伺服电机讲解
伺服电机知识

伺服电机知识一、伺服电机的原理伺服电机的原理是应用反馈控制的技术来实现对电机的精确控制。
它通过对电机的位置、速度、加速度等参数进行实时监测,并将监测到的数据反馈给控制系统,从而实现对电机的精确控制。
根据反馈控制的原理,伺服电机可以分为位置伺服电机、速度伺服电机和力矩伺服电机等几种类型。
位置伺服电机是利用编码器等装置来实时监测电机的位置,并根据监测到的位置数据来控制电机的运动。
速度伺服电机是利用速度传感器等装置来监测电机的速度,并根据监测到的速度数据来控制电机的转速。
力矩伺服电机是利用力矩传感器等装置来监测电机的扭矩,并根据监测到的扭矩数据来控制电机的扭矩输出。
可以说,伺服电机的原理就是通过反馈控制技术来实现对电机的精确控制,以满足各种不同的运动要求。
二、伺服电机的结构伺服电机的结构主要包括电机本体、编码器、控制器等几个部分。
1. 电机本体:伺服电机的电机本体通常由定子和转子两部分组成。
定子是电机的静止部分,通常由铁芯、线圈等材料组成。
转子是电机的运动部分,通常由永磁体、转子铁芯等材料组成。
电机本体的结构设计直接影响着电机的性能和特性。
2. 编码器:编码器是伺服电机中的一个重要设备,它主要用于监测电机的位置、速度等参数,并将监测到的数据反馈给控制系统。
根据监测的参数不同,编码器可以分为位置编码器、速度编码器等几种类型。
3. 控制器:控制器是伺服电机中的核心部件,它主要用于接收编码器反馈的数据,并根据监测到的数据来控制电机的运动。
控制器的设计和性能直接影响着伺服电机的控制精度和稳定性。
以上是伺服电机的基本结构,不同的应用场合可能会有不同的结构设计。
例如,机器人中的伺服电机通常还会包括减速器、联轴器等辅助部件,以满足机器人对运动精度和可靠性的要求。
三、伺服电机的控制技术伺服电机的控制技术是实现对电机精确控制的关键。
目前,伺服电机的控制技术主要包括位置控制、速度控制和力矩控制等几种类型。
1. 位置控制:位置控制是伺服电机中最基本的控制技术,它主要用于控制电机的位置。
一文看懂伺服电机

一文看懂伺服电机本圈每月组织工厂改善实践活动,征寻合作工厂,有意请与编辑联系伺服电机(servo motor )是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。
伺服电机的作用是将输入的电压信号(即控制电压)转换成轴上的角位移或角速度输出,在自动控制系统中常作为执行元件,所以伺服电动机又称为执行电动机,其最大特点是:有控制电压时转子立即旋转,无控制电压时转子立即停转。
转轴转向和转速是由控制电压的方向和大小决定的。
伺服电动机分为交流和直流两大类。
一、交流伺服电机1.基本结构交流伺服电机主要由定子和转子构成。
定子铁心通常用硅钢片叠压而成。
定子铁心表面的槽内嵌有两相绕组,其中一相绕组是励磁绕组,另一相绕组是控制绕组,两相绕组在空间位置上互差90°电角度。
工作时励磁绕组f与交流励磁电源相连,控制绕组k加控制信号电2.工作原理交流伺服电机在没有控制电压时,气隙中只有励磁绕组产生的脉动磁场,转子上没有启动转矩而静止不动。
当有控制电压且控制绕组电流和励磁绕组电流不同相时,则在气隙中产生一个旋转磁场并产生电磁转矩,使转子沿旋转磁场的方向旋转。
但是对伺服电动机要求不仅是在控制电压作用下就能启动,且电压消失后电动机应能立即停转。
如果伺服电动机控制电压消失后像一般单相异步电动机那样继续转动,则出现失控现象,我们把这种因失控而自行旋转的现象称为自转。
为消除交流伺服电机的自转现象,必须加大转子电阻r2,这是因为当控制电压消失后,伺服电机处于单相运行状态,若转子电阻很大,使临界转差率sm>1,这时正负序旋转磁场与转子作用所产生的两个转矩特性曲线以及合成转矩特性曲线如图所示。
由图中可看出,合成转矩的方向与电机旋转方向相反,是一个制动转矩,这就保证了当控制电压消失后转子仍转动时,电动机将被迅速制动而停下。
转子电阻加大后,不仅可以消除自转,还具有扩大调速范围、改善调节特性、提高反应速度等优点。
伺服电机概述

伺服电机概述2.1.1 伺服电机的用途与分类伺服电机(又称为执行电机)是一种应用于运动控制系统中的控制电机,它的输出参数,如位置、速度、加速度或转矩是可控的。
伺服电机在自动控制系统中作为执行元件,把输入的电压信号变换成转轴的角位移或角速度输出。
输入的电压信号又称为控制信号或控制电压,改变控制电压可以变更伺服电机的转速及转向。
伺服电机按其使用的电源性质不同,可分为直流伺服电机的交流伺服电机两大类。
交流伺服电机按结构和工作原理的不同,可分为交流异步伺服电机和交流同步伺服电机。
交流异步伺服电机又分为两相交流异步伺服电机和三相交流异步伺服电机,其中两相交流异步伺服电机又分为笼型转子两相伺服电机和空心杯形转子两相伺服电机等。
同步伺服电机又分为永磁式同步电机、磁阻式同步电机和磁滞式同步电机等。
直流伺服电机有传统型和低惯量型两大类。
直流伺服电机按励磁方式可分为永磁式和电磁式两种。
传统式直流伺服电机的结构形式和普通直流电机基本相同,传统式直流伺服电机按励磁方式可分为永磁式和电磁式两种。
常用的低惯量直流伺服电机有以下几种。
①盘形电枢直流伺服电机。
②空心杯形电枢永磁式直流伺服电机。
③无槽电枢直流伺服电机。
随着电子技术的飞速发展,又出现了采用电子器件换向的新型直流伺服电机。
此外,为了适应高精度低速伺服系统的需要,又出现了直流力矩电机。
在某些领域(例如数控机床),已经开始用直线伺服电机。
伺服电机正在向着大容量和微型化方向发展。
伺服电机的种类很多,本章介绍几种常用伺服电机的基本结构、工作原理、控制方式、静态特性和动态特性等。
2.1.2 自动控制系统对伺服电机的基本要求伺服电机的种类虽多,用途也很广泛,但自动控制系统对它们的基本要求可归结为以下几点。
①宽广的调速范围,即要求伺服电机的转速随着控制电压的改变能在宽广的范围内连续调节。
②机械特性和调节特性均为线性。
伺服电机的机械特性是指控制电压一定时,转速随转矩的变化关系;调节特性是指电机转矩一定时,转速随控制电压的变化关系。
伺服电机 基础知识

伺服电机基础知识
伺服电机是一种能够将输入的脉冲信号转换为相应的角位移或线性位移的装置,具有快速响应、精确控制和稳定性高等特点。
以下是伺服电机的基础知识:
1. 工作原理:伺服电机内部通常包括一个电机(如直流或交流电机)和一个编码器。
当输入一个脉冲信号时,电机会产生一定的角位移或线性位移,同时编码器会反馈电机的实际位置。
驱动器根据反馈值与目标值进行比较,调整电机转动的角度或距离,以达到精确控制的目的。
2. 分类:伺服电机主要分为直流伺服电机和交流伺服电机两大类。
此外,根据有无刷之分,直流伺服电机又可以分为有刷伺服电机和无刷伺服电机。
3. 特点:
精确控制:伺服电机能够精确地跟踪和定位目标值,实现高精度的位置和速度控制。
快速响应:伺服电机具有快速的动态响应,能够在短时间内达到设定速度并快速停止。
稳定性高:伺服电机具有较高的稳定性,能够连续工作而不会出现较大的误差。
噪声低:交流伺服电机通常采用无刷设计,运行时噪声较低。
维护方便:伺服电机的结构和维护都比较简单,便于使用和维护。
4. 应用领域:伺服电机广泛应用于各种需要精确控制和快速响应的场合,如数控机床、包装机械、纺织机械、机器人等领域。
5. 选型原则:在选择伺服电机时,需要考虑电机的规格、尺寸、转速、负载等参数,以及实际应用场景和工作环境等因素。
6. 日常维护:为了保持伺服电机的良好性能和使用寿命,需要定期进行清洁和维护,如检查电机表面是否有灰尘、油污等,检查电机的接线是否牢固等。
以上是关于伺服电机的基础知识,如需了解更多信息,建议咨询专业人士。
伺服电机停的时候会冲一下伺服电机中的使能作用讲解

伺服电机停的时候会冲一下伺服电机中的使能作用讲解在了解伺服使能时先简单的了解一下伺服电机的概念一:伺服电机的概念“伺服”的意思就是“奴隶”的意思。
服从控制信号的要求而动作。
在信号来到之前,转子静止不动;信号来到之后,转子立即转动;当信号消失,转子能即时自行停转。
因此而得名——伺服系统。
伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。
伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高、始动电压等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。
分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。
二:伺服使能概念伺服使能就是通过给驱动器发信号,让驱动器对电机供电(励磁),也就是接到这个信号后,驱动器的电流环,速度环、位置环(到底是哪些环由驱动器控制模式决定)进入工作状态。
负责控制信号的输入和输出叫做使能,使能通俗点说就是一个“允许”信号,进给使能也就是允许进给的信号,也就是说当进给使能信号有效的时候电机才能转动。
励磁,使能就是励磁,随时准备按你的脉冲或者通信指令运行。
在没使能时电机轴是可以盘着玩的,编码器会正常计数,当一使能,驱动器发出高频丝丝声,这时候轴就不能盘了,说明励磁了,要随时准备干活了。
三:伺服使能的作用如下1)、伺服使能信号输入即进入伺服使能状态(电机通电);2)、伺服使能信号输入后,至少100ms以后再输入指令脉冲;3)、如果伺服使能信号断开,则伺服电机进入不使能状态(没有电流流入电机);4)、伺服使能信号在电源接通约2秒后输入才有效;四:以三菱伺服驱动器为例1)伺服开启SON :SON开启主电路中有电源进入,成为可以运行的状态。
(伺服ON状态)关闭时主电路被切断,伺服电机呈自由状态。
2)实例接线:。
伺服电机详解

固定子
电机结构 转子 :永磁型 定子 :3相
转 矩
電圧
N1
N2
转速
22
永磁交流伺服电机
伺服电机的基本构成方式 各种伺服电机的主要特点,电机框图 伺服电机电磁结构动向,鸣志M3伺服电机
23
伺服电机的基本构成方式
构成方式
直流有刷伺服电机
交流伺服电机
同步伺服电机 (SM)
异步伺服电机 (IM)
SM:synchronous motor IM:induction motor
电刷位置与转矩关系
转矩最大位置
磁钢的磁场
转矩为零位置 磁钢的磁场
电流的磁场
电流的磁场
电刷的设计:保证电流磁场HF的方向与磁钢的磁场成90关系
16
直流的稳态特性
電圧、電流、転速等均不随时间变化时的电机特性
特性方程:
V = Ra I + E
E = Ke ⋅ N
Tem = Kt I
N
=
V Ke
−
R KeKt
26
永磁交流伺服电机的结构
无刷电机加编码器即可构成伺服电机
伺服电机电磁结构最新动向
近年来,行业知名厂家的最新款电机纷纷采用12槽10极结构. 10极结构电机的经纬
2004年东方BX产品化, 是行业最早10极伺服 2011年安川推出SIGAM5 (10极) 2012年松下推出A5(10极) 之后台达,汇川(10极)已有产品 伺服计划2018年量产
35
无控制时的直流电机特性
直流电机框图
Ua(s) +
-
1 La s + Ra
Ia(s)
Td(s)
Tem(s)
伺服电机基础知识

2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位反馈以做运算用。位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加整个系统的定位精度。
3、PI(比例积分)就是综合P和I的优点,利用P调节快速抵消干扰的影响,同时利用I调节消除残差。。。
4、单独的D(微分)就是根据差值的方向和大小进行调节的,调节器的输出与差值对于时间的导数成正比,微分环节只能起到辅助的调节作用,它可以与其他调节结合成PD和PID调节。。。它的好处是可以根据被调节量(差值)的变化速度来进行调节,而不要等到出现了很大的偏差后才开始动作,其实就是赋予了调节器以某种程度上的预见性,可以增加系统对微小变化的响应特性。。。
第2环是速度环,通过检测的电机编码器的信号来进行负反馈PID调节,它的环内PID输出直接就是电流环的设定,所以速度环控制时就包含了速度环和电流环,换句话说任何模式都必须使用电流环,电流环是控制的根本,在速度和位置控制的同时系统实际也在进行电流(转矩)的控制以达到对速度和位置的相应控制。
运动伺服一般都是三环控制系统,从内到外依次是电流环速度环位置环。
1、首先电流环:电流环的输入是速度环PID调节后的那个输出,我们称为“电流环给定”吧,然后呢就是电流环的这个给定和“电流环的反馈”值进行比较后的差值在电流环内做PID调节输出给电机,“电流环的输出”就是电机的每相的相电流,“电流环的反馈”不是编码器的反馈而是在驱动器内部安装在每相的霍尔元件(磁场感应变为电流电压信号)反馈给电流环的。
《伺服电机精讲》课件

添加标题
添加标题
添加标题
添加标题
按照功率分类:大功率伺服电机、 小功率伺服电机
按照用途分类:通用伺服电机、 专用伺服电机
应用领域概述
工业自动化:用 于控制机械设备
的运动和位置
机器人技术:用 于控制机器人的
运动和位置
数控机床:用于 控制机床的加工
精度和速度
医疗设备:用于 控制医疗设备的
运动和位置
航空航天:用于 控制航天器的运
06
伺服电机的未来发展
伺服电机的发展趋势
智能化:通过人工智能技术实现伺服电机的自动控制和优化 节能化:提高伺服电机的能效比,降低能耗 微型化:减小伺服电机的体积和重量,提高其便携性和灵活性 集成化:将伺服电机与其他设备集成,提高系统的整体性能和可靠性
ቤተ መጻሕፍቲ ባይዱ
伺服电机的新技术发展
智能化:通过人 工智能技术实现 伺服电机的自动 控制和优化
转速范围:确定电机的转速范围,如低速、 中速、高速等
控制方式:确定电机的控制方式,如开环、 闭环、半闭环等
精度要求:确定电机的精度要求,如位置、 速度、力矩等
环境条件:考虑电机的工作环境,如温度、 湿度、振动等
成本预算:考虑电机的成本预算,选择合 适的品牌和型号
伺服电机的安装与调试
安装步骤:检查电机、安装底座、固定螺丝、连接电缆等 调试步骤:检查电机、设置参数、测试运行、调整参数等 注意事项:确保电机安装牢固、电缆连接正确、参数设置合理等 常见问题:电机无法启动、运行不稳定、噪音过大等及解决方法
伺服电机的维护与保养
清洁保养:定期清洁电机, 保持清洁,避免灰尘、油污 等影响电机性能
定期检查:检查电机的运行 状态,如温度、振动、噪音 等
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6场合的应用
7
A
1 概述
1.5伺服电动机典型生产厂家
德国西门子,产品外形有:
伺服电机
伺服电机驱动器
8
A
1 概述
1.5伺服电动机典型生产厂家
美国科尔摩根,产品外形有:
伺服电机
9
伺服电机驱动器
A
1 概述
1.5伺服电动机典型生产厂家
日本松下及安川,产品外形有:
26
A
4.伺服电机的机械特性及控制方式
4.1伺服电机的机械特性
27
A
4.2 零信号时的机械特性和无“自转”现象
对于伺服电动机,还有一条很重要的机械特性,这就是零 信号时的机械特性,所谓零信号,就是控制电压UC=0,这时 磁场是脉振磁场,它可以分解为幅值相等、转向相反的两个圆 形旋转磁场,其作用可以想象为有两对相同大小的磁铁N—S和 N—S在空间以相反方向旋转。
控制绕组
励磁绕组
电气原理图
21
A
3 旋转磁场作用下的运行分析
3.1旋转磁场的产生
同时,又假定通入励磁 绕组的电流Uf与通入控
ic Im sint
if Im sint 90
if Ic
制绕组的电流UC相位上
彼此相差900幅值彼此相
等,这样的两个电流称
为两相对称电流,用数
学式表示为
22
A
3.1旋转磁场的产生
A
2 伺服电机基本结构及原理
2.2 转动原理
18
A
2 三相异步电动机的转动原理 2.2 转动原理
19
A
2 三相异步电动机的转动原理
2.2 转动原理
当磁铁旋转时,在空间形成一个旋转磁场。假设永久磁铁是顺 时纠方向以n0的转速旋转,那末它的磁力线也就以顺时针方向切 割转子导条,在转子导条中就产生感应电势。根据右手定则,N 极下导条的感应电势方向垂直地从纸面出来。而S极下导条的感 应电势方向垂直地进入纸面。由于鼠笼转子的导条都是通过短路 环连接起来的,因此在感应电势的作用下,在转子导条中就会有 电流流过,电流有功分量的方向和感应电势方向相同。再根据通 电导体在磁场中受力原理,转子载流导条又要与磁场相互作用产
6 伺服电机选择及主要性能指标
2
A
目的
了解伺服电机基本结构,掌握其工作原理、运 行特性及其特点、应用场合,以求正确选用和使用 它们。
3
A
1 概述 1.1 什么叫伺服电机
伺服电动机也称为执行电动机,在控制系统 中用作执行元件,将电信号转换为轴上的转角或 转速,以带动控制对象。
伺服电动机分为:
1、交流伺服电动机 2、直流伺服电动机
示的是一台两极的电机,即极对数P=1。对两极电机而言,电
流每变化一个周期,磁场旋转一圈,因而当
电源频率f=400 Hs,即每秒变化400个周期时,磁场每秒应当
转400圈,故对两极电机,即P=1而言,旋转磁场转速为
n0= 24000 r/min
f
60f
旋转磁场转速为的一般表达式为
n0
(r/s) p
(r/min) p
15
电气原理图
A
2 伺服电机基本结构及原理
2、 转子
(1) 笼型转子 铁芯槽内放铜条,端
部用短路环形成一体, 或铸铝形成转子绕组。
转 定子 子
壳体
笼型转子
铸铝的笼型转子
16
A
2 伺服电机基本结构及原理
(2) 杯型转子纲
薄壁园筒形,放于内外定 子之间。一般壁厚为0.3mm
转 定子 子
壳体
杯型转子
17
4
A
1 概述 1.2伺服电机最大特点
在有控制信号输入时,伺服电动机就转动;没 有控制信号输入,它就停止转动。改变控制电压的 大小和相位(或极性)就可改变伺服电动机的转速和 转向。
5
A
1 概述
1.3伺服电机与普通电机相比具有如下特点
(1)调速范围宽广。伺服电动机的转速随着控制电 压改变,能在宽广的范围内连续调节。 (2)转子的惯性小,即能实现迅速启动、停转。 (3)控制功率小,过载能力强,可靠性好。
伺服电机讲解
1
A
内容
由于我们是从事非标自动化设备设计与制造的, 主要是合理地选择和正确使用各种控制电机,因此本 次讲座着重阐述伺服电机的基本结构、工作原理、工 作特性和使用方法。具体内容如下:
1 概述 2 伺服电机基本结构及原理
3 旋转磁场作用下的运行分析
4 伺服电机的机械特性及控制方式
5 交流伺服电机的应用
生电磁力,这个电磁力F作用在转子上,并对转轴形成电磁转矩。
根据左手定则,转矩方向与磁铁转动的方向是一致的,也是顺时 针方向。因此,鼠笼转子便在电磁转矩作用下顺着磁铁旋转的方 向转动起来。
20
A
3 旋转磁场作用下的运行分析 3.1伺服电机旋转磁场的产生
为了分析方便,先假定 励磁绕组有效匝数Uf与 控制绕组有效匝数UC相 等。这种在空间上互差 900电角度,有效匝数又 相等的两个绕组称为对 称两相绕组。
控制绕组 励磁绕组
UF1
UC1
UC2
UF2
当两相对称电流通入两相对称绕组时,在电机内就产生一个旋 转磁场。当电流变化一个周期时23 ,旋转磁场在空间转了一圈。 A
3.2伺服电机旋转磁场的方向
励磁绕组
控制绕组
24
A
3.2伺服电机旋转磁场的方向
励磁绕组
控制绕组
25
A
3.3 伺服电机旋转磁场的速度
旋转磁场的转速决定于定子绕组极对数和电源的频率。图所表
2.1 结构
转
子
由定子和转子二
大部分组成
1、定子
由铁心和线圈组成
_
+_
+
e e e e 励磁绕组
控制绕组
+
_+
_
定子 壳体
•U1
U2
励磁电压
•U1
U2
控制电压
14
A
1.2 伺服电机基本结构及原理
1.2.1 结构
由定子和转子二大部分组成
1、定子
由铁心和线圈组成
转定 子子
壳 体
励磁绕组
控制绕组
控制绕组与励磁 绕组相差900
28
A
4.2 零信号时的机械特性和无“自转”现象
29
A
4.2 零信号时的机械特性和无“自转”现象
当电阻已增大到使临界转差率>1的程度时,合成转矩曲线与横 轴相交仅有一点(S=1处),而且在电机运行范围内,合成转矩均
为负值,即为制动转矩。因而当控制电压UC取消变为单相运行时,
电机就立刻产生制动转矩,与负载阻转矩一起促使电机迅速停转,
松下交流伺服电机及驱动器
10
安川伺服电机驱动器
A
2 伺服电机基本结构及原理
驱动器
交流伺服 电机器
交流伺服电机系统
11
A
2 伺服电机基本结构及原理
2.1 结构
交流电机
交流电机 电源线
编码器
12
编码器信 号输出线
A
2 伺服电机基本结构及原理
1.2.1 结构
交流电机
机械负载轴
减速齿轮
13
A
2 伺服电机基本结构及原理