低压配电系统中配电级数的选择

合集下载

低压供电系统设计知识

低压供电系统设计知识

低压供电系统设计知识低压供电系统设计涉及到在电气系统中使用较低电压级别的设计和规划,通常在工业、商业和住宅建筑中使用。

以下是一些涉及低压供电系统设计的基本知识:1.电压级别:低压通常指的是1000伏及以下的电压级别。

低压供电系统一般包括230伏(单相)和400伏(三相)的交流电,以及直流电系统。

2.电力系统构成:低压供电系统包括发电机、变压器、开关设备、电缆、配电盘等组件。

这些组件协同工作,将电能从发电端输送到最终用户。

3.电缆和导线选择:在低压系统中,选择适当规格的电缆和导线是至关重要的。

这涉及到考虑电流负载、电气阻抗、短路电流容忍度等因素。

4.系统配置:低压系统可以采用单相或三相配置,具体取决于应用的要求。

三相系统通常用于大功率负载,而单相系统常用于住宅和小型商业建筑。

5.电力负载计算:在设计低压供电系统时,需要计算电力负载,以确保系统足以满足各种设备和用途的电力需求。

6.电气安全:低压供电系统设计必须符合相关的电气安全标准和规定。

这包括适当的过载和短路保护、接地系统的设计等。

7.能效和可靠性:在设计低压供电系统时,通常要考虑能效和可靠性。

采用能效设备和系统配置,以及备用电源和自动切换系统,有助于提高系统的可靠性。

8.监控和控制系统:现代低压供电系统通常涉及到监控和控制系统,以实时监测电能使用情况,进行故障检测,并提高系统的管理效率。

这只是低压供电系统设计中的一些基本知识点。

具体的设计需要考虑特定应用、国家或地区的标准以及当地的电力规范。

在进行设计时,建议与专业电气工程师或相关领域的专业人员合作。

低压供配电设计规范

低压供配电设计规范

4.电源及供电系统4.0.1 符合下列条件之一时,用户宜设置自备电源:1 需要设置自备电源作为一级负荷中的特别重要负荷的应急电源时或第二电源不能满足一级负荷的条件时。

2 设置自备电源较从电力系统取得第二电源经济合理时。

3 有常年稳定余热、压差、废弃物可供发电,技术可靠、经济合理时。

4 所在地区偏僻,远离电力系统,设置自备电源经济合理时。

5 有设置分布式电源的条件,能源利用效率高、经济合理时。

4.0.2 应急电源与正常电源之间,应采取防止并列运行的措施。

当有特殊要求,应急电源向正常电源转换需短暂并列运行时,应采取安全运行的措施。

4.0.3 供配电系统的设计,除一级负荷中的特别重要负荷外,不应按一个电源系统检修或故障的同时另一电源又发生故障进行设计。

4.0.4 需要两回电源线路的用户,宜采用同级电压供电。

但根据各级负荷的不同需要及地区供电条件,亦可采用不同电压供电。

4.0.5 同时供电的两回及以上供配电线路中,当有一回路中断供电时,其余线路应能满足全部一级负荷及二级负荷。

4.0.6 供配电系统应简单可靠,同一电压等级的配电级数高压不宜多于两级;低压不宜多于三级。

4.0.7 高压配电系统宜采用放射式。

根据变压器的容量、分布及地理环境等情况,亦可采用树干式或环式。

4.0.8 根据负荷的容量和分布,配变电所应靠近负荷中心。

当配电电压为35kV 时,亦可采用直降至低压配电电压。

4.0.9 在用户内部邻近的变电所之间,宜设置低压联络线。

4.0 10 小负荷的用户,宜接入地区低压电网。

5 .电压选择和电能质量5.0.1 用户的供电电压应根据用电容量、用电设备特性、供电距离、供电线路的回路数、当地公共电网现状及其发展规划等因素,经技术经济比较确定。

5.0.2 供电电压大于等于35kV时,用户的一级配电电压宜采用10kV;当6kV用电设备的总容量较大,选用6kV 经济合理时,宜采用6kV;低压配电电压宜采用220/380V,工矿企业亦可采用660V;当安全需要时,应采用小于50V 电压。

低压配电箱 的空开配置标准

低压配电箱 的空开配置标准

低压配电箱的空开配置标准主要包括以下几个方面:
1. 根据电源线线径粗细或电器功率大小来配置空开。

例如,
2.5平方的铜芯线可以使用16A 的空气开关,4平方的铜芯线可使用25A的空气开关,6平方的铜芯线可使用32A的空气开关。

2. 住户配电箱总开关一般可以选择双极32-63A小型空气开关或隔离开关。

3. 照明回路一般用10-16A小型空气开关。

4. 插座回路一般选择16-20A的空气开关。

5. 空调回路一般选择16-25A的空气开关。

6. 采用双极或1P+N(相线+中性线)空气开关,当线路出现短路或漏电故障时,应立即切断电源的相线和中性线,确保人身安全及用电设备的安全。

此外,还有一些其他的配置标准需要注意:
1. 零线颜色要采用蓝色。

2. 照明及插座回路一般采用2.5mm²导线,每根导线所串连空开数量不得大于3个。

空调回路一般采用2.5mm²或4.0mm²导线,一根导线配一个空开。

3. 不同相之间零线不得共用。

4. 箱体内总空开与各分空开之间配线一般走左边,配电箱出线一般走右边。

5. 箱内配线要顺直不得有纹接现象,导线要用塑料扎带绑扎,扎带大小要合适,间距要均匀。

6. 导线弯曲应一致,且不得有死弯,防止损坏导线绝缘皮及内部铜芯。

以上是低压配电箱的空开配置标准的一些主要内容,具体配置还需要根据实际情况进行具体分析和调整。

在实际操作中,应遵循相关标准和规范,确保低压配电箱的安全和稳定运行。

低压配电设计规定

低压配电设计规定

罗格朗低压电器(无锡)有限公司 无锡高新区锡梅路88号电力系统的电能质量是指电压、频率和波形的质量。

电能质量主要指标包括电压偏差、电压波动和闪变、频率偏差、谐波(电压)、谐波畸变率、谐波电流含有率和电压不对称度。

此外,还要考虑电动机启动时的电压降。

1 供电频率偏差允许值为±0.2Hz,电网容量在3000MW 以下者为±0.5Hz。

频率值通常由系统决定,除特别要求采用不间断供电装置局部稳频外,在配电设计时,一般不需要采取稳频措施;2 配电系统电压不对称度及矫正措施的基本概念是:不对称度是衡量三相负荷平衡状态的指标。

由于三相负荷分配不均等,使三相负荷电流不对称,由此产生三相负序分量。

三相电压负序分量与电压正序分量的比值称为电压不对称度。

电流负序分量与电流正序分量的比值称为电流不对称度,均以百分数表示;3 电压偏差是供配电系统在正常运行方式下(即系统中所有元件都按预定工况运行),系统各点的实际电压U 对系统标称电压U n 的偏差δu ,常用相对于系统标称电压的百分数以下式表示;%100nnu U U U (7-1) 式中 U 系统中某点的实际电压(kV 或V ); U n 系统标称电压(kV 或V )。

4 电压波动:电压波动是反映电压的快速变化。

冲击性功率的负荷引起连续的电压变动或电压幅值包络线的周期性变动,其变动过程中相继出现的电压有效值的最大值U max 与最小值U min 之差称为电压波动,常用相对值或百分数以下式表示;nminmax U U U (7-2)%U U U nminmax 100(7-3)式中 U n 系统标称电压(kV 或V)。

变化速度不低于0.2%/s 的电压变化为电压波动;5 闪变:闪变电压是冲击性负荷造成供配电系统的大于0.01Hz 频率波动的电压波动;6 谐波:在交流电网中,由于有许多非线性电气设备的投入运行,其电压、电流波形实际上不是完全的正弦波形,而是不同程度畸变的正弦波。

低压配电系统中配电级数的选择

低压配电系统中配电级数的选择

低压配电系统中配电级数的选择身份证号:3303241981122833** 浙江温州 325000摘要:低压配电线路发生故障时,要保证故障线路的可靠分段,尽可能缩小停电范围,以减少不必要的停电,即有选择地切断保护电器。

正确理解低压配电的配电级数、保护级数和级间选择性,对实现简单、可靠、稳定的低压配电系统具有重要作用。

在设计中,应严格进行低压电器的选择性设计,把握好可靠性与经济性的关系,提高设计质量。

关键词:低压配电系统;配电级数选择前言:我们知道,配电系统是否安全可靠、经济实用并便于管理,其配电级数的设计是至关重要的。

相关规范规定,在低压配电设计中,从变压器低压侧用电设备的配电级数一般不超过三级,对于重要的负荷,上下级保护电器的动作应具有选择性。

在实际工程的设计中,由于对配电级数的理解不到位,导致了配电系统经济技术上部合理的情况时有发生。

1、配电级数和保护极数的理解部分技术人员认为设置带保护功能开关电器的部位既会产生一个配电级,(其认为变压器低压侧配电柜为一配电级,IOF1是对变压器的保护,对线路仅为后备保护,1QF1下口的母线短而且是成套安装,产生故障的几率很小,不计入配电级数),若2QFI及30F1采用隔离开关,整个配电系统就是三级配电。

持此观点的设计人,为了使配电级数不大于三级,每一个下级配电箱(2AP,3AP)进线电源处采--用隔离开关,此种做法对于放射式配电没有问题,但在树干式配电中(如图中回路),若受电箱4AP的进线开关4QFl也采用隔离开关(其根据《低压配电设计规范》GB50054-95第4.5.2条:保护电器可装设于与电源的连接线路短于3米的地方),是一种错误的做法:一是因为当配电线路给一、二级负荷供电时,4kl点故障但4QF2拒动而4QFI动作时,与《低压配电设计规范》第4,2,4条不符:越级切断电路不致引起故障线路以外的一、二级负荷的供电中断:二是因为与《民用建筑电气设计规范》JGJl6—2008}g7,1_4条不符:对于树干式供电系统的配电回路,各受电端均应装设带保护的开关电器。

低压断路器设计选型及极数的选择问题

低压断路器设计选型及极数的选择问题

低压断路器设计选型及极数的选择问题低压配电系统中,断路器是非常重要的角色,在其选择上也有一定的原则。

目前,断路器按使用类别分A 类和B 类,A 类为非选择型,B 类为选择型;按设计形式可分为万能式和塑料外壳式(包括微型断路器);按分断介质分如空气中分断、真空中分断、气体中分断;按操作机构的控制方法分有关人力操作、无关人力操作、有关动力操作、无关动力操作、储能操作;按是否适合隔离分为适合隔离和不适合隔离;按是否需要维修分需要维修和不需要维修;按安装方式分为固定式、插入式、抽出式;按保护对象分为配电保护型,电动机保护型、家用和类似家用场所保护型,剩余电流(漏电)保护型。

关于断路器的保护整定问题,主要有这样几个方面:配电变压器低压侧进线断路器、母联断路器一般设二段保护,为长延时、短延时(或瞬时)过电流脱扣器。

配电线路用断路器一般设三段保护,为长延时、瞬时(或短延时)及接地故障过电流脱扣器。

末级配电线路用断路器一般设三段保护,为长延时、瞬时及接地故障过电流脱扣器。

在低压配电系统的设计中,低压断路器的上下两级之间的选择性配合,必须具有”选择性、快速性和灵敏性”。

选择性则与上下两级低压断路器之间的配合有关,而快速性和灵敏性分别与保护电器本身特点和线路运行方式有关。

上下两级断路器配合得当,则能有选择地将故障回路切除,保证配电系统的其它无故障回路继续正常工作。

反之,则影响配电系统的可靠性。

级联保护是断路器限流特性的具体应用,其主要原理是利用上级断路器的限流作用,在选择下级断路器时,可选择分断能力较低的断路器,以达到降低成本节约费用的目的。

断路器保护的级间配合:当上下级断路器出线端处预期短路电流有较大差别,且均设有瞬时脱扣器时,则上级断路器的瞬时脱扣整定电流应大于下级的预期短路电流,以保证有选择性保护。

当上下级断路器距离较近,出线端预期短路电流差别很小时,则上级断路器宜选用带有短延时脱扣器延时动作,以保证有选择配合。

低压配电系统中的配电级数探讨

低压配电系统中的配电级数探讨

低压配电系统中的配电级数探讨庞传贵李维时摘要:根据笔者在工程(尤其是民用建筑工程)设计中,对配电级数和保护级数的理解及实际工程设计的体会,简述了如何合理地运用配电级数和保护级数,并对其给出了明确的定义。

1 区分配电系统中的配电级数和保护级数一个配电系统是否安全可靠,经济实用,便于维护管理,其配电级数和保护级数的设计是至关重要的。

虽然在设计规范中对配电级数有规定,但由于对规范的理解不同,习惯作法不同,工业建筑与民用建筑的情况不同,设计者的水平或重视程度不同等诸多因素,使目前各设计单位的作法不统一。

有些工程的配电系统设计得比较复杂,配电级数过多,使供电系统故障率增高,故障面扩大,不易管理,操作维护不方便等。

为能正确理解配电系统的配电级数和保护级数,提高设计水平,提高配电系统的可靠性,特撰此文以期能起到抛砖引玉的作用。

在《供配电系统设计规范》(GB50052—95)第3.0.7第中规定“供电系统应简单可靠,同一电压供电系统的变配电级数不宜多于两级”。

本规定中有“变电”和“配电”两个不同的概念,变电级数与配电级数一般是不相同的,变电级数一般会少于配电级数。

同一电压供电系统的配电级数不宜多于两级的规定,在规范GB50052-95第3.0.7条的条文说明中指出“由低压侧为10kV的总变电所或地区变电所配电至10kV配电所,再从该配电所以10kV配电给配电变压器,则认为10kV配电级数为两级”。

在低压配电系统中,对于大容量的低压用电设备而言,配电级数和保护级数不多于两级,还有可能做到(也有的工程未做到)。

但对于容量很小的低压用电设备,以及变电所不在用电设备的建筑物内的许多设备而言,就比较难做到。

在《民用建筑电气设计规范》(JGJ/T16—92)(简称《民规》)第8.1.4条中规定:“自变压器二次侧至用电设备之间的低压配电级数不宜超过三级,但对非重要负荷供电时,可超过三级。

”本规定,放宽了对配电级数的限制,在一定程度上体现了民用建筑的特点,但由于没有将配电级数和保护级数加以区别,加以解释。

低压电力施工技术标准

低压电力施工技术标准

低压电力施工技术标准
低压电力施工技术标准主要包括以下几个方面:
1. 接线方式:低压配电系统的接线方式有放射式、树干式和环形接线三种基本接线方式。

为保证安全可靠,减少线路损失,提高输电效率,低压配电线路电压不超过1kV、频率不超过1000Hz、直流不超过1500V。

2. 变压器的选择:应根据电力负荷所引起的电压波动值来选择合适的变压器。

对于超过照明或其他用电设施电压质量要求的电力负荷,可以分别设置电力和照明变压器。

3. 配电级数:由变压器二次侧至用电设备点一般不超过三级。

低压配电屏或低压配电箱应根据发展需要留有适当的备用回路。

4. 联络线的设置:在某些情况下,如节假日节电和检修的需要、有较大容量的季节性负荷、周期性用电的科研单位和实验室、供电可靠性的要求等,低压配电系统之间应设联络线。

5. 进线开关和保护设备:由建筑物外引来的电源线路,应在屋内靠近进线点便于操作维护的地方,装设进线开关和保护设备。

6. 负载平衡:单相用电设备应均匀地分配到三相线路中,以减少中性线电流。

对于Y/Y0-12接线的三相变压器,中性线电流不得超过低压绕组额定电流的25%,且其任一相电流在满载时不得超过额定电流值。

7. 其他要求:在设计和施工过程中,还需要考虑电击防护、过电流保护、接地措施等安全问题,并确保供电连续性,保证电能质量良好。

1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【摘要】配电系统是否安全可靠、经济实用并便于管理,其配电级数的设计是至关重要的。

相关规范规定,在低压配电设计中,从变压器低压侧用电设备的配电级数一般不超过三级,对于重要的负荷,上下级保护电器的动作应具有选择性。

在实际工程的设计中,由于对配电级数的理解不到位,导致了配电系统经济技术上部合理的情况时有发生。

本文首先区分了配电级数和保护级数的不同概念,对保护级之间选择性的问题做了理解,最后重点探讨了低压系统中各级配电保护的选择性配合。

【关键词】低压配电系统;配电级数;保护级数;断路器;故障线路
一、对配电级数和保护级数的理解
配电级数是一个供电回路经配电装置分配成几个供电回路过程的次数,通过几次分配就称作几级配电。

对于一个配电装置而言,总进线开关与分支配出开关合起来算做一级配电,这与其总进线开关是否具有保护功能无关。

保护级数则是按保护开关的上下级个数来确定的,它既与配电级数有联系又不同于配电级数。

同一电压等级的配电级数,高压不宜多于两级,低压不宜多于三级;而保护级数则可能达到四级甚至五级,一般情况下各级保护之间需要进行保护配合,即动作应具有选择性。

二、保护级之间选择性的问题
保护的选择性是指协调具有保护功能的电源,当系统任意点故障后可以被位于仅靠故障点的上一级保护电源消除,而且只能由其单独类消除,从而保证其他回路的工作连续性。

选择性保护对于所有故障电源(即无论是过负荷、接地故障还是短路等任何一种故障)都能实现选择性保护时未完全选择性。

当仅在一定故障电流范围内实现选择性保护时为部分选择性。

对于重要负荷,其供电线路上、下级保护电气的选择性,可保证故障时不致越级切断线路而引起非故障线路的设备终端供电,这对设备的供电可靠性是很重要的。

如果当过载或短路故障发生时,d1和d2断路器均跳闸,那么此保护就无选择性,如图1所示。

对保护分级有充分的理解,有助于合理设置上下级保护电气的选择性。

规范只规定了对于重要负荷需要有选择性,但对重要负荷没有说明和列举,对于是完全选择还是部分选择也无具体要求。

根据笔者对相关规范的理解,重要负荷为一级负荷、二级负荷及消防负荷;对于一级负荷及消防负荷,须做到完全选择,对于二级负荷,部分选择即可。

三、低压系统中各级配电保护的选择性配合
低压配电系统一般分二到三级,不宜超过三级。

第一级为变电所低压柜,第二级为中间(楼层)配电箱,第三级为终端配电箱。

应尽量减少配电级数,级数少有利于保护的选择性配合。

对于各级配电保护的选择性配合探讨如下:
(一)变电所低压柜
1、断路器的形式
一般总开关及联络开关采用框架断路器,出线开关采用塑壳断路器。

2、总开关与联络开关的选择方法
总开关与联络开关应有选择性,方法一是按选择性表格选型,框架电流一般相差二级时可以保证选择性要求;方法二是联络开关取消瞬时保护,总开关于分开关的长延时保护整定值的比值不小于1:6,方法三是联络开关改为框架式负荷开关。

3、总开关与分开关的选择方法
总开关与分开关应有选择性,以施耐德mt型框架开关与nsx型塑壳开关为例,经查表比对,基本上实现了全系列的全选择性保护。

《工业于民用配电设计手册》建议为保证选择性低压总开关取消瞬时保护,仅设短延时保护,这是没有必要的。

变压器低压出线总开关不宜取消瞬时保护,一方面难以复核系统设备及排线的动热稳定性,大短路电流时应该采用能量保
护快速分闸以减少对电气设备及母排的损害,特别是对变压器的损害,另一方面,低压总开关采用延时脱扣不利于高压侧继电保护的整定。

同时目前上级框架开关于下级塑壳开关已实现了自然的完全选择性,不必考虑短路故障电流过大的问题。

4、变电所低压总开关宜采用具有全参数调节的智能型脱扣器,采用三段式保护或四段式保护(增加接地故障保护,建议作用于信号)。

5、当变电所少数出线开关容量较大而采用框架断路器时,设计时一定要注意,此回路应尽量减少容量,不行时可分成二路出线,应保证总开关于分开关的长延时整定电流的比值大于1.6且框架电流相差2.5倍以实现自然的完全选择性。

6、变电所出线开关建议采用电子脱扣器,重要回路采用智能脱扣器,三段式保护。

一方面是满足对下级配电前段线路保护的灵敏度要求,一方面是为更好的满足保护选择性的要求。

当于下级配电开关的瞬动满足不了选择性要求时可取消出线开关瞬时保护改用短延时保护。

(二)中间(楼层)配电箱
一般总开关及出线开关采用塑壳断路器,若由变电所至中间(楼层)配电箱采用放射式供电,则中间(楼层)配电箱总开关可以采用负荷开关,这样由于上级变电所出线开关至本箱的分开关距离较远,短路电流相差较大,更易实现保护选择性,当有保护死区时上级变电所出线开关可采用三段保护以提高保护灵敏度;当由变电所至本箱采用树干式配电,则本箱总开关应采用断路器。

变电所出线开关、本箱总开关及分开关均应按照所选断路器品牌的选择性配合表进行选型,以实现完全选择性配置。

(三)终端配电箱
一般总开关采用塑壳断路器,分开关采用塑壳或微型断路器。

当分开关采用微型断路器,主开关采用塑壳断路器时,其选择性容易实现。

当分开关及主开关均采用微型断路器时,上下级只有部分选择性,则要求计算此处的短路电流。

当小于选择性极限电流时可以满足选择性要求,否则主开关智能采用微型断路器。

若由中间(楼层)配电箱至终端配电箱采用放射式供电,则终端配电箱总开关可以采用负荷开关,易实现于上级的保护选择性;当为树干式供电时,则本箱总开关应采用断路器。

中间(楼层)配电箱出线开关、本箱总开关及分开关均应按照所选断路器品牌的选择性配合表进行选型,实现完全选择性配置。

(四)智能脱扣器断路器
设计低压配电系统时,要准确地计算故障电流,恰当地选择保护电器,正确确定保护电气的动作电流和动作时间,才能保证有选择性地切断故障线路。

随着电子技术运用的深入,配置智能脱扣器的断路器在建筑工程逐渐推广和使用。

智能脱扣器在过载长延时、短路短延时、短路瞬时、接地故障的动作电流值和动作时间都在一定范围内可调,这给上下级保护的选择性实现提供了很大的技术便利。

建议在选择配电系统的开关电器时,尽量选择一个厂家一个系列的产品,在实现选择性设计时,有更具体的数据可供参考,其保护电气的级间选择性配合情况,可参照产品的技术参数去实施。

四、结语
综上,低压配电线路发生故障时,既要保证可靠地分段故障线路,又要尽可能地缩小断电范围,减少不必要的停电,即要有选择性地分断保护电器。

正确理解低压配电的配电级数、保护级数及级间选择性,对实现简单、可靠、稳定的低压配电系统有重要作用。

在设计中严格进行低压电器的选择性设计,把握好可靠性、经济性的关系,提高设计质量。

相关文档
最新文档