光纤的研究现状及发展趋势_new
探讨我国光纤通信技术发展的现状和前景

互联网+通信nternet Communication 探讨我国光纤通信技术发展的现状和前景___________□周嘉慧佳木斯大学信息电子技术学院【摘要丨在我国光纤通信技术发展过程中,涌现出很多新兴技术,如波分复用通信技术、DM移动通信技术、单模与多模通信技术、光纤接入通信技术、光弧子通信技术,有效提升了我国光纤通信的发展可靠性与安全性。
鉴于人工智能发展视域下,未来我国光纤通信技术发展过程中,应当依据市场发展趋势与用户的诉求,探索光纤通信技术的未来发展前景,如智能光纤联网通信技术、网络数字化同步系统、超大容量电网传输系统、新型光纤通信技术、光纤性能的持续升级等。
本文就我国光纤通信技术的发展现状与未来发展前景进行分析探讨。
【关键词】光纤通信发展现状发展前景引言:我国的网络用户较多,为满足用户的数据通信需求,需 开展光纤通信技术的应用,为用户提供个性化的光纤入户服务,解决客户的数据传输用网问题。
在实际应用过程中,需 对光纤通信技术进行合理分析,确保技术应用的安全性与可靠性。
为推动我国光纤通信事业的发展,需立足于当下,展 望未来我国光纤通信技术的应用发展前景,并提出相关的技术展望,旨在推动我国光纤事业的高质量发展。
―、光纤通信技术概述光纤通信技术,主要以光纤进行数据传输,进而达到数据通信的工作效果。
由于光纤具有非常强的绝缘性能,在光源信号的传输过程中,可完成对光信号的高效传输。
为保证光纤通信技术应用的稳定性与可靠性,则需要选择合适的制作材料,如进行光纤制作时,可采用玻璃材料进行制作,有 效避免光纤接地问题的出现。
由于光纤通信的保密性与安全性非常强,因此在国防安全建设领域,都主要应用光纤通信技术,以保证国家信息通讯安全,提高社会的稳定性与安全性。
通过对该技术分析可知,光纤通信技术在实际应用时,具有非常强的抗干扰能力,可稳定有效地完成数据传输,保证信息传输的安全与可靠。
在军事领域得到广泛应用,保证军事机密信息传输的绝对安全⑴。
光纤通信传输技术应用和发展趋势

光纤通信传输技术应用和发展趋势光纤通信传输技术是一种通过光纤传输信息的通信技术,其信号传输速率和容量远远超过了传统的电信号传输技术。
随着信息时代的高速发展,光纤通信传输技术在各个领域的应用也越来越广泛。
本文将从应用和发展趋势两个角度进行分析。
其次,光纤通信传输技术的发展趋势。
随着人们对通信速度和传输容量要求的增加,光纤通信传输技术也在不断创新和发展。
以下是几个光纤通信传输技术发展的趋势:1.高速传输:随着云计算、物联网、5G等新兴技术的兴起,对通信速度和传输容量的要求越来越高。
光纤通信传输技术将不断提高传输速率,预计在不久的将来,将实现TB级别的传输速率。
2.大容量传输:随着高清视频、虚拟现实、增强现实等信息形式的出现,对传输容量的要求也越来越大。
光纤通信传输技术将不断提高带宽,以满足大容量传输的需求。
3.无源光网络:无源光网络是一种无源光纤通信传输技术,它不需要能耗较高的光放大器等设备,可以降低通信系统的能耗。
未来的光纤通信传输技术将更加注重能耗问题,提高系统的能效。
4.光纤传感技术:光纤通信传输技术在其他领域的应用也逐渐展开,例如光纤传感技术。
光纤传感技术通过光纤传输信号,实现对温度、压力、湿度等物理量的监测,具有高精度、高灵敏度等特点。
综上所述,光纤通信传输技术在应用和发展上具有广阔的前景。
随着技术的不断进步和创新,光纤通信传输技术将进一步提高传输速率和容量,满足不断增长的通信需求。
另外,光纤通信传输技术在其他领域的应用也将得到拓展,为智能交通、智能家居、医疗健康等领域的发展提供支撑。
光纤通信技术发展的现状及前景分析

光纤通信技术发展的现状及前景分析摘要:科学技术的发展是时代使然,也极大地推动了其他领域共同进步。
通信领域也不外如是,随着各种新型技术的演化,光纤通信技术终于问世,这一技术是将光纤作为信号传输的媒介,相较于其他通信形势优势更为巨大,现已在我国得到了广泛应用。
下面就对光纤通信技术发展的现状及前景进行一番探讨。
关键词:光纤通信;特点;发展现状;前景分析引言:当前,世界各国都已步入了信息时代,在这样的背景下,最先了解最新信息的人无疑会在竞争中占据更大优势。
为此,我国大部分地区都已安装了光缆线路,以此来进行信息传播,而光纤通信技术也在不断的实践中越发完善,为我国通信能力的提升奠定了坚实基础,也极大地方便了人们工作与生活。
1 光纤通信技术特点光纤通信系统包含多种元器件,如光发信机、光缆等,且激光是光纤通信技术中所使用的主要光波形式,这也令该技术与金属电缆通信方式有着极大不同。
概括来说,光纤通信技术特点包含以下几点:①由于光纤通信技术以光纤为信息承载载体,因此具备传输距离远、信息容量大、传输速度快、传输损耗小等特点。
②光纤本身质量轻,这就决定了其在运输及铺设方面更具优势。
③光纤通信技术对电磁干扰具备较强的抵抗能力,能够防止信息丢失与失真。
④光纤通信具备较高的保密性与安全性,能够避免信息被窃取。
⑤光缆能够在多种环境中使用,不仅使用寿命长,对环境也较为友好,且制造光纤的综合成本较低。
2 光纤通信技术发展现状2.1多模和单模两种类型改革开放之后,我国经济取得了辉煌成就,人民生活水平也随之水涨船高。
而在步入信息时代之后,对数据传输不仅要求更高,需求量也与日俱增。
目前,我国光纤通信电缆有单模与多模之分,相对来说,单模光纤建造成本更高,对于数据的传输更具多样化,在长距离的光纤传输场景中更为适用。
而多模光纤则大多应用于短程、中程的通讯工程中。
2.2核心干线随着我国光纤通信技术的发展,传统骨架结构已越来越不适用,分立光纤形式问世后,逐步取得了广泛应用。
光纤通信技术的发展趋势

光纤通信技术的发展趋势光纤通信技术以其高速、大容量、抗干扰等优点,已被广泛应用于各行各业,成为信息时代的重要支撑。
随着科技的不断进步,光纤通信技术也不断发展,未来的趋势主要体现在以下几个方面:一、光纤通信速度将继续提升光纤通信速度一直是业界关注的焦点,目前最高速度已经达到了200Gbps。
未来随着技术的不断创新,该速度还将继续提升。
其中有两方面的技术发展将使得光纤通信速度迈上一个新的台阶。
一方面是新颖的材料,如新型的半导体材料,纳米材料等,它们能够使得光的传输速度更快;另一方面是新型的技术,如光量子计算,光量子传输等,这些新技术可以在短时间内快速传输大量数据,从而提高光纤通信的速度。
二、光纤通信容量将不断提高当前,光纤通信容量已经越来越大了,但随着数据的大量增长,未来光纤通信容量还需要进一步提高。
对此,主要依靠两个方面的技术。
一方面是WDM(波分复用)技术的进一步发展,也就是通过不同的波长来扩大带宽;另一方面是OFDMA(正交频分复用)技术的应用,也就是在一定的频段内分配多个载波,从而使得多个用户可以在同一时间内进行通信。
三、光纤通信网络将更加智能化随着智能化时代的到来,光纤通信网络也将不断智能化。
目前,智能网元已被广泛应用于光纤通信网络中。
未来,随着人工智能的应用,光纤通信将实现更为智能化的管理和控制。
人工智能技术可以通过对数据的分析和处理,优化光纤通信网络的性能,降低网络延迟时间和故障率。
光纤通信网络的建设和运营需要消耗大量的能源,而且会造成环境污染。
因此,未来光纤通信网络将更加注重节能环保。
这可以通过新型的传输设备、天然气作为能源来实现。
此外,节能环保的理念也会贯穿到光纤通信网络的各个方面,如网络设计、建设、运维等。
综上所述,未来光纤通信技术主要从高速、大容量、智能化、节能环保等方面发展。
这将有力地推动信息通信行业的发展,带来更为便捷、高效、环保的通信服务。
光纤现状及其发展

光纤通信的现状及其发展光缆通信在我国已有20多年的使用历史,这段历史也就是光通信技术的发展史和光纤光缆的发展史。
光纤通信因其具有的损耗低、传输频带宽、容量大、体积小、重量轻、抗电磁干扰、不易串音等优点,备受业内人士青睐,发展非常迅速。
目前,光纤光缆已经进入了有线通信的各个领域,包括邮电通信、广播通信、电力通信、石油通信和军用通信等领域。
光纤通信的发展依赖于光纤通信技术的进步。
近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。
下面简单描述我国光纤光缆发展的现状:1.1 普通光纤普通单模光纤是最常用的一种光纤。
随着光通信系统的发展,光中继距离和单一波长信道容量增大,G.652.A光纤的性能还有可能进一步优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。
符合ITUTG.654规定的截止波长位移单模光纤和符合G.653规定的色散位移单模光纤实现了这样的改进。
1.2 核心网光缆我国已在主干线(包括国家主干线、省内主干线和区内主干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括G.652光纤和G.655光纤。
G.653光纤虽然在我国曾经采用过,但今后不会再发展。
G.654光纤因其不能很大幅度地增加光纤系统容量,它在我国的陆地光缆中没有使用过。
主干线光缆中采用分立的光纤,不采用光纤带。
主干线光缆主要用于室外,在这些光缆中,曾经使用过的紧套层绞式和骨架式结构,目前已停止使用。
1.3 接入网光缆接入网中的光缆距离短,分支多,分插频繁,为了增加网的容量,通常是增加光纤芯数。
特别是在市内管道中,由于管道内径有限,在增加光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径和重量,是很重要的。
接入网使用G.652普通单模光纤和G.652.C低水峰单模光纤。
低水峰单模光纤适合于密集波分复用,目前在我国已有少量的使用。
光纤通信技术的发展历程,应用方向及未来发展趋势

光纤通信技术的发展历程,应用方向及未来发展趋势
光纤通信技术是指利用光纤作为传输介质进行信息传输的技术。
该技术的发展历程可以追溯至20世纪60年代初期,当时科学家们开始研究光的传输特性并提出了使用光纤进行通信的想法。
随着技术的发展和突破,光纤通信开始进入实用化阶段。
1977年,一家名为Corning Glass Works的公司成功地开发出了低损耗的光纤,使得光纤通信技术得以大规模应用。
此后,光纤通信技术得到了快速的发展,并催生了众多相关产业的兴起。
目前,光纤通信技术广泛应用于通信、互联网、医疗、军事等众多领域。
其主要优势在于传输速度快、带宽大、抗干扰能力强、数据安全性高等。
同时,光纤通信技术也在不断地发展和完善,未来有望实现更加高速、高效、可靠的传输。
未来发展趋势方面,光纤通信技术将在以下几个方面有所突破: 1.高速传输技术的发展:随着信息量的不断增大,光纤通信技术需要不断提高传输速度。
目前,科学家们正在研究利用光子晶体等材料来实现更高速的传输技术。
2.技术的智能化发展:未来光纤通信技术将越来越具有智能化特征,例如光纤传感技术可以应用于智能家居、智能交通等领域。
3.新型光纤材料的研究:科学家们正在研究开发新型光纤材料,例如光纤光栅等,以提高光纤通信技术的应用范围和效率。
总的来说,光纤通信技术的发展历程和应用方向非常广泛,未来的发展趋势也是非常光明的。
我们有理由相信,在不久的将来,光纤
通信技术将会更好地服务于人类社会的各个领域。
浅论光纤通信技术的特点和发展趋势
浅论光纤通信技术的特点和发展趋势光纤通信技术是一种高速、可靠、安全的通信方式,其在现代通信系统中得到广泛应用。
光纤通信技术具有明显的特点,其发展趋势也在不断变化。
一、光纤通信技术的特点1.传输速度快光纤通信传输速度快,通信速率可达Gbps级别,远高于传统的电信网络。
这使得光纤通信技术在高速数据传输和多媒体信息传输方面具有极大的优势。
2.传输距离远光纤通信技术的传输距离可以达到几十公里甚至上百公里,比传统的电信网络传输距离更远。
这使得光纤通信技术在长距离通信方面得到广泛应用。
3.抗干扰能力强光纤通信技术的抗干扰能力非常强,不受电磁干扰、雷击等外界因素的影响,可以保证通信信号的稳定性和可靠性。
4.保密性好光纤通信技术具有良好的保密性,其通信信号无法被窃听和干扰,可以保证通信的安全性和保密性。
二、光纤通信技术的发展趋势1.光纤通信技术将逐渐向高速、大容量的方向发展。
随着互联网的发展,数据传输量越来越大,对通信带宽的要求也越来越高。
未来的光纤通信技术将更加注重提升通信速度和容量,以满足大容量数据传输的需求。
2.光纤通信技术将逐渐向智能化、自动化的方向发展。
未来的光纤通信系统将更加注重智能化和自动化,通过人工智能和自动化技术,实现光纤通信系统的自我管理和优化,以提高通信质量和效率。
3.光纤通信技术将逐渐向绿色、环保的方向发展。
未来的光纤通信系统将更加注重环保和绿色发展,通过优化设备结构和降低能耗,实现光纤通信系统的节能与环保,以满足社会可持续发展的需求。
4.光纤通信技术将逐渐向多元化、集成化的方向发展。
未来的光纤通信系统将更加注重多元化和集成化,通过将不同的通信服务集成在一起,实现通信服务的多元化和一体化,以提高用户体验和通信效率。
光纤通信技术具有很强的优势和发展潜力,未来的光纤通信系统将会更加智能化、高效化、绿色化和集成化,以满足人们日益增长的通信需求。
我国光纤光缆产业现状及发展趋势分析
况 ; 21年 , 到 0 0 我国光纤消费量份额 占 全球 的光纤市场的 5 % 0 左右 ( 1 。 图 )
集 团有 限公司( 以下简称 “ 富通” , )通过
口
A vne a r lI u t d acd t isn s y M ea d r
引进 、 消化、 吸收再创新 , 成功开发各具 特 色的“ 两步法 ” 预制棒工艺 , 包括微波
逐步 得到 了认 可 , 纤预 制棒 技 术和 光
一
产业现状
2 世 纪 9 年 代 , 国通过 引进 国 0 0 我
产能得 到进一步 发展。 06 , 2 0年 随着 国 内“ 信息化 带动工业化” 指导方针 的提
出, 信息需 求量迅猛增加 , 光纤产业 市
1 市场需求呈现凹形状态 .
了 隐患 。 近年 来, 由于 光缆质量 问题造 成的网络断网现象 时有发生 , 给国家和
耐高温光纤 、 光敏光 纤等 ; 医疗领 激光
域的特殊 多模光纤 、 硬塑料包层石英光
等离子体化学气相沉积工艺 (C D + P V ) 套管 的技术和设备 , 向气相沉积工艺 轴 + 外气相沉积工艺 ( 管 VAD+ VD 的 O )
上套管 以及主要原材料 四氯化硅 、 四氯
化锗大部分依靠进 口, 致使国 内光纤预 制棒生产成本要高于国际专业公 司, 同
“ 中天”、 )成都康宁光缆有限公司( 以下
简称 “ 康宁” 等 6 ) 家光 缆 制 造企 业 , 市 场份额达到 8%( 图2 。 6 见 )
缆产业的核心技术 , 一直 以来是制约我
国光 纤产业发展 的瓶颈。 近年 来 , 国内 主要光纤预 制棒制造企业 , 如长飞光纤 光缆有限公司( 以下简称 “ 长飞” 、 )富通
光通信技术的前沿研究及发展趋势
光通信技术的前沿研究及发展趋势光通信技术是指利用光来传输信息的技术。
与传统的电信技术相比,光通信技术具有传输速率高、带宽大、信号衰落小等优势,被广泛用于现代通信领域,包括互联网、移动通信、卫星通信等方面。
目前,随着信息技术的不断发展,光通信技术也在不断进步和发展,本文将对其前沿研究及发展趋势进行探讨。
一、光通信技术的前沿研究光通信技术的前沿研究主要聚焦在以下几个方面:1.高速光通信随着人们对通信速率越来越高的需求,高速光通信技术在近年来得到了广泛的关注和研究。
此类技术主要包括高速调制技术、高速数字信号处理技术等。
其中,高速调制技术是重点研究的技术之一,主要目的是将数字信号转换为高速调制的光信号,实现高速数据传输。
目前,科学家们已经成功研究出了10 Tbit/s的高速光纤通信技术,未来还有望实现更高的传输速率。
2.光与微波混合通信技术光与微波混合通信技术是一种将微波信号和光信号结合起来的技术,能够提高数据传输能力和传输距离,应用于军事通信、民用通信和卫星通信等领域。
此技术的关键在于光与微波信号的合并和分离方法。
3.光纤传感技术光纤传感技术是利用光的传输方式实现多种物理量的测量和监测,包括温度、压力、振动、形变等参数。
这种技术可以应用于环境监测、工业生产、医学等领域,具有高灵敏度、高精度、低成本等特点。
4.下一代光通信网络目前,人们已经开始着手研究下一代光通信网络,其主要目的是提高网络的灵活性、容量、安全性以及先进性。
同时,人们也在研究如何实现更快速和更有效的光纤通信网络连接,以及如何在光纤通信网络中实现更快速、更高效的信息交换。
二、光通信技术的发展趋势光通信技术的发展趋势主要包括以下几个方面:1.光通信技术将会应用于更多的行业和领域随着人们对通信速度和数据传输能力的要求日益增加,以及物联网技术的发展,未来光通信技术将会应用于更多的行业和领域,包括智能家居、智慧城市、智能交通等。
2.长距离光通信网络的建立为了满足人们对数据传输能力和速度的需求,未来光通信技术将不仅仅应用在城市中心和商业中心,也将应用于更多地方,包括农村和偏远地区。
光纤通信技术的研究现状与发展趋势
光纤通信技术的研究现状与发展趋势随着信息时代的到来,通信技术的发展已成为国家战略和经济发展的重要支撑。
在众多通信技术中,光纤通信技术以其巨大的通信带宽和高速可靠的传输速度,成为目前最为先进的通信技术之一,广泛应用于通信网络、数据中心、高清视频传输等领域。
一、光纤传输技术的发展历程光纤通信技术起源于20世纪60年代初期,当时科学家们开始尝试利用光信号传输信息。
1970年代,光纤通信得到进一步发展,其通信速度更是达到了每秒数百兆位的水平,再到80年代,光纤通信技术已经成为商用网络的通信标准。
而在90年代末期,光纤通信技术则被大规模使用于互联网、手机网络和有线电视领域,8兆,34兆,155兆三种速率牢牢占据了主流地位。
而时至今日,光纤传输技术已经发展到了每秒T范围,甚至更高的级别,将传输速度推向了前所未有的高度。
二、光纤通信技术的技术优势相比于传统的有线传输技术,光纤通信技术得到了极大的发展和新突破。
光纤传输技术具有传输速度快、带宽大、抗电磁干扰、可靠性高、保密性好等优势,主要包括以下几个方面:1、高速率:光纤传输技术可以在非常短的时间内通过巨大的带宽进行数据传输,这一优势为整个数字社会的前进提供了重要的支撑。
2、稳定可靠:光纤传输技术能够实现长距离的传输,而不受距离影响;同时,它还不会受电磁干扰和同轴电缆的交叉干扰。
3、生命长,性价比高:光纤传输技术的寿命长达数十年,这相比于其他传输技术具备极大的优势;同时它需要更少的维护和更少的能源,更加节省地球上的宝贵资源。
三、光纤传输技术发展趋势在当今数字时代,信息的产生、传输、存储和计算的速度都在不断加快。
因此,如何提高通信传输速度和数据传输的效率成为新时期光纤通信技术的关键问题。
从技术角度,光纤传输技术未来的发展趋势主要有以下几个方面:1、以太网技术的升级:随着视频、云计算、物联网革命的不断推进,以太网技术也必须不断升级。
例如结合40GBASE-SR4带宽的高速光纤通信技术,将是未来数据中心十分优秀的选择;2、光子编码技术的推广:随着量子信息技术的发展,依托光子编码技术的数据传输方式正在变得越来越重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/9/5
1
光通信技术发展:满足大容量、 长距离、高速率要求。
光器件技术与光纤技术的研究和发展: ◇ EDFA的发明:
◇ DWDM的出现:
◇ 高速激光器的出现:
上述技术的应用导致光纤中高密度光能量, 诱发非线性效应,影响传输质量。
◇光纤技术的新突破。
2020/9/5
2
光纤参数
G.652A
G.652B
G.652C
模场直径,μm 1310nm 包层直径,μm
(8.6~9.5)± (8.6~9.5)± (8.6~9.5)±
0.7
0.7
0.7
125±1
125±1
125±1
芯同心度误差,μm
≤0.8
≤0.8
≤0.8
包层不圆度,%
≤2
≤2
≤2
光缆截止波长,nm
≤1260
≤1260
2020/9/5
G.652B
G.652C 其应用范围是:
2020/9/5
10
三个子类光纤的应用范围
◇G.652A 主要用于 G.957接口标准的SDH传 输系统和G.691带光放大单通道的STM16SDH传输系统;
◇G.652B主要用于 G.957接口标准的SDH传 输系统和G.691带光放大单通道SDH传输系 统及 G.692带光放大STM-64SDH的WDM传输 系统;
2020/9/5
11
三个子类光纤的应用范围
◇G.652C(波长段扩展的非色散位移单模 光纤,又称为低水峰光纤)除了与 G.652B光纤的适用范围相同之外,这类 光纤允许G.957接口标准的传输系统使 用在1360nm~1530nm之间的扩展波段。
2020/9/5
12
G.652A、G.652B、G.652C主要技术指标(1)
四波混频,影响传输质量。
(该慨念正处于研究之中)
2020/9/5
7
■光纤几何参数的容差变小
传输系统的需求: ◇光纤接头对光纤MFD容差和纤芯 同心度偏差的依赖; ◇ PMD指标依赖于纤芯不园度。
客观的可能性: ◇光纤制造技术的提高。
2020/9/5
8
G.652光纤几何属性参数
MFD
包层直径
芯同度偏差 包层不园度
ITU-T有关光纤方面的标准
◇ G.650 单模光纤相关参数的定义和试验方法; ◇ G.651 50/125μm多模渐变型折射率光纤光缆
特性; ◇ G.652 单模光纤光缆特性; ◇ G.653 色散位移单模光纤光缆特性; ◇ G.654 截止波长位移型单模光纤光缆特性; ◇ G.655 非零色散位移单模光纤光缆特性。
0.35
****
0.35
16XX*nm(XX≤25nm)衰减系数 最大值,dB/km
0.4
0.4
2020/9/5
15
典型的朗讯G.652C光纤衰耗曲线
1.4 1.2
1 0.8 0.6 0.4 0.2
0
2020/9/5
1000 1040 1080 1120 1160 1200 1240 1280 1320 1360 1390 1430 1470 1510 1550 1590
衰耗(dB/km
16
G.652A、G.652B、G.652C主要技术指标(4)
光缆பைடு நூலகம்数
G.652A
光缆链路 PMD 特性
光缆段数 M,
概率 Q,%
PMD 系数链路设计最大值 PMDQ,ps/√km
2020/9/5
G.652B
20 0.01 0.5
G.652C
20 0.01 0.5
17
三个子类光纤的差异
不规定
待定**
待定**
14
G.652A、G.652B、G.652C主要技术指标(3)
光缆参数
G.652A G.652B G.652C
1310nm 衰减系数最大值,dB/km 0.5
0.4
0.4
yyyynm***(1383-1480nm)衰减 系数最大值,dB/km
1550nm 衰减系数最大值,dB/km 0.4
2020/9/5
3
单模光纤发展方向
◆在G.652基础上: 降低1383nm水峰,使S波段用于传输; ◆在G.655基础上: 能得到不同色散、色散斜率及有效面
积组合,满足不同的传输系统。
2020/9/5
4
G.652光纤标准的演进及未耒走向
■标准内容划分更加准确, ■光纤几何参数的容差变小, ■G.652光纤分成了三个子类, ■对光纤光缆的PMD作了明确规定, ■新增了DGD的要求, ■非线性系数的研究, ■对扩展波段光纤的研究。
2020/9/5
5
■标准内容划分更加准确
原标准的目录内容:
“光纤特性”、
“工厂长度指标”、
“基本光缆段指标”。
修改后标准的目录内容:
“光纤属性”、
“光缆属性”、
“链路属性”。
2020/9/5
6
光纤属性中提出的新概念
“色散的纵向均匀性”
∵光纤在某一波长上的局部色散值降 到一个很小值,且这一波长又接近 WDM系统中的工作波长,此时将诱发
≤0.5(16XX*nm) ≤0.5(16XX*nm)
最小零色散波长λ min,nm
最大零色散波长λ max,nm
零色散波长最大斜率
1300 1324 0.093
1300 1324 0.093
1300 1324 0.093
Smax,ps/nm2.km
未成缆光纤 PMD 系数 最大值,ps/√km
2020/9/5
波长(nm) 标称值范围(μm)
容差 标值值(μm) 容差(μm)
最大值 最大值
原标准 1310 8.6-9.5 ±10% 125.0
±2 1 2.0%
2020/9/5
新标准 1310 8.6-9.5 ±0.7μm 125.0
±1 0.8 2.0%
9
■G.652光纤分成了三个子类
为适应于不同的传输系统,新标准将 G.652光纤分成以下三个子类: G.652A
≤1260
筛选应力,Gpa
≥0.69
≥0.69
≥0.69
2020/9/5
13
G.652A、G.652B、G.652C主要技术指标(2)
光纤参数
G.652A
G.652B
G.652C
宏弯衰减,dB(37.5mm ≤0.5(1550nm) ≤0.5(1550nm) ≤0.5(1550nm)
半径,100 圈)
G.652B与G.652A的不同之处:
(1)、提出了L波段16XXnm处的衰减指标;
(2)、因为传输速提高到STM-64,所以对光缆的 PMD指标提出要求。
G.652C与G.652A、G.652B的不同之处:
(1)、除L波段16XXnm处的衰减指标外,对 1383nm-1480nm波段中的某一波长处的哀减将作 要求。