ƽS/ƽnB)T,p,n C 偏摩尔亥姆霍兹函数:AB=(ƽA/ƽnB)T,p,n C 偏摩尔吉布斯函数: GB=(ƽG/ƽnB)T,p,n
C
几点说明: (1)偏摩尔量为两个广度性质之比,所以为强度 性质; (2)偏摩尔量的定义中明确是在恒温、恒压及系 统组成不变的条件下,偏导数式的下标为T,p 时才是偏摩尔量; (3)同一物质在相同温度、压力但组成不同的多 组分均相系统中,偏摩尔量不同; (4)若系统为单组分系统,则该组分的偏摩尔量 与该组分的摩尔量相等,即: XB=X*B,m
C
=VB (数学知识:二阶偏导与求导的顺序无关) 得证。
4.2化学势 4.2化学势
1.化学势的定义 混合物(或溶液中)组分B的偏摩尔吉布斯函数GB 定义为B的化学势,用符号μB表示:
μB = GB=(ƽG/ƽnB)T,p,n
def
C
对于纯物质,其化学势等于它的摩尔吉布斯函 数。
物化第4章多组分体系热力学

80%
相平衡的计算方法
相平衡的计算方法包括等温蒸发 法、等温蒸发结露法和等温升华 法等。
化学平衡
化学平衡的定义
化学平衡是指在一定温度和压 力下,可逆反应达到的动态平 衡状态,此时正逆反应速率相 等,各组分浓度不再发生变化 。
化学平衡的条件
化学平衡的条件是各组分浓度 不变,且正逆反应速率相等。 在等温、等压条件下,化学平 衡常数Kc=Kp/Kw。
相平衡和化学平衡的区别在于它们的 关注点不同。相平衡主要关注各相之 间的分界面性质和相组成,而化学平 衡主要关注可逆反应的正逆反应速率 和各组分浓度的变化。
相平衡和化学平衡的 相互影响
在多组分体系中,相平衡和化学平衡 之间存在相互影响。例如,在液态混 合物中,各组分的化学势差异会导致 物质传递和扩散现象的发生,从而影 响相平衡状态;同时,化学反应的进 行也会影响各相的组成和性质,从而 影响相平衡状态。因此,在多组分体 系的研究中,需要综合考虑相平衡和 化学平衡的影响。
化学平衡的计算方法
化学平衡的计算方法包括平衡 常数法、物料守恒法和电荷守 恒法等。
相平衡和化学平衡的关系
相平衡和化学平衡的 联系
相平衡和化学平衡都是热力学平衡态 的表现形式,它们之间存在密切的联 系。在多组分体系中,化学平衡通常 存在于相平衡状态中,而相平衡也是 化学平衡的表现形式之一。
相平衡和化学平衡的 区别
04
02
03
04
热容
表示物质吸收或放出热量的能 力,与温度和物质种类有关。
熵
表示系统无序度的量,与系统 内分子运动状态和排列有关。
焓
表示物质内能和压力势能的量 ,与物质的化学组成和温度有 关。
自由能
表示系统在恒温恒压下的自由 程度,与系统内部能量和熵有 关。
04多组分体系热力学

B
B
吉布斯–杜亥姆方程
xBdXB 0
B
二元系统: xAdX A xBdXB 0
Gibbs-Duhem公式可以表明在温度、压力恒定下,混合物的组 成发生变化时,各组分偏摩尔量变化的相互依赖关系。某一偏 摩尔量的变化可从其它偏摩尔量的变化中求得,即一组分的偏 摩尔量增大,另一组分的偏摩尔量就减小,且增大或减小的比 例与混合物中两组分的摩尔分数成反比。
( nB
)T , p,nC (CB)
B
3.偏摩尔量的测定法举例
以二组分体系的偏摩尔体积为例,说明 测定偏摩尔量的方法原理
Vm
V n1 n2
n1V1,m n2V2,m n1 n2
X1V1,m
X V2 2,m
偏摩尔量的实验测定
以偏摩尔体积为例:
T、P一定,向物质的量 为nC的液体C中,不断 加入B形成混合物,以混 合物体积V和B的物质的 量nB作图。图中任一点 作曲线的切线,其斜率
适用于只做体积功时的任何可逆或不可逆过程:包括封闭或开 放的多组分多相系统发生PVT变化、相变化和化学变化过程。
3.化学势判据及应用举例
dG SdT Vdp B ( )dnB ( )
B
适用于恒温恒压
下封闭系统只做
B ( )dnB ( ) 0
B
体积功时相变化 和化学变化的平
衡判据
dAT ,V dGT , p
混合物中对体积的贡献量VB,等于在无限大量该组成的 混合物中加入单位物质的量的B(混合物组成未变)引起系
统体积的增加值,也等于在有限量的该组成的混合物中
加入dnB的B (混合物组成未变)引起系统体积增加量dV折
合成加入单位物质的量的B时的增量,称为物质B的偏摩
Chapt03 多组分体系热力学

r
根据Euler齐次函数定理,
L Li L L j n n n n n n j i i j i T , p , nk i j T , p , nk j T , p , n T , p , nk j k i T , p , n k j T , p , nk i
第三章 溶液—多组分体系热力学 在溶液中的应用
§3.0 引言
基本概念
多组分体系:两种或两种以上物质(组分)构成的体系 可以是单相(混合物、溶液和稀薄溶液)或多相体系 分类: 混合物:对溶液中所有物质按相同方法研究时体系。 对于一种组分(B)研究的结果也完全用于任一组分 溶液(solution):广义上说,两种或两种以上物质均匀 混合且达到分子程度分布的液相或固相。其中一组分称溶 剂,其余为溶质。 溶剂:液态溶液中液态物质:溶解气体固体的液体;或 量多者。 溶质:被溶解的气体或固体;液体形成的溶液两组分差 不多时量少的液体。分为电解质和非电解质。
溶液分类 溶液分类: 根据凝聚态分为:气态、液态和固态溶液。 根据导电性分为:电解质溶液和非电解质溶液 溶液与混合物的区分:有溶剂和溶质之分时为溶液,反之 为混合物。 气体只能称为混合物。 稀溶液:溶质含量少,溶质摩尔分数总和远小于1时,称 稀薄溶液。无限稀释时为。
溶液组成表示法 除了标明温度、压力、体积之外,还要标明溶液组成。 物质的量分数xB 质量摩尔浓度mB 溶液组成表示方法 混合物中任一组分B:质量分数w 物质的量浓度c 物质的量分数xB、yB (摩尔分数,molar fraction)
U U ( S ,V , n1 , n2 ,..., nk )
U U U dU dnB dS dV S V n V , n S ,n B S ,V , nC B
根据Euler齐次函数定理,
L Li L L j n n n n n n j i i j i T , p , nk i j T , p , nk j T , p , n T , p , nk j k i T , p , n k j T , p , nk i
第三章 溶液—多组分体系热力学 在溶液中的应用
§3.0 引言
基本概念
多组分体系:两种或两种以上物质(组分)构成的体系 可以是单相(混合物、溶液和稀薄溶液)或多相体系 分类: 混合物:对溶液中所有物质按相同方法研究时体系。 对于一种组分(B)研究的结果也完全用于任一组分 溶液(solution):广义上说,两种或两种以上物质均匀 混合且达到分子程度分布的液相或固相。其中一组分称溶 剂,其余为溶质。 溶剂:液态溶液中液态物质:溶解气体固体的液体;或 量多者。 溶质:被溶解的气体或固体;液体形成的溶液两组分差 不多时量少的液体。分为电解质和非电解质。
溶液分类 溶液分类: 根据凝聚态分为:气态、液态和固态溶液。 根据导电性分为:电解质溶液和非电解质溶液 溶液与混合物的区分:有溶剂和溶质之分时为溶液,反之 为混合物。 气体只能称为混合物。 稀溶液:溶质含量少,溶质摩尔分数总和远小于1时,称 稀薄溶液。无限稀释时为。
溶液组成表示法 除了标明温度、压力、体积之外,还要标明溶液组成。 物质的量分数xB 质量摩尔浓度mB 溶液组成表示方法 混合物中任一组分B:质量分数w 物质的量浓度c 物质的量分数xB、yB (摩尔分数,molar fraction)
U U ( S ,V , n1 , n2 ,..., nk )
U U U dU dnB dS dV S V n V , n S ,n B S ,V , nC B
物理化学-多组分系统热力学

①μa = μb ②μc < μd ③μe > μf ④μa < μd ⑤ μb < μd ⑥ μd > μf
4. 化学势判据及应用举例 恒温、恒容
封闭系统,W′=0
恒温、恒压
分别代入
dG SdT Vdp B α dnB α αB
封闭系统,W′=0
恒温恒容或恒温恒压
化学势判据
化学势 判据
系统某广度量 X表现为温度 T、压力 p 及系统各组 分物质的量 nB、nC、nD、…等的函数:
X (T , p, nB, nC , nD ,)
恒温恒压下,系统中每一组分物质的量增加相同的倍数λ , 则其广度量也增加同样的倍数:
X T , p, nB , nC , nD , X T , p, nB, nC, nD,
解: 由题意得:水和甲醇的偏摩尔体积分别为:17.35ml/mol和
39.01ml/mol. 由集合公式可得,混合后溶液体积为:
nBVB V
V=0.4mol× 39.01ml/mol+0.6mol×17.35ml/mol=26.01ml
未混合前,甲醇和水各自体积的加和为:
V
n甲醇M甲醇
甲醇
n水M 水
S ,V ,nC
H nB
S , p,nC
A nB
T ,V ,nC
保持上述四个基本热力学函数U/H/A/G的特征变量和除B 以外其它组分物质的量不变,某热力学函数随组分B的物质 的量的变化率称为化学势。
注意不同的下标变量:不能把任意的热力学函数对nB的 偏微商都称为化学势,一定的限制条件。
任一化学反应,假定系统已处于相平衡,
任一组分B在每个相中的化学势都相等:
Bα B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一. 偏摩尔量 (partial molar quantity):
• 描述简单体系状态只需2个独立变量。 • 描述多组分体系的状态,需要更多的状
态函数。 • 设多组分体系含有r个物种,当已知体
系的T、p和每个组分的含量n1…nr,此 体系的状态即可唯一地确定:
• Z=Z(T,p,n1,n2, …nr) (1)
条件是:
• 等温, 等压, 其它组分的物质的量不变.
纯物质的偏摩尔量等于其摩尔量
A、B组成溶液 溶液体积是A、B偏摩尔体积的加合
V=nAVA,m+nBVB,m
某偏摩尔量所表示的是: 体系中的组分对某热力学性质的贡献.
三. 化学势
• 定义: 偏摩尔吉布斯自由能为化学势 (chemical potential)
• 对U,H,F等函数也可作类似的推广.
• 以内能U为例:
• U=G-pV+TS • dU= dG -pdV-Vdp+TdS+SdT
• 将dG的展开式代入上式: • dU=-SdT+Vdp+∑idni-pdV-Vdp+TdS+SdT
• dU=TdS-pdV+∑idni (7)
化学势的其它形式定义式
• ∫dZ= ∫∑Zi,mdni =∑Zi,m∫dni
•
Z= ∑Zi,mni (4)
• (4)式即为偏摩尔量集合公式.
积分过程:水与乙醇的流速相集合公式的物理含义是:
• 多组分体系的热力学量等于各 组分的摩尔 数与其相应的偏摩 尔量乘积的总和.
注意: • 偏摩尔量是体系广度性质的偏微商, 其微商的
•求Z的全微分: • dZ=(Z/T)dT+(Z/p)dp+∑(Z/ni)T,p,n(j≠i)dni •对于恒温, 恒压过程, 上式变为:
•
Z
dZ
i
ni
T,p,nji
dni
• 定义:
• Zi,m= (Z/ni)T,p,n(j≠i)
dT=0 dp=0
(2)
• Zi,m: i 物质的偏摩尔量(partial molar quantity).
• 许多化学反应为多相反应, 需将热力学 基本关系式推广到多相体系. 一般情况下: 界面部分质量仅占整个体系的极小部分 界面的性质的影响可以忽略不计 体系热力学函数是各相数值之简单加合 以吉布斯自由能为例:
G=∑G
dG=∑dG
• 某一相的G的全微分式为:
• dG =-SdT+Vdp+∑i dni
• 由多元函数的全微分定义:
• dU=dU(S,V,n1,n2,...nr) =(U/S)dS+(U/V)dV+∑(U/ni)S,V,n(j≠i)dni
=TdS-pdV+∑idni
• 比较(7)式和上式, 可得:
•
i=(U/ni)S,V,n(j≠i)
• 上式也是化学势的定义式, 与(5)是等价的.
• 多组分体系的Gibbs关系式 :
• 体系的G的全微分为:
• dG =-∑SdT+∑Vdp +∑()∑(i) i dni
•∵
∑S=S ∑V=V
• ∴ dG=-SdT+Vdp +∑()∑(i) i dni
•
i = (G/ni())T,p,n(j≠i,)
• 以上两式为复相多组分体系的吉布斯自由能全微分展 开式和化学势的定义式.
• 多相体系的热力学基本公式为: • dU= TdS-pdV +∑()∑(i) i dni (16) • dH= TdS + Vdp +∑()∑(i) i dni (17) • dF= -SdT-pdV +∑()∑(i) i dni (18) • dG=-SdT + Vdp +∑()∑(i) i dni (19) • (16)式到(19)的适用范围:
• 求G的全微分:
• dG=(G/T)dT+(G/p)dp +∑(G/ni)T,p,n(j≠i)dni
• dG=-SdT+Vdp+∑(G/ni)T,p,n(j≠i)dni
• 将化学势的定义式代入上式:
• dG=-SdT+Vdp+∑idni (6)
• (6)式为推广的热力学基本关系式, 可以适用于 有化学反应发生的多组分体系.
• i=(G/ni)T,p,n(j≠i) (5)
• i : i物质的化学势.
• 化学势也是一种偏摩尔量, 因为G的偏摩 尔量在化学中特别重要, 在计算中常常出 现, 故人们特意定义它为化学势.
四. 广义Gibbs关系式
• 对于多组分体系, 体系的状态可以视为温度, 压力和各组分物质的量的函数:
• G=G(T,p,n1,n2, …nr)
• (适用于达力平衡, 热平衡,只作体积 功的均相体系)
• dU=TdS-pdV+∑idni
(8)
• dH=TdS+Vdp+∑idni
(9)
• dF=-SdT-pdV+∑idni (10)
• dG=-SdT+Vdp+∑idni (11)
• 化学势的四个等价的定义式: • i=(U/ni)S,V,n(j≠i) (12) • i=(H/ni)S,p,n(j≠i) (13) • i=(F/ni)T,V,n(j≠i) (14) • i=(G/ni)T,p,n(j≠i) (15)
• 已达力平衡, 热平衡, 且只作体积功的 复相多组分体系.
五. 物质平衡判据
• 热力学平衡包括力平衡、热平衡、相平衡和化 学平衡。
• 相平衡和化学平衡可以合并为:
物质平衡
• 考虑等温等压下体系达物质平衡的条件: • dG=-SdT+Vdp +∑()∑(i) i dni • 体系达热力学平衡时,有dG=0。 • 故等温等压, 体系达物质平衡的条件为:
多组分体系热力学
第九节 多组分体系热力学
• 简单体系的热力学理论不适用于有相变和化 学反应的体系。需要将其推广到复杂体系.
• 复杂体系的热力学性质不是体系中各组 分相应性质的简单加合。
• 如纯液体混合形成溶液时,体系体积的变化:
• 50ml的水和50ml的乙醇混合:
•
V总 96 ml
• 而不是体积的简单加合100ml.
二. 偏摩尔量集合公式
• 偏摩尔量是强度性质. 所以偏摩尔量 的数值只与体系中各组分的浓度有 关, 而与体系的大小多少无关.
• 对某一热力学量求积分dZ: ∫0ZdZ=∫∑Zi,mdni ( 恒温恒压下积分)
• 若保持在积分过程中体系各组分的 浓度不变, 则各组分的偏摩尔量Zi,m的 值也不变, 可以作为常数提出积分号 外, 于是得: