卷积神经网络n代码解析
简述卷积神经网络(CNN)和循环神经网络(RNN)的原理及应用场景

简述卷积神经网络(CNN)和循环神经网络(RNN)的原理及应用场景卷积神经网络(CNN)和循环神经网络(RNN)是当前深度学习领域最为重要和广泛应用的两种神经网络模型。
它们分别在计算机视觉和自然语言处理等领域取得了巨大的成功。
本文将从原理和应用场景两个方面进行详细介绍。
一、卷积神经网络(CNN)的原理及应用场景卷积神经网络(CNN)是一种专门用于处理具有网格结构数据的深度学习模型。
它最初是为了解决计算机视觉中的图像分类问题而提出的,但现在已经广泛应用于图像识别、目标检测、语义分割等多个领域。
1.1 原理卷积神经网络(CNN)主要由卷积层、池化层和全连接层组成。
其中,卷积层是CNN最重要的组成部分,它通过一系列滤波器对输入数据进行特征提取。
滤波器通过与输入数据进行点乘操作,得到特征图(feature map),从而捕捉到输入数据中的局部特征。
池化层用于减小特征图的尺寸,并保留重要特征。
常见的池化操作有最大池化和平均池化。
最大池化选择每个区域中的最大值作为输出,平均池化则选择每个区域的平均值作为输出。
这样可以减小特征图的尺寸,减少参数数量,从而降低计算复杂度。
全连接层将特征图转换为一维向量,并通过一系列全连接层进行分类或回归等任务。
全连接层中的每个神经元都与上一层中所有神经元相连,这样可以充分利用上一层提取到的特征进行分类。
1.2 应用场景卷积神经网络(CNN)在计算机视觉领域有着广泛应用。
其中最典型的应用场景是图像分类和目标检测。
在图像分类任务中,CNN可以通过学习到的特征提取器将输入图像分为不同类别。
例如,在ImageNet数据集上进行分类任务时,CNN可以实现对1000个不同类别进行准确分类。
在目标检测任务中,CNN可以识别并定位输入图像中存在的多个目标。
通过在卷积网络之后加入额外的回归和分类层,可以实现对目标位置和类别进行同时预测。
此外,在语义分割、人脸识别、图像生成等领域,CNN也有着广泛的应用。
卷积神经网络算法分析及图像处理示例

卷积神经网络算法分析及图像处理示例卷积神经网络(Convolutional Neural Network, CNN)是一种广泛应用于图像处理、语音识别等领域的深度神经网络,在计算机视觉中被广泛应用。
它的特殊之处在于,它的网络结构与人类的视觉神经结构有异曲同工之妙,能够有效提取图片中的图像特征。
下面将介绍我们是如何应用卷积神经网络对图像进行处理的,并对算法进行分析。
首先来看卷积神经网络的基本算法思想。
卷积神经网络是由卷积层、池化层、全连接层等基本组件构成的,其中卷积层是卷积神经网络的核心,因为它负责特征提取。
这么说可能还不是很清楚,下面就来详细分析一下卷积神经网络的算法。
卷积神经网络的算法分析主要分为两个方面:卷积层的算法和反向传播算法。
1. 卷积层的算法卷积神经网络的卷积层基本操作是使用固定大小的窗口在输入特征图(inputfeature map)的每个位置上对应进行卷积,然后将这些卷积结果组合成输出特征图(output feature map)。
一个卷积滤波器(卷积核)从输入特征图的左上角开始移动,每次向右移动一个像素,然后再向下移动一个像素。
卷积核内的值与输入特征值相乘之和(即内积)即为卷积结果,而这个卷积结果则成为输出特征值。
在卷积过程中,卷积核通常是可以学习的,也就是说,网络会自适应地训练卷积核以自动提取有用的特征。
这个训练过程是通过反向传播实现的。
2. 反向传播算法反向传播算法是卷积神经网络使用的一种优化算法,用于计算网络的误差梯度,以便对网络进行调整。
反向传播算法主要分为两个步骤:前向传播和反向传播。
前向传播是卷积神经网络中的重要环节,通过这一步骤可以得到每个节点的输出(forward pass)。
它通过不断迭代多次前向传播来计算最终输出。
反向传播是指统计误差并利用误差信息来训练网络(backward pass)。
它通过计算误差的反向传播,逐层更新每个节点的权重来训练网络,完成优化操作。
nnunet代码讲解

nnU-Net 是一种用于医学图像分割的深度学习模型,其名称中的"nn" 表示 "neural network",而 "U-Net" 是一种经典的图像分割网络结构。
nnU-Net 在 U-Net 的基础上引入了一些改进,以进一步提高性能。
以下是 nnU-Net 代码的基本结构:```pythonimport torchimport torch.nn as nnclass UNet(nn.Module):def __init__(self, in_channels, out_channels):super(UNet, self).__init__()# 定义卷积层和反卷积层等网络结构# ...def forward(self, x):# 前向传播逻辑# ...return xclass nnUnet(nn.Module):def __init__(self, in_channels, out_channels, n_levels): super(nnUnet, self).__init__()# 定义 nnU-Net 的网络结构# ...def forward(self, x):# 前向传播逻辑# ...return x```在 nnU-Net 中,主要包含两个类:`UNet` 和 `nnUnet`。
`UNet` 是用于实现 U-Net 结构的类,而 `nnUnet` 是用于实现 nnU-Net 结构的类。
在 `UNet` 类中,可以定义卷积层、反卷积层等网络结构,并实现前向传播逻辑。
在 `nnUnet` 类中,可以定义 nnU-Net 的网络结构,包括多个级别的 U-Net 结构,并实现前向传播逻辑。
需要注意的是,上述代码仅为示例,实际的 nnU-Net 代码可能包含更多的网络结构和优化技巧。
此外,为了训练 nnU-Net 模型,还需要定义损失函数、优化器等,并进行训练和测试。
一文看懂卷积神经网络-CNN(基本原理独特价值实际应用)

⼀⽂看懂卷积神经⽹络-CNN(基本原理独特价值实际应⽤)卷积神经⽹络 – CNN 最擅长的就是图⽚的处理。
它受到⼈类视觉神经系统的启发。
CNN 有2⼤特点:能够有效的将⼤数据量的图⽚降维成⼩数据量能够有效的保留图⽚特征,符合图⽚处理的原则⽬前 CNN 已经得到了⼴泛的应⽤,⽐如:⼈脸识别、⾃动驾驶、美图秀秀、安防等很多领域。
CNN 解决了什么问题?在 CNN 出现之前,图像对于⼈⼯智能来说是⼀个难题,有2个原因:图像需要处理的数据量太⼤,导致成本很⾼,效率很低图像在数字化的过程中很难保留原有的特征,导致图像处理的准确率不⾼下⾯就详细说明⼀下这2个问题:需要处理的数据量太⼤图像是由像素构成的,每个像素⼜是由颜⾊构成的。
现在随随便便⼀张图⽚都是 1000×1000 像素以上的,每个像素都有RGB 3个参数来表⽰颜⾊信息。
假如我们处理⼀张 1000×1000 像素的图⽚,我们就需要处理3百万个参数!1000×1000×3=3,000,000这么⼤量的数据处理起来是⾮常消耗资源的,⽽且这只是⼀张不算太⼤的图⽚!卷积神经⽹络 – CNN 解决的第⼀个问题就是「将复杂问题简化」,把⼤量参数降维成少量参数,再做处理。
更重要的是:我们在⼤部分场景下,降维并不会影响结果。
⽐如1000像素的图⽚缩⼩成200像素,并不影响⾁眼认出来图⽚中是⼀只猫还是⼀只狗,机器也是如此。
保留图像特征图⽚数字化的传统⽅式我们简化⼀下,就类似下图的过程:图像简单数字化⽆法保留图像特征图像的内容假如有圆形是1,没有圆形是0,那么圆形的位置不同就会产⽣完全不同的数据表达。
但是从视觉的⾓度来看,图像的内容(本质)并没有发⽣变化,只是位置发⽣了变化。
(本质)并没有发⽣变化,只是位置发⽣了变化所以当我们移动图像中的物体,⽤传统的⽅式的得出来的参数会差异很⼤!这是不符合图像处理的要求的。
⽽ CNN 解决了这个问题,他⽤类似视觉的⽅式保留了图像的特征,当图像做翻转,旋转或者变换位置时,它也能有效的识别出来是类似的图像。
神经网络算法的代码实现详解

神经网络算法的代码实现详解神经网络算法是一种模拟人脑神经系统的计算模型,它通过构建多层神经元网络来实现对数据的学习与预测。
本文将对神经网络算法的代码实现进行详细解析,通过Python语言实现。
1.数据准备首先,我们需要准备训练数据和测试数据。
训练数据是用来训练神经网络的样本,通常包含一组输入数据和对应的输出数据。
测试数据则是用来测试训练后的神经网络模型的准确性。
2.构建神经网络结构接下来,我们需要构建神经网络的结构。
神经网络通常由多层神经元组成,每层神经元与上一层的神经元全连接。
我们可以使用Python的Numpy库来创建神经网络的结构,其中的矩阵运算能够高效地实现神经网络算法。
3.定义激活函数神经网络中,每个神经元都需要一个激活函数来对输入数据进行处理,并输出非线性的结果。
常用的激活函数有sigmoid函数、ReLU 函数等。
我们可以在构建神经网络结构时定义激活函数。
4.前向传播前向传播是指从输入层开始,逐层计算神经元的输出,直到输出层为止。
这一过程可以通过矩阵运算实现,其中每一层的输出都是上一层输出与权重矩阵的乘积再经过激活函数处理得到。
最终,输出层的输出即为神经网络的预测结果。
5.反向传播反向传播是指根据预测结果,逐层更新权重矩阵,以使得预测结果与实际结果尽可能接近。
反向传播算法通过计算误差项,逆向更新权重矩阵。
误差项的计算根据损失函数的不同而有所差异,常用的损失函数有均方误差、交叉熵等。
6.更新权重矩阵根据反向传播算法计算得到的误差项,我们可以更新每一层的权重矩阵。
更新的方法一般是使用梯度下降算法,通过计算每个权重的梯度值以及学习率,来逐步调整权重的取值。
7.训练神经网络模型在完成以上步骤后,我们可以开始训练神经网络模型。
训练过程即是重复进行前向传播和反向传播,以不断更新权重矩阵。
通过多次迭代,使得神经网络模型的预测结果逼近真实结果。
8.测试神经网络模型在训练完成后,我们需要使用测试数据对神经网络模型进行测试,以评估其性能。
Python中的CNN网络实现方法

Python中的CNN网络实现方法卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习算法,已经在图像识别、自然语言处理、语音识别等领域取得了非常好的效果。
本文将介绍Python中CNN网络的实现方法,并且通过实例展示如何构建CNN网络。
1.卷积神经网络的基本概念卷积神经网络主要由卷积层、池化层、全连接层组成,其中卷积层是最关键的部分。
卷积层的主要作用是提取特征,输入数据经过多次卷积和池化操作后,最终得到的是一个特征图。
卷积神经网络是通过多组卷积核来提取输入数据的特征的。
卷积核是一个小型的矩阵,用于和输入的数据进行卷积。
卷积的结果是一个特征图,这个特征图不仅仅是输入数据的副本,而是提取了输入数据的各种特征,可以用这个特征图来进行下一步的处理。
池化层是在卷积层之后添加的,主要作用是为了进一步降维,减少神经网络的计算量,同时不影响特征图的特征信息。
全连接层是将池化层的输出进行展开,然后进行前向传递和反向传播。
在反向传播时,每一个全连接层的节点将会计算出其对下一层中所有节点的误差,并将其向前传递。
2. Python中实现卷积神经网络的步骤在Python中实现CNN网络的具体步骤如下:1)数据预处理:将数据准备好作为CNN网络的模型输入。
这个步骤通常包括数据归一化、数据增强、数据划分等操作。
2)构建CNN模型:CNN模型主要由卷积层、池化层、全连接层等模块组成。
在Python中,可以使用Keras或TensorFlow等框架来构建CNN模型,这些框架提供了许多预定义的卷积层、池化层等模块,大大简化了模型搭建的流程。
3)编译CNN模型:在构建CNN模型后,需要使用compile方法对模型进行编译,需要指定损失函数、优化函数和评估指标等。
4)训练CNN模型:训练CNN模型需要调用fit方法,传入训练数据和标签进行训练。
在训练过程中,需要指定批次大小、训练次数等参数。
【机器学习基础】卷积神经网络(CNN)基础

【机器学习基础】卷积神经⽹络(CNN)基础最近⼏天陆续补充了⼀些“线性回归”部分内容,这节继续机器学习基础部分,这节主要对CNN的基础进⾏整理,仅限于基础原理的了解,更复杂的内容和实践放在以后再进⾏总结。
卷积神经⽹络的基本原理 前⾯对全连接神经⽹络和深度学习进⾏了简要的介绍,这⼀节主要对卷积神经⽹络的基本原理进⾏学习和总结。
所谓卷积,就是通过⼀种数学变换的⽅式来对特征进⾏提取,通常⽤于图⽚识别中。
既然全连接的神经⽹络可以⽤于图⽚识别,那么为什么还要⽤卷积神经⽹络呢?(1)⾸先来看下⾯⼀张图⽚: 在这个图⽚当中,鸟嘴是⼀个很明显的特征,当我们做图像识别时,当识别到有“鸟嘴”这样的特征时,可以具有很⾼的确定性认为图⽚是⼀个鸟类。
那么,在提取特征的过程中,有时就没有必要去看完整张图⽚,只需要⼀⼩部分就能识别出⼀定具有代表的特征。
因此,使⽤卷积就可以使某⼀个特定的神经元(在这⾥,这个神经元可能就是⽤来识别“鸟嘴”的)仅仅处理带有该特征的部分图⽚就可以了,⽽不必去看整张图⽚。
那么这样就会使得这个神经元具有更少的参数(因为不⽤再跟图⽚的每⼀维输⼊都连接起来)。
(2)再来看下⾯⼀组图⽚:上⾯两张图⽚都是鸟类,⽽不同的是,两只鸟的“鸟嘴”的位置不同,但在普通的神经⽹络中,需要有两个神经元,⼀个去识别左上⾓的“鸟嘴”,另⼀个去识别中间的“鸟嘴”: 但其实这两个“鸟嘴”的形状是⼀样的,这样相当于上⾯两个神经元是在做同⼀件事情。
⽽在卷积神经⽹络中,这两个神经元可以共⽤⼀套参数,⽤来做同⼀件事情。
(3)对样本进⾏⼦采样,往往不会影响图⽚的识别。
如下⾯⼀张图: 假设把⼀张图⽚当做⼀个矩阵的话,取矩阵的奇数⾏和奇数列,可看做是对图⽚的⼀种缩放,⽽这种缩放往往不会影响识别效果。
卷积神经⽹络中就可以对图⽚进⾏缩放,是图⽚变⼩,从⽽减少模型的参数。
卷积神经⽹络的基本结构如图所⽰: 从右到左,输⼊⼀张图⽚→卷积层→max pooling(池化层)→卷积层→max pooling(池化层)→......→展开→全连接神经⽹络→输出。
十种深度学习算法要点及代码解析

十种深度学习算法要点及代码解析一、卷积神经网络(CNN)1.1算法原理:卷积神经网络(CNN)是一种深度神经网络,通过一系列卷积层和池化层实现特征提取和信息处理,可以有效的处理图像、语音、文字等多种复杂数据,相比传统的神经网络,其特征更加准确、泛化能力更强,训练更快;1.2基本结构:CNN通常由输入层、卷积层、激活层、池化层、全连接层(FC)组成;1.3应用场景:CNN应用最广泛的场景是机器视觉,对图像进行分类、识别和特征提取,特别是在人脸识别、图像分类等领域;(1)构建卷积神经网络先导入必要的库:from keras.models import Sequential #导入序列模型from yers import Conv2D, MaxPooling2D #导入卷积层和池化层from yers import Activation, Dropout, Flatten, Dense #导入激活函数、Dropout层、Flatten层、全连接层#构建模型#实例化一个Sequential模型model = Sequential#第1层卷积model.add(Conv2D(32, (3, 3), input_shape = (32, 32, 3))) model.add(Activation('relu'))#第2层卷积model.add(Conv2D(32, (3, 3)))model.add(Activation('relu'))#第3层池化model.add(MaxPooling2D(pool_size = (2, 2)))#第4层Dropoutmodel.add(Dropout(0.25))#第5层Flatten层model.add(Flatten()#第6层全连接model.add(Dense(128))model.add(Activation('relu'))#第7层Dropout层model.add(Dropout(0.5))#第8层全连接model.add(Dense(10))model.add(Activation('softmax'))。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
deepLearnToolbox-master是一个深度学习matlab包,里面含有很多机器学习算法,如卷积神经网络CNN,深度信念网络DBN,自动编码AutoEncoder(堆栈SAE,卷积CAE)的作者是Rasmus Berg Palm)代码下载:rasmusbergpalm/DeepLearnToolbox
这里我们介绍deepLearnToolbox-master中的CNN部分。
DeepLearnToolbox-master中CNN内的函数:
调用关系为:
该模型使用了mnist的数字作为训练样本,作为cnn的一个使用样例,
每个样本特征为一个28*28=的向量。
网络结构为:
让我们来看看各个函数:
一、Test_example_CNN: (1)
三、 (2)
四、 (2)
五、 (2)
五、 (2)
六、 (3)
一、Test_example_CNN:
Test_example_CNN:
1设置CNN的基本参数规格,如卷积、降采样层的数量,卷积核的大小、降采样的降幅
2cnnsetup函数初始化卷积核、偏置等
3cnntrain函数训练cnn,把训练数据分成batch,然后调用
cnnff完成训练的前向过程,
cnnbp计算并传递神经网络的error,并计算梯度(权重的修改量)
cnnapplygrads把计算出来的梯度加到原始模型上去
4cnntest函数,测试当前模型的准确率
该模型采用的数据为,
含有70000个手写数字样本其中60000作为训练样本,10000作为测试样本。
把数据转成相应的格式,并归一化。
设置网络结构及训练参数
初始化网络,对数据进行批训练,验证模型准确率
绘制均方误差曲线
二、
该函数你用于初始化CNN的参数。
设置各层的mapsize大小,
初始化卷积层的卷积核、bias
尾部单层感知机的参数设置
*
bias统一设置为0
权重设置为:-1~1之间的随机数/sqrt(6/(输入神经元数量+输出神经元数量))
对于卷积核权重,输入输出为fan_in, fan_out
fan_out = {l}.outputmaps * {l}.kernelsize ^ 2;fin =1*25 or 6*25
fout=1*6*25 or 6*12*25
{l}.k{i}{j} = (rand{l}.kernelsize) - * 2 * sqrt(6 / (fan_in + fan_out));
1卷积降采样的参数初始化
2尾部单层感知机的参数(权重和偏量)设置:
三、
该函数用于训练CNN。
生成随机序列,每次选取一个batch(50)个样本进行训练。
批训练:计算50个随机样本的梯度,求和之后一次性更新到模型权重中。
在批训练过程中调用:
完成前向过程
完成误差传导和梯度计算过程
把计算出来的梯度加到原始模型上去
四、
1、取得CNN的输入
2、两次卷积核降采样层处理
3、尾部单层感知机的数据处理,需要把subFeatureMap2连接成为一个(4*4)*12=192的向量,但是由于采用了50样本批训练的方法,subFeatureMap2被拼合成为一个192*50的特征向量fv;
Fv作为单层感知机的输入,全连接的方式得到输出层
五、
该函数实现2部分功能,计算并传递误差,计算梯度
1、计算误差和LossFunction
2、计算尾部单层感知机的误差
3、把单层感知机的输入层featureVector的误差矩阵,恢复为subFeatureMap2的4*4二维矩阵形式插播一张图片:
4、误差在特征提取网络【卷积降采样层】的传播
如果本层是卷积层,它的误差是从后一层(降采样层)传过来,误差传播实际上是用降采样的反向过程,也就是降采样层的误差复制为2*2=4份。
卷积层的输入是经过sigmoid处理的,所以,从降采样层扩充来的误差要经过sigmoid求导处理。
如果本层是降采样层,他的误差是从后一层(卷积层)传过来,误差传播实际是用卷积的反向过程,也就是卷积层的误差,反卷积(卷积核转180度)卷积层的误差,原理参看插图。
5、计算特征抽取层和尾部单层感知机的梯度
五、
该函数完成权重修改,更新模型的功能
1更新特征抽取层的权重weight+bias
验证测试样本的准确率。