东南大学数学建模2011-2012-2期末试卷

合集下载

东南大学11-12-2 几何与代数B期末试题A与答案A

东南大学11-12-2 几何与代数B期末试题A与答案A

4.
过点
P(1,
2,
0)
且与直线
⎧ ⎨ ⎩
x x
+ −
2 y
y−z + 3z
= =
1 0
垂直的平面的方程是

5. 若向量组 (1, −1, 2), (1, k, −3), (3, 0,1) 线性相关,则 k =

6. 设 A 是 4 × 3 阶矩阵,若齐次线性方程组 Ax = 0 的基础解系只含一个解向量,则

⎛4 2 0 ⎞
10.
矩阵
A
=
⎜ ⎜⎜⎝
2 0
k +1 k
k
k +
⎟ 1⎟⎟⎠
正定,则参数
k
满足

abc d a −1 b +1 c d
二、(10%)计算行列式
a−2 b c+2 d a−3 b c d +3 .
⎛0 0 1⎞
三、(12%)设矩阵
A
=
⎜ ⎜
2
−3
0
⎟ ⎟
,求矩阵方程
AXA−1
+
A−
2
⎟ ⎟
,特征向量 η3
=
⎜ ⎜
1
⎟ ⎟
⎜⎝ 0 0 0 ⎟⎠
⎜⎝ 2⎟⎠
⎛ 1/ 2
令正交矩阵 Q
⎛ = ⎜⎜⎝
η1 η1
,
η2 η2
,
η3 η3
⎞⎜
⎟⎟⎠
=
⎜ ⎜⎜⎝
−1
0 /
2
1/ 18 −4 / 18 1/ 18
2 / 3⎞ ⎟
1/3⎟ , 2 / 3⎟⎟⎠
则正交变换 x = Qy 将二次型化为标准形: f ( y1, y2 , y3) = 7 y12 + 7 y22 − 2 y32 (2)变换 x = Qy 将二次曲面 f (x1, x2, x3) = −1的方程化为: 7 y12 + 7 y22 − 2 y32 = −1,

2011全国大学生数学建模竞赛A题题目及参考答案

2011全国大学生数学建模竞赛A题题目及参考答案

2011高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题城市表层土壤重金属污染分析随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。

对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。

按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。

现对某城市城区土壤地质环境进行调查。

为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS记录采样点的位置。

应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。

另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。

附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。

现要求你们通过数学建模来完成以下任务:(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。

(2) 通过数据分析,说明重金属污染的主要原因。

(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。

(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?题目A题城市表层土壤重金属污染分析摘要:本文研究的是某城区警车配置及巡逻方案的制定问题,建立了求解警车巡逻方案的模型,并在满足D1的条件下给出了巡逻效果最好的方案。

在设计整个区域配置最少巡逻车辆时,本文设计了算法1:先将道路离散化成近似均匀分布的节点,相邻两个节点之间的距离约等于一分钟巡逻路程。

东南大学数学建模试题 含答案

东南大学数学建模试题 含答案

东 南 大 学 考 试 卷(A 卷)课程名称 数学建模与数学实验 考试学期 2011-2012-3 得分 适用专业 各专业 考试形闭卷 120分钟 (考试可带计算器) 所有数值结果精度要求为保留小数点后两位。

一.选择题:(每题3分,共15分) 1 本课程介绍的数学模型分类方法是 ( ) A .按照数学模型的应用领域; B. 按照建模的数学方法; C .按照建模的目的; D. 按照模型的表现特征。

2. 在非线性方程求近似根时,下列论述正确的是 ( ) A. 二分法总是可以求出近似根; B. 牛顿切线法总是可以求出近似根; C. 牛顿割线法总是可以求出近似根; D. 以上都不对。

3. 下列论述正确的是 ( ) A.一致矩阵一定能通过一致性检验; B. 正互反矩阵一定是判断矩阵; C.能通过一致性检验的矩阵是一致矩阵; D. 判断矩阵一定是一致矩阵。

4. 对于初值很小的阻滞增长模型的描述正确的是 ( ) A.增长率一直变大; B.增长率一直变小; C.增长率先增后减; D.增长率先减后增。

5. 泛函 210(())[2()('())]t J x t x t e x t dt -=+⎰取极值的条件是 ( )A .'''0t x x e -+=; B. 1'0t x e --=;C . '''0t x x e --+=; D. 以上都不对。

二.判断题(每题3分,共15分)正确的打√,不正确的打×。

6. 用无量纲量表示一个物理规律时,最多可以减少3个变量。

()7. 线性最小二乘问题的标准模型为正规方程。

()8. 能通过一致性检验的判断矩阵是一致矩阵。

()9. Leslie模型描述的种群存在有稳定的年龄结构。

()10.寿命服从指数分布的元件存在预防性更换策略。

( )三.应用题(共70分)11.(12分)某食品店坚果的销售情况及其每周的最大供应量如下表所示:如果统计表明每周所有坚果的销售总量大约维持在200公斤,杏仁与腰果采购总量不少于40公斤,但也不超过120公斤,碧根果采购量不少于山核桃采购量的60%,为了使得收益达到最大,请为他的供货量建立合适的数学模型,并判断该数学模型的类型。

2011-2012数学建模题

2011-2012数学建模题

数学建模试题一、传染病模型医学科学的发展已经能够有效地预防和控制许多传染病,但是仍然有一些传染病暴发或流行,危害人们的健康和生命。

社会、经济、文化、风俗习惯等因素都会影响传染病的传播,而最直接的因素是:传染者的数量及其在人群中的分布、被传染者的数量、传播形式、传播能力、免疫能力等。

一般把传染病流行范围内的人群分成三类:S 类,易感者(Susceptible),指未得病者,但缺乏免疫能力,与感染者接触后容易受到感染;I 类,感病者(Infective),指染上传染病的人,它可以传播给S 类成员;R 类,移出者(Removal),指被隔离或因病愈而具有免疫力的人。

要求:请建立传染病模型,并分析被传染的人数与哪些因素有关?如何预报传染病高潮的到来?为什么同一地区一种传染病每次流行时,被传染的人数大致不变?二、一阶常微分方程模型—人口模型与预测 下表列出了中国1982-1998年的人口统计数据,取1982年为起始年(0=t ),1016540=N 万人,200000=m N 万人。

要求:(1)建立中国人口的指数增长模型,并用该模型进行预测,与实际人口数据进行比较。

(2)建立中国人口的Logistic 模型,并用该模型进行预测,与实际人口数据进行比较。

(3)利用MATLAB 图形,标出中国人口的实际统计数据,并画出两种模型的预测曲线。

(4)利用MATLAB 图形,画出两种预测模型的误差比较图,并分别标出其误差。

【注】常微分方程一阶初值问题的MATLAB 库函数为:ode45。

语法为:[t,Y] =ode45(odefun,tspan,y0)三、高阶常微分方程模型—饿狼追兔问题现有一只兔子、一匹狼,兔子位于狼的正西100米处,假设兔子与狼同时发现对方并一起起跑,兔子往正北60米处的巢穴跑,而狼在追兔子。

已知兔子、狼是匀速跑且狼的速度是兔子的两倍。

要求:(1)建立狼的运动轨迹微分模型。

(2)画出兔子与狼的运动轨迹图形。

2011-2012数学建模题

2011-2012数学建模题

数学建模试题一、传染病模型医学科学的发展已经能够有效地预防和控制许多传染病,但是仍然有一些传染病暴发或流行,危害人们的健康和生命。

社会、经济、文化、风俗习惯等因素都会影响传染病的传播,而最直接的因素是:传染者的数量及其在人群中的分布、被传染者的数量、传播形式、传播能力、免疫能力等。

一般把传染病流行范围内的人群分成三类:S 类,易感者(Susceptible),指未得病者,但缺乏免疫能力,与感染者接触后容易受到感染;I 类,感病者(Infective),指染上传染病的人,它可以传播给S 类成员;R 类,移出者(Removal),指被隔离或因病愈而具有免疫力的人。

要求:请建立传染病模型,并分析被传染的人数与哪些因素有关?如何预报传染病高潮的到来?为什么同一地区一种传染病每次流行时,被传染的人数大致不变?二、一阶常微分方程模型—人口模型与预测 下表列出了中国1982-1998年的人口统计数据,取1982年为起始年(0=t ),1016540=N 万人,200000=m N 万人。

要求:(1)建立中国人口的指数增长模型,并用该模型进行预测,与实际人口数据进行比较。

(2)建立中国人口的Logistic 模型,并用该模型进行预测,与实际人口数据进行比较。

(3)利用MATLAB 图形,标出中国人口的实际统计数据,并画出两种模型的预测曲线。

(4)利用MATLAB 图形,画出两种预测模型的误差比较图,并分别标出其误差。

【注】常微分方程一阶初值问题的MATLAB 库函数为:ode45。

语法为:[t,Y] =ode45(odefun,tspan,y0)三、高阶常微分方程模型—饿狼追兔问题现有一只兔子、一匹狼,兔子位于狼的正西100米处,假设兔子与狼同时发现对方并一起起跑,兔子往正北60米处的巢穴跑,而狼在追兔子。

已知兔子、狼是匀速跑且狼的速度是兔子的两倍。

要求:(1)建立狼的运动轨迹微分模型。

(2)画出兔子与狼的运动轨迹图形。

2011全国大学生数学建模竞赛A题题目及参考答案

2011全国大学生数学建模竞赛A题题目及参考答案

2011高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题城市表层土壤重金属污染分析随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。

对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。

按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。

现对某城市城区土壤地质环境进行调查。

为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS记录采样点的位置。

应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。

另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。

附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。

现要求你们通过数学建模来完成以下任务:(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。

(2) 通过数据分析,说明重金属污染的主要原因。

(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。

(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?题目A题城市表层土壤重金属污染分析摘要:本文研究的是某城区警车配置及巡逻方案的制定问题,建立了求解警车巡逻方案的模型,并在满足D1的条件下给出了巡逻效果最好的方案。

在设计整个区域配置最少巡逻车辆时,本文设计了算法1:先将道路离散化成近似均匀分布的节点,相邻两个节点之间的距离约等于一分钟巡逻路程。

东南大学高数试卷及答案-11-12-2高数期末试题(有答)-1

东南大学高数试卷及答案-11-12-2高数期末试题(有答)-1

共 4 页 第 1 页11-12-2高数期末试卷(150分钟)一.填空题(本题共9小题,每小题4分,满分36分) 1.曲线32635y x x x =-++上的拐点坐标是(2,5)-;2.曲线211x y x +=-的斜渐近线方程是1y x =+;3.抛物线2(1,0)y x x =-在点处的曲率是2;4.曲线段321 (01)312x t t y t ⎧=+⎪≤≤⎨=-⎪⎩的弧长是1;5.sin 20ln(1)li 1cos 4mxx t dtx→+=-⎰6.设2, 0(), 0x x x x f x e x ⎧+<=⎨≥⎩,则31(2)f x dx -⎰76e -=;7.微分方程2(1)0xy x y '--=的通解是212x Cxey -=;8.设212()ln x f t dt x +=⎰,其中()f t 为连续函数,则 11)8(10f =; 9.在2sin ()n y x n R x ==的2阶Maclaurin 公式中,Lagrange 余项为21(1)cos()(01)(21)!n n x x n θθ+-<<+。

二.计算下列各积分(本题共4小题,每小题8分,满分32分) 1.⎰C =+2. 1202 2x dx x x +--⎰ 5ln 23=- 3.1ln(1)x dx -⎰1=-共 4 页 第 2 页4. 2arcsin xdx x⎰arcsin ln x C x =-++三.(本题满分6分)一物体由静止开始作变速直线运动,在t 秒末的速度是23(/)t 米秒,问:(1)在t 秒末时,物体离开出发点的距离是多少? (2)需要多少时间走完343米?3(1) ; (2) 7t m t s =四.(本题满分9分)过原点引抛物线2(1) 3 (0)y a x a =++>其中的两条切线。

设切点分别为,A B , (1)求两条切线,OA OB 与此抛物线所围部分的面积()I a ; (2)求()I a 的最小值。

2011年大学生数学建模竞赛试题(全套)

2011年大学生数学建模竞赛试题(全套)

2011高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题城市表层土壤重金属污染分析随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。

对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。

按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。

现对某城市城区土壤地质环境进行调查。

为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS记录采样点的位置。

应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。

另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。

附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。

现要求你们通过数学建模来完成以下任务:(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。

(2) 通过数据分析,说明重金属污染的主要原因。

(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。

(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?B题交巡警服务平台的设置与调度“有困难找警察”,是家喻户晓的一句流行语。

警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。

为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。

每个交巡警服务平台的职能和警力配备基本相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东 南 大 学 考 试 卷(A 卷)
课程名称 数学建模与数学实验 考试学期 2010-2011-2 得分 适用专业 各专业 考试形闭卷 120分钟 (考试可带计算器) 所有数值结果精度要求为保留小数点后两位 一.填空题:(每题2分,共10分) 1. 用Matlab 求解线性规划问题,常用的命令有 等等。

2. 矩阵A 关于模36可逆的充要条件是: 。

3. 泛函332230()()2()3J x x t t x t t dt ⎡⎤=++⎣⎦⎰取极值的必要条件为 。

4. 请补充一致矩阵缺失的元素136A ⎛⎫ ⎪= ⎪ ⎪⎝⎭。

5. 请列出本人提交的上机实验内容(标题即可) 。

二.选择题:(每题2分,共10分) 1. 在下列Leslie 矩阵中,能保证主特征值唯一的是 ( ) A. 0230.20000.40⎛⎫ ⎪ ⎪ ⎪⎝⎭; B. 0 1.200.10000.30⎛⎫ ⎪ ⎪ ⎪⎝⎭; C. 0070.30000.10⎛⎫ ⎪ ⎪ ⎪⎝⎭; D.以上都对 2. 下列论述正确的是 ( ) A.判断矩阵一定是一致矩阵 B.正互反矩阵一定是判断矩阵 C.能通过一致性检验的矩阵是一致矩阵 D.一致矩阵一定能通过一致性检验 3. n 阶Leslie 矩阵有 个零元素。

( )
A.不超过2(1)n -;
B.不少于2(1)n -;
C.恰好2(1)n -;
D.恰好21n -
4. Matlab 软件内置命令不可以 ( )
A.求矩阵的主特征值
B. 做曲线拟合;
C. 求解整数线性规划
D. 求样条插值函数
5. 关于等周问题,下面的描述不正确的有 ( )
A.目标泛函可以表示为最简泛函;
B.条件泛函为最简泛函;
C.条件泛函取值为常数;
D. 函数在区间两个端点处可以取任意值
三.判断题(每题2分,共10分)
1. 马氏链模型中,矩阵一定有特征值1。

( )
2. 插值函数不要求通过样本数据点。

( )
3. Matlab 软件内置命令程序可以直接求解0-1整数线性规划问题。

( )
4.Volterra 模型得到的周期解里,当食饵数量最小时,捕食者数量也最小。

( )
5.如果1
(,)a a -称为一对倒数,则模42倒数表中的对数是12。

( )
四.应用题(共70分)
1.(15分)某人决定用10万元投资A 、B 、C 、D 四支股票,已知购买时四支股票股价分别为每股10元,15元,30元,95元,股市交易要求购买的每支股票数量以手为单位,至少为1手(1手=100股),四只股票的预期收益率分别为30%,20%,50%和15%,如果希望持有股票数量不超过80手,为了使得收益达到最大,请为他的投资建立合适的数学模型,并判断该数学模型的类型。

不需要求出具体数值结果。

2(15分)用无量纲化思想化简下面的数学模型(假设所有的参数均为正常数),使得参数个数尽可能减少。

1111122()()dx x r a x b y dt dy y r a x dt
⎧=--⎪⎪⎨⎪=-⎪⎩
3.(20分)已知在气体中音速v 与气压P 、气体密度ρ有关,试用量纲分析法求v 与P 和
ρ之间的关系。

5.(20分)某零件寿命X 为服从均匀分布的随机变量,假设零件最大使用寿命为6个月。

零件损坏时更换和预防性更换费用分别为5万元和1万元。

(1)请建立数学模型,讨论是否存在最佳预防性更换策略。

(2)如果存在,求出最佳更换时间和单位时间最小损失(要求算出具体数值结果)。

如果不存在,请说明理由。

相关文档
最新文档