《调频发射机》高频课程设计报告
调频发射机高频实验课程设计

调频发射机的设计【摘要】调频发射机作为一种简单的通信工具,它第一将音频信号和高频载波调制为调频波,使高频载波的频率随音频信号发生转变,再对所产生的高频信号进行放大,鼓励,功放和一系列的阻抗匹配,使信号输出到天线,发送出去的装置。
本文要紧讨论了调频发射机的原理实现方式并设计了电路图,将调频发射机的电路分为了它由调制器、前置功放、末级功放和直流稳压电源等部份组成,别离讨论它们的原理及其特性。
【关键词】 调频发射机 调制器 直流稳压电源【引言】频率调制又称调频(FM ),它是使高频振荡信号的频率按调制信号的规律转变(瞬时频率转变的大小与调制信号成线性关系),而振幅维持恒定的一种调制方式。
本文着重讨论了调频发射的实现电路的各个组成部份及实现电路,利用直接调频法对信号进行调制,末级利用高频功率放大器对信号进行放大,确保信号达到能够发射的足够的功率。
1.电路原理及方案选择FM 调制原理载波()t w U t u c cm c cos )(=,调制信号()t u Ω;通过FM 调制,使得)(t u c 频率转变量与调制信号()t u Ω的大小成正比。
即已调信号的瞬时角频率()()t u k w t w f c Ω⋅+=已调信号的瞬时相位为 ()()t d t u k t w t d t w t t f c t ''+=''=⎰⎰Ω)(00ϕ实现调频的方式分为直接调频和间接调频两大类。
(1) 直接调频直接调频的大体原理是利用调制信号直接操纵振荡器的振荡频率,使其反映调制信号转变规律。
要用调制信号去操纵载波振荡器的振荡频率,确实是用调制信号去操纵决定载波振荡器振荡频率的元件或电路的参数,从而使载波振荡器的瞬时频率按调制信号转变规律线性地改变,就能够够实现直接调频。
直接调频可用如下方式实现:a.改变振荡回路的元件参数实现调频在LC 振荡器中,决定振荡频率的要紧元件是LC 振荡回路的电感L 和电容C 。
高频课程设计调频发射机

高频课程设计调频发射机一、课程目标知识目标:1. 学生能够理解调频发射机的基本原理,掌握调频调制技术的基本概念。
2. 学生能够描述高频课程设计调频发射机的结构组成及其工作原理。
3. 学生能够掌握调频发射机参数调整对发射信号质量的影响。
技能目标:1. 学生能够运用所学知识,进行调频发射机的组装与调试。
2. 学生能够通过实际操作,分析并解决调频发射过程中出现的问题。
3. 学生能够利用调频发射机进行信号的传输,具备实际应用的能力。
情感态度价值观目标:1. 学生通过学习,培养对无线电通信技术的兴趣,激发创新意识。
2. 学生在学习过程中,树立团队协作意识,提高沟通与协作能力。
3. 学生能够认识到无线电通信技术在生活中的应用,增强社会责任感和使命感。
课程性质分析:本课程为高年级电子技术课程,以实践操作为主,理论联系实际,注重培养学生的动手能力与创新能力。
学生特点分析:高年级学生对电子技术有一定的基础,具备一定的自学能力和动手能力,对新鲜事物充满好奇心。
教学要求:1. 教师应注重理论与实践相结合,引导学生通过实践掌握理论知识。
2. 教师应关注学生的个体差异,因材施教,提高学生的创新能力。
3. 教师应注重培养学生的团队协作能力,提高学生的综合素质。
二、教学内容1. 理论知识:- 调频发射机原理:包括调频调制技术、发射机结构及其工作原理。
- 调频发射机关键参数:如频率、带宽、调制指数等对信号质量的影响。
- 无线电发射法规与标准:了解国家对无线电发射设备的相关规定。
2. 实践操作:- 调频发射机的组装:学生根据原理图,自行组装调频发射机。
- 调频发射机调试:学生调整发射机参数,优化发射效果。
- 信号传输实验:利用调频发射机进行信号传输,测试传输距离和信号质量。
3. 教学大纲:- 第一周:调频发射机原理学习,包括理论知识讲解和案例分析。
- 第二周:调频发射机关键参数学习,进行实际操作训练。
- 第三周:无线电发射法规与标准学习,了解行业规范。
《调频发射机》高频课程设计报告

高频课程设计报告专业:班级:姓名:学号:指导老师:设计时间:福建工程学院电子信息与电气工程系通信教研室2010.1目录1. 设计题目 (3)2. 实践目的 (3)3. 设计要求 (3)4. 基本原理 (3)5. 系统调试 (9)6. 心得体会 (9)7. 参考文献 (10)附录 (10)高频课程设计一、设计题目调频发射机二、实践目的无线电发射与接收设备是高频电子线路的综合应用,是现代化通信系统、广播与电视系统、无线安全防范系统、无线遥控和遥测系统、雷达系统、电子对抗系统、无线电制导系统等,必不可少的设备。
本次设计要达到以下目的: 1. 进一步认识射频发射与接收系统; 2. 掌握调频(或调幅)无线电发射机的设计; 3. 学习无线电通信系统的设计与调试。
三、设计要求1. 发射机采用FM 、AM 或者其它的调制方式;2. 若采用FM 调制方式,要求发射频率覆盖范围在88-108MHz,传输距离>20m;3. 若采用AM 调制方式,发射频率为中波波段或30MHz 左右,传输距离>20m ;4. 为了加深对调制系统的认识,发射机建议采用分立元件设计;四、基本原理本设计图采用FM 调制。
载波()t w U t u c cm c cos )(=,调制信号()t u Ω;通过FM 调制,使得)(t u c 频率变化量与调制信号()t u Ω的大小成正比。
即已调信号的瞬时角频率()()t u k w t w f c Ω⋅+=已调信号的瞬时相位为()()t d t uk t w t d t w t tfc t''+=''=⎰⎰Ω)(0ϕ实现调频的方法分为直接调频和间接调频两大类,本设计图采用直接调频: 直接调频的基本原理是利用调制信号直接控制振荡器的振荡频率,使其反映调制信号变化规律。
要用调制信号去控制载波振荡器的振荡频率,就是用调制信号去控制决定载波振荡器振荡频率的元件或电路的参数,从而使载波振荡器的瞬时频率按调制信号变化规律线性地改变,就能够实现直接调频。
叶陈年高频课设报告-调频发射机

阳光学院通信电子线路课程设计小功率调频发射机设计报告姓名:叶陈年学号:2414111152专业:电信一班指导教师:罗国新2016 年10 月12 日小功率调频发射机课程设计一、任务及性能指标要求1、题目:小功率调频发射机的设计与制作2、主要技术指标[1]:1.中心频率 MHz f 120=2.频率稳定度 10/0≤∆f f -43.最大频偏 kHz f m 10>∆4输出功率 mW 30P 0≥5.天线形式 用100欧姆电阻替代6.电源电压 V Vcc 9=3、设计和制作任务1.确定电路形式,选择各级电路的静态工作点,画出电路图;2.计算各级电路元件参数并选取元件;3.画出电路装配图;4.组装焊接电路;5.调试并测量电路性能;6.写出课程设计报告书,内容包括:●任务及性能指标要求;●电路和方案选择的依据,元件的理论值计算和选择;●调试方法和步骤,调试中的问题的分析及解决;●测试仪器,实验结果分析;●改进设想,实验心得。
7.调频发射机组成框图如图1-1所示:图1-1调频发射机组成框图二、 电路图设计和方案选择1. 调频震荡级的设计[2]对于直接调频电路,最常见的有三种,即三点式振荡电路,克拉波振荡电路和晶体振荡电路。
最为普通的三点式振荡,频偏最大,频率稳定度相对调频震荡级 缓冲级 功率输出级较低。
而晶体振荡电路频率稳定度最高,但是频偏很小。
克拉泼振荡电路介于两者之间,是电容三点式振荡器的改进型电路。
如下图2-1所示,在克拉泼振荡电路中,通常C 3取值较小,满足C 3<<C 1,C 3<<C 2,所以回路总电容C 主要取决于C 3,从而减小了三极管结电容并在C 1 C 2上对电路的影响,提高频率稳定度。
在实际情况下,克拉泼振荡电路的频稳度大体比电容三点式电路高一个数量级,达10-4-10-5,一般来说,C 3越小振荡频率越稳定。
但减小C 3的同时也减小了开环增益,会导致起振困难。
高频课程设计调频发射机

高频课程设计调频发射机一、教学目标本章节的教学目标是使学生掌握调频发射机的基本原理、结构和功能,能够运用所学知识分析和解决实际问题。
具体目标如下:1.知识目标:(1)了解调频发射机的工作原理和基本组成;(2)掌握调频发射机的各个部件的功能和作用;(3)了解调频发射机在通信领域的应用。
2.技能目标:(1)能够正确使用调频发射机进行通信;(2)能够分析调频发射机的工作状态,判断并解决问题;(3)能够根据实际需求,设计并制作简单的调频发射机。
3.情感态度价值观目标:(1)培养学生对通信技术的兴趣和好奇心;(2)培养学生团队合作、动手实践的能力;(3)使学生认识到调频发射机在现代通信中的重要性,提高学生的社会责任感和使命感。
二、教学内容本章节的教学内容主要包括调频发射机的基本原理、结构和功能,具体如下:1.调频发射机的工作原理;2.调频发射机的组成部分及其功能;3.调频发射机的应用领域;4.调频发射机的设计和制作。
三、教学方法为了提高教学效果,本章节将采用多种教学方法,如讲授法、讨论法、案例分析法、实验法等。
具体如下:1.讲授法:用于讲解调频发射机的基本原理、结构和功能;2.讨论法:用于探讨调频发射机的应用领域和发展趋势;3.案例分析法:分析实际案例,使学生更好地理解调频发射机的工作原理;4.实验法:让学生动手实践,制作和调试调频发射机,提高学生的实际操作能力。
四、教学资源为了支持教学内容和教学方法的实施,本章节将准备以下教学资源:1.教材:提供理论知识的学习;2.参考书:拓展学生的知识视野;3.多媒体资料:包括图片、视频等,用于直观展示调频发射机的工作原理和制作过程;4.实验设备:用于学生的实践操作和实验教学。
五、教学评估本章节的教学评估将采用多种方式,以全面、客观地评估学生的学习成果。
具体评估方式如下:1.平时表现:通过课堂参与、提问、讨论等环节,评估学生的学习态度和积极性;2.作业:布置与本章节相关的作业,评估学生的理解能力和应用能力;3.实验报告:评估学生在实验过程中的操作能力和问题解决能力;4.考试:设置选择题、填空题、简答题等题型,全面考察学生对调频发射机知识的掌握程度。
高频课程设计报告_调频发射机

调频发射机课程实验报告姓名:班别:学号:指导老师:组员:小功率调频发射机课程设计一、 主要技术指标:1. 中心频率:012f MHz =2. 频率稳定度 40/10f f -∆≤3. 最大频偏10m f kHz ∆>4. 输出功率 30o P mW ≥5. 天线形式 拉杆天线(75欧姆)6. 电源电压 9cc V V =二、 设计和制作任务:1. 确定电路形式,选择各级电路的静态工作点,并画出电路图。
2. 计算各级电路元件参数并选取元件。
3. 画出电路装配图4. 组装焊接电路5. 调试并测量电路性能6. 写出课程设计报告书 三、 设计提示:通常小功率发射机采用直接调频方式,并组成框图如下所示:其中,其中高频振荡级主要是产生频率稳定、中心频率符合指标要求的正弦波信号,且其频率受到外加音频信号电压调变;缓冲级主要是对调频振荡信号进行放大,以提供末级所需的激励功率,同时还对前后级起有一定的隔离作用,为避免级功放的工作状态变化而直接影响振荡级的频率稳定度;,功放级的任务是确保高效率输出足够大的高频功率,并馈送到天线进行发射。
上述框所示小功率发射机设计的主要任务是选择各级电路形式和各级元器件参数的计算。
1.频振荡级:由于是固定的中心频率,可考虑采用频率稳定度较高的克拉泼振荡电路。
关于该电路的设计参阅《高频电子线路实验讲义》中实验六内容。
克拉泼(clapp )电路是电容三点式振荡器的改进型电路,下图为它的实际电路和相应的交流通路:实用电路 交流通路如图可知,克拉泼电路比电容三点式在回路中多一个与C1 C2相串接的电容C3,通常C3取值较小,满足C3《C1 ,C3《C2,回路总电容取决于C3,而三极管的极间电容直接并接在C1 C2上,不影响C3的值,结果减小了这些不稳定电容对振荡频率的影响,且C3较小,这种影响越小,回路的标准性越高,实际情况下,克拉泼电路比电容三点式的频稳度高一个量级,达451010--。
调频(fm)发射机课程设计

调频(fm)发射机课程设计一、教学目标本课程的教学目标是使学生掌握调频(FM)发射机的基本原理、工作方式和应用场景。
通过本课程的学习,学生将能够:1.描述调频(FM)发射机的基本原理和工作方式。
2.分析并解决调频(FM)发射机在实际应用中可能遇到的问题。
3.设计和搭建简单的调频(FM)发射机电路。
4.了解调频(FM)发射机在我国无线电通信领域的应用和发展趋势。
二、教学内容本课程的教学内容主要包括以下几个部分:1.调频(FM)发射机的基本原理:介绍调频(FM)发射机的工作原理、调频信号的产生和调频解调的基本概念。
2.调频(FM)发射机的组成及功能:讲解调频(FM)发射机的各个组成部分,如射频振荡器、调制器、功率放大器等,以及它们的功能和作用。
3.调频(FM)发射机的应用场景:介绍调频(FM)发射机在无线电通信、广播、导航等领域的应用实例。
4.调频(FM)发射机的调试与维护:讲解调频(FM)发射机的调试方法、注意事项以及日常维护保养。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式进行教学:1.讲授法:通过讲解调频(FM)发射机的基本原理、组成及应用等内容,使学生掌握相关知识。
2.案例分析法:通过分析实际案例,使学生了解调频(FM)发射机在实际应用中的工作原理和操作方法。
3.实验法:学生进行调频(FM)发射机的搭建和调试实验,培养学生动手能力和实际操作技能。
四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:选用国内权威出版的《调频(FM)发射机原理与应用》作为主要教材。
2.参考书:提供相关领域的经典著作和论文,供学生深入学习和研究。
3.多媒体资料:制作课件、教学视频等,以形象、生动的方式展示调频(FM)发射机的相关知识。
4.实验设备:准备调频(FM)发射机实验套件,供学生进行实验操作。
五、教学评估本课程的教学评估将采用多元化的评价方式,全面客观地评价学生的学习成果。
小功率调频发射机高频课设报告

课程设计报告——小功率调频发射机的设计与制作一、框图及原理图图1.1 调频发射机组成框图图1.2 调频发射机组成原理图二、原理一、震荡级 震荡级电路常见的是三点式,电容三点式和电感三点式。
虽然电容三点式的频偏大,但频率稳定度较低。
因此选用电容三点式的改进型电路——克拉泼振荡电路。
克拉泼电路的主要部分是电感和与它串联的小电容C3,要求这个小电容C3远小于另两个电容C1和C2,这样三个电容串联的值主要取决于小电容C3,从而减小了三极管极间电容对振荡频率的影响。
一般来说,这个小电容越小,振荡频率越稳定,但过小的电容会减小开环增益,引起起振困难,所以综合考虑,C3去220p 比较合理。
三极管采用分压式偏执,以提高电路的稳定度。
Rb1、Rb2、Re 、Rc 为偏置电阻,使得三极管工作在放大区。
Cb 为高频旁路电容,使得交流通路可实现射同它反。
调 频 震荡级 缓 冲 放大级 功 率 输出级图2.1 震荡级电路二、缓冲级缓冲级作为前级振荡器与末级功率放大部分的桥梁,一方面它将前级信号放大到足以激励功率放大级的程度,另一方面它将两级隔离,避免相互影响。
本电路采用L1和C1组成的网络实现滤波和阻抗匹配。
由于频率固定在12M ,根据)2/(10LC f π=可以确定相应的电感和电容,这里采用100p 的电容和可调电感组合可以达到最好的效果。
其中可调电感通过圈数粗调电感值,通过转动中心磁芯细调电感值。
R1、R2、R3为偏置电阻,将三极管的静态工作点调在放大区。
C1和C3为前后级耦合电容,这两个电容的取值不能太大也不能太小。
如果取值过大,则前后级耦合效果虽然增强,但相互影响也增大;相反,如果取值太小,则导致前后级的容抗较大,影响耦合效果。
综合考虑,取值在100p 到200p 较好。
图2.2 缓冲级三、功率放大级功率放大级做为最后一级,其最主要的任务是提供较大的放大倍数和发射功率,以保证信号较远距离的传输。
放大倍数受Re(即图中R2)和Rc(即LC回路的谐振阻抗)影响较大,其中放大倍数与Re成反比,而与Rc成正比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高频课程设计报告专业:班级:姓名:学号:指导老师:设计时间:福建工程学院电子信息与电气工程系通信教研室2010.1目录1. 设计题目 (3)2. 实践目的 (3)3. 设计要求 (3)4. 基本原理 (3)5. 系统调试 (9)6. 心得体会 (9)7. 参考文献 (10)附录 (10)高频课程设计一、设计题目调频发射机二、实践目的无线电发射与接收设备是高频电子线路的综合应用,是现代化通信系统、广播与电视系统、无线安全防范系统、无线遥控和遥测系统、雷达系统、电子对抗系统、无线电制导系统等,必不可少的设备。
本次设计要达到以下目的: 1. 进一步认识射频发射与接收系统; 2. 掌握调频(或调幅)无线电发射机的设计; 3. 学习无线电通信系统的设计与调试。
三、设计要求1. 发射机采用FM 、AM 或者其它的调制方式;2. 若采用FM 调制方式,要求发射频率覆盖范围在88-108MHz,传输距离>20m;3. 若采用AM 调制方式,发射频率为中波波段或30MHz 左右,传输距离>20m ;4. 为了加深对调制系统的认识,发射机建议采用分立元件设计;四、基本原理本设计图采用FM 调制。
载波()t w U t u c cm c cos )(=,调制信号()t u Ω;通过FM 调制,使得)(t u c 频率变化量与调制信号()t u Ω的大小成正比。
即已调信号的瞬时角频率()()t u k w t w f c Ω⋅+=已调信号的瞬时相位为()()t d t uk t w t d t w t tfc t''+=''=⎰⎰Ω)(0ϕ实现调频的方法分为直接调频和间接调频两大类,本设计图采用直接调频: 直接调频的基本原理是利用调制信号直接控制振荡器的振荡频率,使其反映调制信号变化规律。
要用调制信号去控制载波振荡器的振荡频率,就是用调制信号去控制决定载波振荡器振荡频率的元件或电路的参数,从而使载波振荡器的瞬时频率按调制信号变化规律线性地改变,就能够实现直接调频。
直接调频可用如下方法实现:1.改变振荡回路的元件参数实现调频在LC振荡器中,决定振荡频率的主要元件是LC振荡回路的电感L和电容C。
在RC振荡器中,决定振荡频率的主要元件是电阻和电容。
因而,根据调频的特点,用调制信号去控制电感、电容或电阻的数值就能实现调频。
调频电路中常用的可控电容元件有变容二极管和电抗管电路。
常用的可控电感元件是具有铁氧体磁芯的电感线圈或电抗管电路,而可控电阻元件有二极管和场效应管。
2.控制振荡器的工作状态实现调频在微波发射机中,常用速调管振荡器作为载波振荡器,其振荡频率受控于加在管子反射极上的反射极电压。
因此,只需将调制信号加至反射极即可实现调频。
若载波是由多谐振荡器产生的方波,则可用调制信号控制积分电容的充放电电流,从而控制其振荡频率。
通常小功率发射机采用直接调频方式,并组成框图如下所示:调频震荡级缓冲级功率输出级其中,其中高频振荡级主要是产生频率稳定、中心频率符合指标要求的正弦波信号,且其频率受到外加音频信号电压调变;缓冲级主要是对调频振荡信号进行放大,以提供末级所需的激励功率,同时还对前后级起有一定的隔离作用,为避免级功放的工作状态变化而直接影响振荡级的频率稳定度;,功放级的任务是确保高效率输出足够大的高频功率,并馈送到天线进行发射。
上述框所示小功率发射机设计的主要任务是选择各级电路形式和各级元器件参数的计算。
(1)频振荡级:由于是固定的中心频率,可考虑采用频率稳定度较高的克拉泼振荡电路。
克拉泼(clapp)电路是电容三点式振荡器的改进型电路,下图为它的实际电路和相应的交流通路:实用电路 交流通路如图可知,克拉泼电路比电容三点式在回路中多一个与C1 、C2相串接的电容C3,通常C3取值较小,满足C3<<C1 ,C3<<C2,回路总电容取决于C3,而三极管的极间电容直接并接在C1 、C2上,不影响C3的值,结果减小了这些不稳定电容对振荡频率的影响,且C3较小,这种影响越小,回路的标准性越高,实际情况下,克拉泼电路比电容三点式的频稳度高一个量级,达451010-- 。
可是,接入C3后,虽然反馈系数不变,但接在AB 两端的电阻RL ’=RL//Reo 折算到振荡管集基间的数值(设为RL ’’)减小,其值变为''2'223()31,2L L L L C R n R R C C ≈=+式中,C1,2是C1 C2 和 各极间电容的总电容。
因而,放大器的增益亦即环路增益将相应减小,C3越小,环路增益越小。
减小C3来提高回路标准是以牺牲环路增益为代价的,如果C3取值过小,振荡器就会因不满足振幅起振条件而停振。
(2)缓冲级:由于对该级有一定增益要求,考虑到中心频率固定,因此可采用以LC 并联回路作负载的小信号谐振放大器电路。
并联谐振回路如图所示如图,Rs RL 分别为输入信号源内阻和输出负载电阻,Rp 为L 中心损耗电阻,回路中总导纳为 Y (jw )=1/Re+j(wc-1/wL) 式中,Re=Rp//Rs//RL.因而电流源Is (jw )在回路上产生的电压为:()Re()()()1Re(1/)Is jw V jw Is jw Y jw j wc wL ==+-令回路总导纳为0,求得谐振角频率为1/o LC ω=,这个频率上,回路电压达到最大,()()Re o o S o V V j I j ωω==,且与()S o I j ω同相()Re 111oo oo o o o o V V V V j j j jQe L ωωωωωωωωωωω===+++(-)(-)其中,2(),()arctan 1o v V V ωϕωωω==-+Qe 为有载品质因数,定义为:Re/Re /Re 1//o o p S p LQoQe L C C L R R R R ωω====++Qo :/o Rp L ω为回路固有品质因素,可见要增大Qe 除提高Qo 外,还应采用Rs 大的电流源激励,且尽可能增大RL 值。
并联谐振回路的幅频和相频特性曲线如下图:幅频特性 相频特性对该级管子的要求是: (35)r o f f ≥- ()2BR CEO V Vcc ≥至于谐振回路的计算,一般先根据f0算出LC 的乘积值,然后选择合适的C ,再求出L 。
C 根据本课题的频率可取100pf~200pf 。
(3)功放输出级:为了获得较大的功率增益和较高的集电极效率,该级可采用共发射极电路,且工作在丙类状态,输出回路用来实现阻抗匹配并进行滤,如下图为谐振功率放大器的原理电路图:其中Zl 为外接负载,Lr Cr 为匹配网络,它们与外接负载共同组成并联谐振回路,调Cr 使回路谐振在输入信号上,为实现丙类功放,基极偏置电压Vbb 应该没在功率管的截至区内。
若忽略基区宽度调制效应及管子结电容的影响,则输入信号电压Vb (t )=(coswt )*Vbm ,根据cos BE BB b BB bm s v V v V V t ω=+=+,集电极电流波形是一串周期重复的脉冲序列,脉冲宽度小于半个周期,用傅里叶级数展开可得:1212cos cos2C co c c CO c m s c m s i I i i I t I t ωω=++++……=I……… 由于集电极谐振回路调谐在输入信号频率上,因而它对ic 中的基波分量呈现的阻抗最大,且为纯电阻,称为谐振电阻,在高Q 回路中,其值近似为:22o rre Lt LL L R R C R ω==,式中t C = r L r L C C C C +为回路总电容,1/o s r t L C ωω==为回路谐振角频率,Qe= o ω r L /RL 为回路有载品质因素,而谐振回路上对c i中的其他分量呈现的阻抗均很小,这样可以近似认为回路上仅有由基波分量产生的电压,Vc ,而平均分量和各次谐波分量产生的电压均可忽略,因而可在负载上得到不失真信号功率。
利用谐振回路的选频作用,可以将失真的集电极电流脉冲变换为不失真的余弦电压,同时还可以将含有电抗分量的外接负载变换为谐振电阻Re ,而且调节r L r C ,还能保持回路谐振时使Re 等于放大管所需的集电极负载,实现阻抗匹配,因此在谐波功率放大器中,谐振回路起了选频和匹配的双重作用。
丙类工作时集电极效率随管子导通时间的减小而增大,但随着导通时间的减少,c i 中基波分量幅度1c m I 将相应减小,从而导致放大器的输出功率减小,为了在增大输入激励电压幅度Vbm 外,还必须同将基极偏执电压Vbb 向负值方向增大。
这样,加到基极上的最大反向电压(Vbb-Vbm )就将迅速增大,从而可能发生功率管发射结被反向击穿。
从结构简单,调节方便期间,本课题采用π型网络,计算元件参数时通常取Qe 在10以内,π型网络及计算如下:实现条件:Re<Rl元件表达式: 1L CO X X =- 11C e e X Q R =- 2eC LL eR X R R R =-- 212L e L c C R R X X X =--功率管应满足以下条件:CM o P P ≥ max CM c I i ≥ ()2BR CEO V Vcc ≥ (35)o f f γ≥-本设计图纸为:元件清单:五、系统调试1.给电路板通电,电压为12V,不加音频信号,测试三极管的静态工作点,看是否符合理论要求;2.加上音频信号,用频偏移测出角频;3.使用收音机收听,记下频率。
通电后,用示波器观察发现竟然没有起振,仔细检查电路板后发现有段电路被过腐蚀了,于是自己加了一条跳线,解决了问题。
后来发现电路板运行不稳定,输出频率与电压值经常发生跳变,原来是由于虚焊导致,为了解决虚焊问题,电路板不加音频信号,加上12V电压并接地,同时在输出级用示波器观察,接触各个焊点,如果示波器的波形发生跳变,则表示这点很可能发生虚焊,逐一修改,解决了虚焊问题。
通过收音机测试,发射距离可以达到45米。
六、心得体会焊接电路板要注意以下几点:1、要先检查所有的元件是否可用,焊接三极管时应分清基极,集电极,发射极;2、焊接时要注意防止虚焊,电容电感尽量卧式安装,焊接完成后尽量缩短高频部分的元件引线,但不用剪太短,否则不容易更改;3、接地线时不能贪图省事,用锡一直拉一排连接各管脚的地这样不易更改线路,应仍使用导线连接,便于修改;4、绕中周时应有规律的绕,均匀的绕,从下到上或者从上到下,切不可上面绕几圈下面绕几圈,这样在调节的时候会出错,焊接漆包线时一定要将焊接处的漆刮干净,最好用火烧,绕完后要用万用表测试其是否导通;5、电源线和地线排放的位置不能靠太近,否则用鳄鱼夹加电时易发生短路碰电;在这实习的五天里,我们忙碌并充实地画图、焊板、调试,虽然总是出现这样那样的问题,但我们都没有放弃,尤其是周四停电将近一天,那天夜里很多人都去通宵搞这个,很佩服他们。