一文读懂卷积神经网络

合集下载

深度学习中的卷积神经网络和递归神经网络

深度学习中的卷积神经网络和递归神经网络

深度学习中的卷积神经网络和递归神经网络最近几年,随着人工智能技术快速发展,深度学习成为了热门话题。

在深度学习算法家族中,卷积神经网络(Convolutional Neural Network,CNN)和递归神经网络(Recurrent Neural Network,RNN)是最常用的两种神经网络。

本文主要探讨这两种神经网络的工作原理、优缺点以及应用场景。

一、卷积神经网络卷积神经网络是一种专门用于处理图像和语音等大型二维或多维数据的神经网络。

它的核心思想是卷积操作,通过反复的卷积、池化等操作,逐步提取出数据的特征,最终得到对数据的分类或识别结果。

卷积神经网络的工作原理可以简单地描述为:首先输入数据被送入卷积层,卷积层中有若干个卷积核,每个卷积核对输入数据做出一次卷积操作,产生一个特征图。

接着特征图会经过激活函数进行非线性处理。

经过卷积、池化、激活等若干层处理后,最终通过全连接层得到分类或识别结果。

卷积神经网络的优点主要体现在以下方面:1. 可以有效地提取出数据的局部特征,比如提取出一张图片中的边缘、纹理等特征。

2. 卷积神经网络的参数共享机制可以大幅度降低训练模型的复杂度,减小过拟合。

3. 卷积网络中的池化操作可以进一步简化特征图,减小计算量,同时也有防止过拟合的效果。

卷积神经网络的应用场景非常广泛,比如图像分类、目标检测、物体识别等。

二、递归神经网络递归神经网络是一种专门处理序列数据的神经网络,它具有记忆功能,能够处理任意长度的输入数据,并且在处理过程中可以保留之前的状态信息。

递归神经网络的工作原理可以简单地描述为:在处理输入序列的过程中,每个时刻输入一个数据点,同时还输入上一个时刻的状态,根据输入数据和状态计算出当前时刻的状态并输出一个结果。

新的状态又会被送入下一个时刻的计算中。

这种递归的计算方式使得递归神经网络具有很强的记忆性和时间序列处理能力。

递归神经网络的优点主要体现在以下方面:1. 递归神经网络比较适用于处理序列数据,比如语音、文本、股票价格等数据。

简述卷积神经网络(CNN)和循环神经网络(RNN)的原理及应用场景

简述卷积神经网络(CNN)和循环神经网络(RNN)的原理及应用场景

简述卷积神经网络(CNN)和循环神经网络(RNN)的原理及应用场景卷积神经网络(CNN)和循环神经网络(RNN)是当前深度学习领域最为重要和广泛应用的两种神经网络模型。

它们分别在计算机视觉和自然语言处理等领域取得了巨大的成功。

本文将从原理和应用场景两个方面进行详细介绍。

一、卷积神经网络(CNN)的原理及应用场景卷积神经网络(CNN)是一种专门用于处理具有网格结构数据的深度学习模型。

它最初是为了解决计算机视觉中的图像分类问题而提出的,但现在已经广泛应用于图像识别、目标检测、语义分割等多个领域。

1.1 原理卷积神经网络(CNN)主要由卷积层、池化层和全连接层组成。

其中,卷积层是CNN最重要的组成部分,它通过一系列滤波器对输入数据进行特征提取。

滤波器通过与输入数据进行点乘操作,得到特征图(feature map),从而捕捉到输入数据中的局部特征。

池化层用于减小特征图的尺寸,并保留重要特征。

常见的池化操作有最大池化和平均池化。

最大池化选择每个区域中的最大值作为输出,平均池化则选择每个区域的平均值作为输出。

这样可以减小特征图的尺寸,减少参数数量,从而降低计算复杂度。

全连接层将特征图转换为一维向量,并通过一系列全连接层进行分类或回归等任务。

全连接层中的每个神经元都与上一层中所有神经元相连,这样可以充分利用上一层提取到的特征进行分类。

1.2 应用场景卷积神经网络(CNN)在计算机视觉领域有着广泛应用。

其中最典型的应用场景是图像分类和目标检测。

在图像分类任务中,CNN可以通过学习到的特征提取器将输入图像分为不同类别。

例如,在ImageNet数据集上进行分类任务时,CNN可以实现对1000个不同类别进行准确分类。

在目标检测任务中,CNN可以识别并定位输入图像中存在的多个目标。

通过在卷积网络之后加入额外的回归和分类层,可以实现对目标位置和类别进行同时预测。

此外,在语义分割、人脸识别、图像生成等领域,CNN也有着广泛的应用。

神经网络中的卷积神经网络算法

神经网络中的卷积神经网络算法

神经网络中的卷积神经网络算法神经网络是一种非常有用的机器学习工具,可以用于分类和回归等各种任务。

其中,卷积神经网络算法是神经网络的一个分支,可以用于图像识别、自然语言处理等很多领域。

本文将详细介绍卷积神经网络算法的原理和应用。

一、卷积神经网络算法的原理卷积神经网络算法是模仿生物学中视觉皮层的工作原理,将图像像素看作神经元,通过不断降采样和卷积操作将图像特征提取出来。

卷积操作是指用一个固定大小的滤波器对输入进行滤波,得到一个特征图。

滤波器在输入上滑动,对每个相邻的区域进行卷积操作,并输出一个值。

卷积神经网络算法有多个层,每个层都有不同的功能。

其中,卷积层用于提取图像的特征,降低特征维度;池化层则用于降采样,减少特征图的尺寸,加快计算速度。

最后是全连接层,将特征图转换为分类结果。

二、卷积神经网络算法的应用1.图像识别卷积神经网络算法可以用于图像分类、目标检测等领域。

例如,使用卷积神经网络算法对猫和狗的图像进行分类,不仅可以判断出猫和狗的种类,还可以精准地定位和识别图像中的猫和狗。

2.自然语言处理卷积神经网络算法也可以用于自然语言处理领域。

例如,通过将词向量进行卷积操作,可以得到单词或短语的特征,进而将这些特征输入到全连接层中进行分类或预测等任务。

这种方法可以帮助我们更好地理解文本的含义,更准确地进行分类和预测。

三、卷积神经网络算法的优势1.参数共享卷积神经网络算法中的卷积操作具有参数共享的特点。

即,在同一层的卷积核中,每个卷积核的参数是一样的,这样可以大幅减少卷积层的参数量,提高训练效率,并且对于数据的小变化具有很好的适应性和鲁棒性。

2.稀疏连接卷积神经网络算法中的卷积操作是针对局部区域进行的,这意味着输入数据中的大部分像素不会对输出数据产生影响。

这种稀疏连接的方式可以帮助我们减少运算量和存储空间,提高计算速度。

3.层次化结构卷积神经网络算法会将图像分层处理,每一层都会从上一层中提取出一些有用的特征信息,并且针对这些特征信息进行处理。

一文看懂卷积神经网络-CNN(基本原理独特价值实际应用)

一文看懂卷积神经网络-CNN(基本原理独特价值实际应用)

⼀⽂看懂卷积神经⽹络-CNN(基本原理独特价值实际应⽤)卷积神经⽹络 – CNN 最擅长的就是图⽚的处理。

它受到⼈类视觉神经系统的启发。

CNN 有2⼤特点:能够有效的将⼤数据量的图⽚降维成⼩数据量能够有效的保留图⽚特征,符合图⽚处理的原则⽬前 CNN 已经得到了⼴泛的应⽤,⽐如:⼈脸识别、⾃动驾驶、美图秀秀、安防等很多领域。

CNN 解决了什么问题?在 CNN 出现之前,图像对于⼈⼯智能来说是⼀个难题,有2个原因:图像需要处理的数据量太⼤,导致成本很⾼,效率很低图像在数字化的过程中很难保留原有的特征,导致图像处理的准确率不⾼下⾯就详细说明⼀下这2个问题:需要处理的数据量太⼤图像是由像素构成的,每个像素⼜是由颜⾊构成的。

现在随随便便⼀张图⽚都是 1000×1000 像素以上的,每个像素都有RGB 3个参数来表⽰颜⾊信息。

假如我们处理⼀张 1000×1000 像素的图⽚,我们就需要处理3百万个参数!1000×1000×3=3,000,000这么⼤量的数据处理起来是⾮常消耗资源的,⽽且这只是⼀张不算太⼤的图⽚!卷积神经⽹络 – CNN 解决的第⼀个问题就是「将复杂问题简化」,把⼤量参数降维成少量参数,再做处理。

更重要的是:我们在⼤部分场景下,降维并不会影响结果。

⽐如1000像素的图⽚缩⼩成200像素,并不影响⾁眼认出来图⽚中是⼀只猫还是⼀只狗,机器也是如此。

保留图像特征图⽚数字化的传统⽅式我们简化⼀下,就类似下图的过程:图像简单数字化⽆法保留图像特征图像的内容假如有圆形是1,没有圆形是0,那么圆形的位置不同就会产⽣完全不同的数据表达。

但是从视觉的⾓度来看,图像的内容(本质)并没有发⽣变化,只是位置发⽣了变化。

(本质)并没有发⽣变化,只是位置发⽣了变化所以当我们移动图像中的物体,⽤传统的⽅式的得出来的参数会差异很⼤!这是不符合图像处理的要求的。

⽽ CNN 解决了这个问题,他⽤类似视觉的⽅式保留了图像的特征,当图像做翻转,旋转或者变换位置时,它也能有效的识别出来是类似的图像。

卷积神经网络(CNN)介绍

卷积神经网络(CNN)介绍

卷积神经网络(CNN)介绍一、基本概念CNN是卷积神经网络(Convolutional Neural Network)的缩写,是目前深度学习中应用广泛的一种神经网络型号,它是一种能够处理序列数据的深度学习模型,如语音识别、自然语言处理等在许多应用中被广泛使用。

CNN是一种前馈神经网络,每个神经元只与与其之前一段距离之内的神经元相连。

它具有强大的特征提取能力和权值共享机制,可以帮助识别出图像、音频和文本中的重要特征。

CNN将输入图像分成若干个子区域,每个子区域被称为卷积核,每个卷积核由若干个神经元组成。

每个卷积核得出一个特征图,这些特征图被拼接起来形成下一层的输入。

CNN在应用中通常包含卷积层、池化层、全连接层和Softmax 层等。

卷积层用于提取图像特征,池化层用于减少特征数量,全连接层用于分类,Softmax层用于输出最终分类结果。

然而,就像其他的技术一样,CNN在实践中也会遇到各种问题。

人工智能工程师在设计和调试CNN时,经常遇到的问题包括过拟合、欠拟合、梯度消失、训练速度慢等。

此外,当CNN 不起作用时,如何快速而准确地诊断相关问题也是一个极其重要的挑战。

二、故障分析与解决方案面对CNN故障,我们可以通过以下几个方面来进行诊断,并尝试找到解决方案。

1. 数据集问题CNN模型需要大量的数据才能训练出准确的模型。

如果训练集不够大,其结果可能会出现不准确的情况。

同时,过拟合也可能出现在训练集数据少,但是特征比较多时。

解决方案:增加训练集,尽可能丰富数据覆盖的范围。

此外,有效的数据预处理方法,如旋转、翻转、缩放等,也能有效地增加训练集的样本。

2. 设计问题CNN模型的设计非常重要,关系到CNN在应用中的准确性。

解决方案:对于CNN的设计,可以采用预训练模型,或选择较好的网络结构和优化算法。

3. 训练问题CNN模型需要进行“拟合”和“调整”,使其能够正确的分类图像。

解决方案:可以尝试增加训练次数或者采用其他的优化方法,如随机梯度下降(SGD)。

一文带你了解CNN(卷积神经网络)

一文带你了解CNN(卷积神经网络)

⼀⽂带你了解CNN(卷积神经⽹络)⽬录前⾔⼀、CNN解决了什么问题?⼆、CNN⽹络的结构2.1 卷积层 - 提取特征卷积运算权重共享稀疏连接总结:标准的卷积操作卷积的意义1x1卷积的重⼤意义2.2 激活函数2.3 池化层(下采样) - 数据降维,避免过拟合2.4 全连接层 - 分类,输出结果三、Pytorch实现LeNet⽹络3.1 模型定义3.2 模型训练(使⽤GPU训练)3.3 训练和评估模型前⾔ 在学计算机视觉的这段时间⾥整理了不少的笔记,想着就把这些笔记再重新整理出来,然后写成Blog和⼤家⼀起分享。

⽬前的计划如下(以下⽹络全部使⽤Pytorch搭建):专题⼀:计算机视觉基础介绍CNN⽹络(计算机视觉的基础)浅谈VGG⽹络,介绍ResNet⽹络(⽹络特点是越来越深)介绍GoogLeNet⽹络(⽹络特点是越来越宽)介绍DenseNet⽹络(⼀个看似⼗分NB但是却实际上⽤得不多的⽹络)整理期间还会分享⼀些⾃⼰正在参加的⽐赛的Baseline专题⼆:GAN⽹络搭建普通的GAN⽹络卷积GAN条件GAN模式崩溃的问题及⽹络优化 以上会有相关代码实践,代码是基于Pytorch框架。

话不多说,我们先进⾏专题⼀的第⼀部分介绍,卷积神经⽹络。

⼀、CNN解决了什么问题? 在CNN出现之前,对于图像的处理⼀直都是⼀个很⼤的问题,⼀⽅⾯因为图像处理的数据量太⼤,⽐如⼀张512 x 512的灰度图,它的输⼊参数就已经达到了252144个,更别说1024x1024x3之类的彩⾊图,这也导致了它的处理成本⼗分昂贵且效率极低。

另⼀⽅⾯,图像在数字化的过程中很难保证原有的特征,这也导致了图像处理的准确率不⾼。

⽽CNN⽹络能够很好的解决以上两个问题。

对于第⼀个问题,CNN⽹络它能够很好的将复杂的问题简单化,将⼤量的参数降维成少量的参数再做处理。

也就是说,在⼤部分的场景下,我们使⽤降维不会影响结果。

⽐如在⽇常⽣活中,我们⽤⼀张1024x1024x3表⽰鸟的彩⾊图和⼀张100x100x3表⽰鸟的彩⾊图,我们基本上都能够⽤⾁眼辨别出这是⼀只鸟⽽不是⼀只狗。

神经网络与卷积神经网络(CNN)

神经网络与卷积神经网络(CNN)

神经网络与卷积神经网络(CNN)神经网络和卷积神经网络(Convolutional Neural Network, CNN)是两种常用的深度学习模型,被广泛应用于图像识别、语音识别、自然语言处理等领域。

本文将介绍神经网络和CNN的原理、应用以及优缺点。

一、神经网络神经网络是一种模拟人脑神经元间连接的计算模型,由输入层、隐藏层和输出层组成。

每个神经元接收上一层神经元传递的信息,并通过激活函数进行非线性变换,最终计算出输出结果。

通过不断调整神经元之间的连接权重,神经网络能够学习并逼近复杂的非线性函数。

神经网络的训练通常基于梯度下降算法,通过最小化损失函数,反向传播误差更新权重。

训练完成后,神经网络可以用于预测和分类任务。

神经网络的优点在于可以处理非线性关系,具有强大的逼近能力。

然而,它在图像处理任务上的表现并不理想,主要因为传统的神经网络无法充分利用图像的空间结构信息。

二、卷积神经网络(CNN)卷积神经网络是一种专门用于处理二维结构数据(如图像)的深度学习模型。

与传统神经网络不同的是,CNN引入了卷积层和池化层,通过局部感知和参数共享的方式提取图像的特征。

卷积层利用一组可学习的卷积核对输入数据进行卷积操作,提取出不同位置的特征。

卷积核的参数共享使得CNN对输入数据的平移不变性更强,可以减少模型的复杂性。

池化层则负责对卷积结果进行下采样,减小特征图的尺寸。

常用的池化操作有最大池化和平均池化,能够提取更具有鲁棒性的特征。

除了卷积层和池化层,CNN通常还包括全连接层和激活函数。

全连接层用于将特征图转化为分类结果,激活函数引入非线性变换。

CNN在图像处理任务上具有突出优势。

通过卷积和池化操作,CNN能够自动提取出图像的局部特征和整体形状,并且具有一定的平移不变性和尺度不变性。

三、神经网络与CNN的应用比较1. 图像识别:神经网络在图像识别上的表现相对较差,因为它不能有效利用图像的空间结构信息。

而CNN能够通过卷积和池化操作提取图像特征,具有更好的识别准确率。

卷积神经网络的工作原理

卷积神经网络的工作原理

卷积神经网络的工作原理卷积神经网络(ConvolutionalNeuralNetwork,简称CNN)是一种流行的深度学习架构,用于大规模图像识别和分类。

它主要是利用卷积运算来提取图像特征,提高图像分类精度。

本文主要介绍卷积神经网络的工作原理。

首先,要理解卷积神经网络,需要简要地介绍一下神经网络。

神经网络可以通过模拟大脑的神经元来处理信息,使计算机能够学习特定的任务。

它通过调整连接权重来训练模型,以完成任务。

接下来,要讨论卷积神经网络,需要介绍一下卷积运算。

卷积运算是一种机器学习中经常使用的运算,它对图像进行特征提取。

卷积层包括卷积核,它是一组图像处理光栅,用于抽取图像特征。

这些特征提取的结果会被放入网络中,与其他层进行组合,使得深度学习能够获得高准确率的预测结果。

最后,卷积神经网络可以利用这些特征输入进行有效的图像识别,有效的图像分类。

通过以上的介绍,可以总结出卷积神经网络的工作原理如下:首先,卷积神经网络通过卷积运算来提取图像的特征;接着,这些特征被放入多层网络中,与其他层结合,以输出预测结果;最后,卷积神经网络可以利用输入的特征来进行有效的图像识别和分类。

因此,卷积神经网络是一种有效的深度学习架构,能够利用卷积运算提取图像特征,从而达到高准确率的图像识别和分类任务的预测结果。

它的工作原理如前所述,使用卷积运算来提取图像特征,进而输出预测结果,实现图像识别和分类任务。

卷积神经网络已经广泛应用于计算机视觉任务,例如人脸识别、图像分类等。

它能够更好地提高同类任务的准确率,并大大提高了计算机的性能。

它的发展前景令人期待,它有望成为人工智能领域的一个指标。

未来,卷积神经网络还可以应用于各种其他领域,例如语音识别和自然语言处理等领域。

同时,它也将在改进算法和拓展应用等方面继续取得重大进展。

总之,卷积神经网络具有广泛的应用前景,并且在提高识别和分类任务的准确率方面具有显著优势。

它也有望在其他领域,比如语音识别和自然语言处理等领域,发挥更广泛的作用,并在今后的发展中取得更大的进步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一文读懂卷积神经网络
自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet、
cuda-convnet2。

为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益。

正文之前,先说几点自己对于CNN的感触。

先明确一点就是,Deep Learning是全部深度学习算法的总称,CNN是深度学习算法在图像处理领域的一个应用。

第一点,在学习Deep learning和CNN之前,总以为它们是很了不得的知识,总以为它们能解决很多问题,学习了之后,才知道它们不过与其他机器学习算法如svm等相似,仍然可以把它当做一个分类器,仍然可以像使用一个黑盒子那样使用它。

第二点,Deep Learning强大的地方就是可以利用网络中间某一层的输出当做是数据的另一种表达,从而可以将其认为是经过网络学习到的特征。

基于该特征,可以进行进一步的相似度比较等。

第三点,Deep Learning算法能够有效的关键其实是大规模的数据,这一点原因在于每个DL都有众多的参数,少量数据无法将参数训练充分。

接下来话不多说,直接奔入主题开始CNN之旅。

卷积神经网络简介(Convolutional Neural Networks,简称CNN)
卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。

20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络(Convolutional Neural Networks-简称CNN)。

现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。

K.Fukushima在1980年提出的新识别机是卷积神经网络的第一个实现网络。

随后,更多的科研工作者对该网络进行了改进。

其中,具有代表性的研究成果是Alexander和Taylor提出的“改进认知机”,该方法综合了各种改进方法的优点并避免了耗时的误差反向传播。

一般地,CNN的基本结构包括两层,其一为特征提取层,每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征。

一旦该局部特征被提取后,它与其它特征间的位置关系也随之确定下来;其二是特征映射层,网络的每个计算层由多个特征映射组成,每个特征映射是一个平面,平面上所有神经元的权值相等。

特征映射结构采用影响函数核小的sigmoid函数作为卷积网络的激活函数,使得特征映射具有位移不变性。

此外,由于一个映射面上的神经元共享权值,因而减少了网络自由参数的个数。

卷积神经网络中的每一个卷积层都紧跟着一个
用来求局部平均与二次提取的计算层,这种特有的两次特征提取结构减小了特征分辨率。

CNN主要用来识别位移、缩放及其他形式扭曲不变性的二维图形。

由于CNN的特征检测层通过训练数据进行学习,所以在使用CNN时,避免了显示的特征抽取,而隐式地从训练数据中进行学习;再者由于同一特征映射面上的神经元权值相同,所以网络可以并行学习,这也是卷积网络相对于神经元彼此相连网络的一大优势。

卷积神经网络以其局部权值共享的特殊结构在语音识别和图像处理方面有着独特的优越性,其布局更接近于实际的生物神经网络,权值共享降低了网络的复杂性,特别是多维输入向量的图像可以直接输入网络这一特点避免了特征提取和分类过程中数据重建的复杂度。

1. 神经网络
首先介绍神经网络,这一步的详细可以参考资源1。

简要介绍下。

神经网络的每个单元如下:
其对应的公式如下:
其中,该单元也可以被称作是Logistic回归模型。

当将多个单元组合起来并具有分层结构时,就形成了神经网络模型。

下图展示了一个具有一个隐含层的神经网络。

其对应的公式如下:
比较类似的,可以拓展到有2,3,4,5,…个隐含层。

神经网络的训练方法也同Logistic类似,不过由于其多层性,还需要利用链式求导法则对隐含层的节点进行求导,即梯度下降+链式求导法则,专业名称为反向传播。

关于训练算法,本文暂不涉及。

2 卷积神经网络
在图像处理中,往往把图像表示为像素的向量,比如一个1000×1000的图像,可以表示为一个1000000的向量。

在上一节中提到的神经网络中,如果隐含层数目与输入层一样,即也是1000000时,那么输入层到隐含层的参数数据为1000000×1000000=10^12,这样就太多了,基本没法训练。

所以图像处理要想练成神经网络大法,必先减少参数加快速度。

就跟辟邪剑谱似的,普通人练得很挫,一旦自宫后内力变强剑法变快,就变的很牛了。

2.1 局部感知
卷积神经网络有两种神器可以降低参数数目,第一种神器叫做局部感知野。

一般认为人对外界的认知是从局部到全局的,而图像的空间联系也是局部的像素联系较为紧密,而距离较远的像素相关性则较弱。

因而,每个神经元其实没有必要
对全局图像进行感知,只需要对局部进行感知,然后在更高层将局部的信息综合起来就得到了全局的信息。

网络部分连通的思想,也是受启发于生物学里面的视觉系统结构。

视觉皮层的神经元就是局部接受信息的(即这些神经元只响应某些特定区域的刺激)。

如下图所示:左图为全连接,右图为局部连接。

在上右图中,假如每个神经元只和10×10个像素值相连,那么权值数据为1000000×100个参数,减少为原来的千分之一。

而那10×10个像素值对应的
10×10个参数,其实就相当于卷积操作。

2.2 参数共享
但其实这样的话参数仍然过多,那么就启动第二级神器,即权值共享。

在上面的局部连接中,每个神经元都对应100个参数,一共1000000个神经元,如果这1000000个神经元的100个参数都是相等的,那么参数数目就变为100了。

怎么理解权值共享呢?我们可以这100个参数(也就是卷积操作)看成是提取特征的方式,该方式与位置无关。

这其中隐含的原理则是:图像的一部分的统计特性与其他部分是一样的。

这也意味着我们在这一部分学习的特征也能用在另一部分上,所以对于这个图像上的所有位置,我们都能使用同样的学习特征。

更直观一些,当从一个大尺寸图像中随机选取一小块,比如说8×8 作为样本,并且从这个小块样本中学习到了一些特征,这时我们可以把从这个8×8 样本中学习到的特征作为探测器,应用到这个图像的任意地方中去。

特别是,我们可以用从8×8 样本中所学习到的特征跟原本的大尺寸图像作卷积,从而对这个大尺寸图像上的任一位置获得一个不同特征的激活值。

如下图所示,展示了一个33的卷积核在55的图像上做卷积的过程。

每个卷积都是一种特征提取方式,就像一个筛子,将图像中符合条件(激活值越大越符合条件)的部分筛选出来。

相关文档
最新文档