热管、回转式空气预热器设计
热管型空气预热器设计说明书(结构设计)

热管空气预热器
设计说明书
班级: XX1
姓名: XXX 学号: 0 X
目录
热管空气预热器设计任务书 (2)
热管空气预热器热力计算 (3)
热管空气预热器结构设计计算 (10)
热管空气预热器设计任务书
设计题目:热管空气预热器的设计
设计要求:烟气、空气为清洁气体,不含任何杂质,烟气成分按标准烟气进行计算
设计参数:烟气进口温度 t 1h = 280℃ ; 烟气出口温度 t 2h = 180℃ ; 空气进口温度 t 1c = 20℃ ;
烟气流量(标准状况) G h =8000 Nm 3/h ;
空气流量(标准状况) G c =6400 Nm 3/h;
烟气标况下的密度 错误!未找到引用源。
f h =1.295kg/m 3;
空气标况下的密度 错误!未找到引用源。
f c =1.293 kg/m 3
选用水为热管工质,管壳材料为20号锅炉无缝钢管,翅片材料为低碳钢,翅片与管壳连接方式为高频焊接。
这种热管的参数为:
光管外径d o =0.032m ;热管内径d i =0.026m ;
翅片高度l f =0.015m ;翅片厚度f =0.0012m ;翅片间距 s f =4mm ; 翅片节距s
f ’= s f + f=5.2mm ;
每米热管长的翅片数n f =错误!未找到引用源。
热管换热器管子排列形式为等边三角形排列,如图,横向管子中心距S T =0.081m ;S L =S T =0.081m 。
其热力设计计算和结构设计计算如下:
差
数
........忽略此处.......。
热管式空气预热器

热管式空气预热器热管是一种高效的传热元件,早在上世纪40年代热管的概念就已提出,直到60年代,由于宇宙航行的需要,热管才在宇航技术中得以应用。
此后发展很快,70年代热管就已广泛应用于电子、机械、石油、化工等行业。
从那时起,国内石油化工管式炉、锅炉上就开始使用热管式空气预热器来回收烟气余热,并迅速得到推广,到目前为止估计已有数百台在运行中。
它与管式和回转式等其他空气预热器相比,具有体积小、质量轻、效率高、不易受低温露点腐蚀等优点,这也就是它被迅速推广和应用的原因。
1、热管1)热管的工作原理和分类热管是一根两端密封,内部抽真空并充有工质的管子。
其一端(热端)被加热时,工质吸热蒸发并流向另一端(冷端),在那里将热量释放给管外的冷介质而冷凝,冷凝液流回热端,再吸热蒸发,如此循环,完成热量传递。
由于汽化潜热大,所以在极小的温差下就能把大量的热量从管子的一端传至另一端。
图1 热管工作原理示意图,a,重力式热管,热虹吸管,(b)毛细力热管,吸液芯热管,热管种类繁多,可按工质回流原理,工作温度、形状或工质等来分类。
按冷凝液回流原理来分主要有重力式(热虹吸式)热管和毛细力式(吸液芯式)热管两种。
故名思义,重力式热管的冷凝液靠重力回流,因此只能垂直安装或倾斜安装,热端在下,冷端在上。
毛细力式热管热端吸液芯中的工质吸热蒸发时,蒸发压力大于冷端,由此压差将蒸汽从蒸发段驱送至冷端,而冷凝液靠毛细压力送回蒸发段,以补充蒸发消耗了的工质。
因此其安装位置不受限制,甚至可与重力式热管相反,即热端在上,冷端在下也照样运行。
图1表示了这两种热管的工作原理。
此外,还有依靠静电体积力使工质回流的电流体动力热管;依靠磁体积力使工质回流的磁流体动力热管;依靠渗透膜两侧工质的浓度差进行渗透使工质回流的渗透热管;靠离心力分力回流的旋转式热管等等。
按工作温度可分为五类:(1)超低温热管,工作温度低于-200?;(2)低温热管,工作温度-200?50?;(3)常温热管,工作温度50?250?;(4)中温热管,工作温度250?600?;(5)高温热管,工作温度高于600?。
回转式空气预热器传热计算

回转式空气预热器传热计算
首先,需要计算回转式空气预热器的传热系数。
传热系数是衡量热量
传递效果的参数,取决于流体的性质、传热面积和流速等因素。
常用的传
热系数计算方法有经验公式和换热管内外壁传热系数的计算。
对于经验公式,可考虑根据流体的互换面积、换热器的几何尺寸和流
体的性质等因素,选用适当的经验公式进行计算。
换热管内外壁传热系数的计算则需要考虑传热管的材料、管径、管壁
厚度和流体流速等因素,可采用查表法或经验公式进行计算。
其次,需要计算回转式空气预热器的传热面积。
传热面积是传递热量
的表面积大小,一般需要根据传热系数和传热效率等参数计算得到。
传热
面积的计算可以根据回转式空气预热器的结构和参数进行几何面积的计算,并结合传热系数进行修正。
最后,需要计算回转式空气预热器的传热效率。
传热效率是衡量热量
传递能力的参数,是热量传递到回流空气中的比例。
传热效率的计算可以
根据传热系数、传热面积和温度差等参数进行计算。
在进行回转式空气预热器传热计算时,还需要确定相关的物理参数,
如气流和烟流的温度、流速、密度和粘度等。
这些参数的准确测量和计算
对于传热计算的准确性至关重要。
总之,回转式空气预热器传热计算是一项复杂的工程计算过程,需要
考虑多个因素并进行准确的物理参数测量和计算。
通过合理的传热计算,
可以更好地指导回转式空气预热器的设计和运行,提高能源利用效率。
换热器的设计电站锅炉空气预热器

底部轴承箱
3100 A1铸铁或等同
上部轴承箱 转子密封
4360 43A或等同 低合金高强度钢
2.传热元件:
0.5-0.8的薄钢板轧制成的波纹板和定位板相间布置 沿高度方向:热端层、中间层和冷端层
特征参数:单位面积流通截面0.912,0.89,0.86 单位容积受热面396~440m23
定位板:垂直波纹0.5~1.2; 波纹板:斜波纹
tjs
xyyy xyy
xkkk xkk
另外,提高转速金属壁温变化减小,最低温度可略为提高,而且提高转速可在一定程度上改善传 热,但转速过高漏风量将加大。
(二)设计方法: 1.确定烟速和风速-目前8~12, ≈0.7
2.根据烟气流量,计算所需的空气预热器直径:
wy Vy / Ay Ay xy NπD2 / 4
静子(受热面)上下两端装有可转动的上、 下风罩
双 流 道 风 罩 转 动 式 空 预 器
减轻了转子重量
回转式空气预热器优缺点 优点:
1)结构紧凑:传热面密度高,管式体积的1/10; 2)重量轻,节省钢材:蓄热板薄 3)布置灵活 4)不易低温腐蚀 5)受热面腐蚀时,不增加漏风量,更换方便
缺点:
1)漏风大:转动与静止部件之间 2)结构复杂,运行维护工作多,检修较复杂
(4)计算烟气、空气流速
wy
B jV y 3600F
(1
) 273
wk
B jV 0 3600 f
(1
t) 273
Bj 计算燃料消耗量,kg/h; Vy,V0-烟气容积和空气容积,Nm3/kg;
(2)决定转速:一般1~3,转子直径小取较大值,转子直径大取较小值。
(3)决定转子内径,然后确定烟气及空气的流通截面积
热管型空气预热器设计说明书(结构设计)

班级: 姓名: 学号:
热能 0801 李佳
04
目录
热管空气预热器设计任务书· ·······················2 热管空气预热器热力计算· ·························3 热管空气预热器结构设计计算· ·····················10
MPa
查附录 7,工作温度 221℃
2.42
10
工作最 107 大压力
MPa
,安全
序 号
项目
符号
基管外
1
径
do
管壁厚
2
度
翅片外
3
一
径
、
热
翅片高
管4
度
元
件
翅片厚
的5
度
基
本
翅片间
选6
距
择
横向管
7 子中心
距
纵向管 8 子中心
距
热侧迎 9 风速度
冷侧迎 10 风速度
热侧迎 11 风面积
二
、 换
12
冷侧迎 风面积
每米热管长的翅片数 nf=
。
热管换热器管子排列形式为等边三角形排列, 如图,横向管子中 心距 ST=0.081m;SL=ST=0.081m。
2
其热力设计计算和结构设计计算如下:
序 号
项目
符号
烟气进 1 口温度
t1h
烟气出 2 口温度
t2h
烟气定 3 性温度
tfh
热力计算
单位
计算公式
℃
给出
℃
给出
℃
一 、
10.9 24.1 × 1-60 3.55 × 1-20
电厂锅炉热管式空气预热器的设计和运行

北 京 第 二热 电厂 低 温 段 腐 蚀 严 重 每 年更 换 1 0 0 0根昔 子 . 已运 行 年 - 尢堵灰现 象 和腐蚀 现 装 有 超 声 波 清 灰 装 热管空 气预热 器 形 成 不 易清 除 的" 钢珠 混 凝 士 , 象 甲
值 和 实 验 值 见 表 】 .
2 5 防止 堵 灰 性 能 ,
2 5 1 堵 灰 和腐 蚀 是 紧 密相 联 的 , .. 由于 热 管 式
空 气 预 热 器 最 低 管 壁 温 比管 式 空 气 预 热 器 高
3 C左 右 . 0 这使 腐 蚀 减 少 , 灰 也 减 少 . 堵
维普资讯
置
维普资讯
中 国 电 力
19 4年 第 6期 9
代 替 暖 风 器 , 烟 温 度 降 低 1 . ' , 年 节 约 费 5 5 分 段 设 计 排 08 每 C .
热 管 空 气 预 热 器 应 通 过 调 整 空 气 侧 肋 片 间 用4 0万元 .北京 第二热 电厂 20/ 2th锅炉 排烟 温 度 降低 7 设 计 为 5 )每 年 直 接 经 济 效 益 距 办 法 , 大 部 分 管 排 管 壁 温 度 在 酸 露 点 以 上 + ℃( ℃ , 使 3. 6 6万元 . 河 电 厂 1 0/ 滦 2 th锅 炉 排 烟 温 度 降 低 最 下 面几 排 管 子 可 采 用 大 肋 片 间距 或光 管 以提
6 7 ( 计 为 4 6 , 约 燃 料 费 用 及 能 带 满 高 管 壁 温 度 . .c 设 . ℃) 节 负荷 的 经 济 效 益 2 0 0 4 . 8万 元
热管型空气预热器设计说明书(结构设计)

热管空气预热器
设计说明书
班级: XX1
姓名: XXX 学号: 0 X
目录
热管空气预热器设计任务书 (2)
热管空气预热器热力计算 (3)
热管空气预热器结构设计计算 (10)
热管空气预热器设计任务书
设计题目:热管空气预热器的设计
设计要求:烟气、空气为清洁气体,不含任何杂质,烟气成分按标准烟气进行计算
设计参数:烟气进口温度 t 1h = 280℃ ; 烟气出口温度 t 2h = 180℃ ; 空气进口温度 t 1c = 20℃ ;
烟气流量(标准状况) G h =8000 Nm 3/h ;
空气流量(标准状况) G c =6400 Nm 3/h;
烟气标况下的密度 错误!未找到引用源。
f h =1.295kg/m 3;
空气标况下的密度 错误!未找到引用源。
f c =1.293 kg/m 3
选用水为热管工质,管壳材料为20号锅炉无缝钢管,翅片材料为低碳钢,翅片与管壳连接方式为高频焊接。
这种热管的参数为:
光管外径d o =0.032m ;热管内径d i =0.026m ;
翅片高度l f =0.015m ;翅片厚度f =0.0012m ;翅片间距 s f =4mm ; 翅片节距s
f ’= s f + f=5.2mm ;
每米热管长的翅片数n f =错误!未找到引用源。
热管换热器管子排列形式为等边三角形排列,如图,横向管子中心距S T =0.081m ;S L =S T =0.081m 。
其热力设计计算和结构设计计算如下:
差
数
........忽略此处.......。
热管式热交换器设计说明

本科毕业设计说明书热管式热交换器(烟气余热回收空气预热器)Heat pipe heat exchanger (flue gas heat recovery air preheater)摘要热管是一种依靠管内工质的蒸发,凝结和循环流动而传递热量的部件。
由热管元件组成的,利用热管原理实现热交换的换热器称之为热管换热器。
热管换热器最大的特点是:结构简单,传热效率高、动力消耗小。
其越来越受到人们的重视,是一种应用前景非常好的换热设备。
目前,它被广泛应用于动力、化工、冶金、电力、计算机等领域。
本文就热管换热器的发展现状、趋势、应用及设计做了一个简要的论述,着重探讨了热管换热器的设计。
在讨论热管换热器的设计过程中,主要针对热力计算,设备结构计算、元件参数的选择做了一个合理构建。
关键词:热管;热管热交换器;设计计算;ABSTRACRely on heat pipe is a pipe working fluid evaporation, condensation and recycling the flow of heat transfer member. Components of the heat pipe, heat pipe principle the use of heat exchange heat exchanger called the heat pipe heat exchanger. Heat pipe heat exchanger biggest feature is: simple structure, high heat transfer efficiency, power consumption is small. Which more and more people's attention, is a very good application prospects heat transfer equipment. Currently, it is widely used in power, chemical, metallurgy, electric power, computers and other fields. In this paper, the development of heat pipe heat exchanger status, trends, application and design to make a brief discussion, focused on the heat pipe heat exchanger design. In discussing the heat pipe heat exchanger design process, mainly for thermal calculation, equipment, structural calculations, component selection of parameters made a reasonable construction.Key words:Heat pipe;Heat pipe heat exchanger;Design calculations;目录第一章绪论 (1)第一节热管及热管换热器概述 (1)第二节热管及其应用 (3)1.2.1热管的构造原理 (3)1.2.2热管的工作原理 (7)1.2.3热管的基本特性 (8)1.2.4热管分类 (8)1.2.5热管技术 (9)1.2.6热管技术特点 (10)第二章热管换热器 (12)第一节热管换热器技术优势 (12)第二节热管换热器的分类 (12)第三节换热器应用前景 (14)第三章热管气-气换热器设计中应注意的问题 (16)第四章热管气-气换热器设计步骤 (17)第一节计算步骤 (17)第二节符号说明 (19)第三节标注说明 (20)致谢 (22)参考文献 (23)附录 (25)外文资料及翻译 (35)任务书 (55)第一章绪论第一节热管的发展及现状在现有的传热元件中,热管是我们所知的最高效的传热元件之一,它能将大量热量通过其特别小的截面积远距离地传输而不需要外加动力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前言锅炉是火力发电厂的三大主要设备之一。
现代的燃煤电站锅炉是使燃料在炉内充分燃烧并将热量传递给足够的炉内工质――水,使其成为高参数的过热蒸汽,以便在蒸汽进入汽轮机时拥有足够的作工能力。
为了充分利用燃料的热量,降低排烟温度、减少能量的浪费并提高炉内的燃烧温度,可在尾部设置换热器将排烟的热量传递给将进入锅炉的空气。
空气预热器就是利用锅炉尾部烟气的热量来加热燃烧所需空气的热交换设备。
空气预热器可吸收烟气热量,使排烟温度降低并减少排烟热损失,提高锅炉效率;同时提高了燃烧空气的温度,有利于燃料的着火、燃烧和燃尽,增强了燃烧稳定性并可提高锅炉燃烧效率;空气预热还能提高炉膛内烟气温度,强化炉内辐射换热,这相当于以廉价的空气预热器受热面,取代部分价格较高的蒸发受热面,降低锅炉制造成本。
因此,空气预热器已成为现代锅炉的一个重要的、不可缺少的部件。
考查空气预热器的质量如何,主要有三个指标,第一是换热性能,第二是锅炉是火力发电厂的三大主要设备之一。
现代的燃煤电站锅炉是使燃料在炉内充分燃烧并将热量传递给足够的炉内工质――水,使其成为高参数的过热蒸汽,以便在蒸汽进入汽轮机时拥有足够的作工能力。
为了充分利用燃料的热量,降低排烟温度、减少能量的浪费并提高炉内的燃烧温度,可在尾部设置换热器将排烟的热量传递给将进入锅炉的空气。
漏风率,第三是烟风阻力。
相对于管式空气预热器,容克式空气预热器具有结构紧凑,体积小,钢耗少,容易布置等优点,因而被广泛应用于大中型电站锅炉上,尤其是300 MW 以上锅炉,因布置不下庞大的管箱式预热器,只能使用回转式空气预热器。
回转式空气预热器分为受热面回转(容克式)和风罩回转(诺特谬勒式)两种型式,受热面回转式空气预热器耗电稍大,但漏风不容易控制;风罩回转式预热器耗电少,但密封系统不易控制。
自从1985年引进美国ABB公司预热器技术之后,国产机组几乎全部使用受热面回转式空气预热器,只有进口机组中,有使用风罩回转式预热器的。
回转式空气预热器的常见问题有以下几点:⑴漏风率大空气预热器同时处于烟风系统的最上游和最下游,空气侧压力最高,烟气侧压力最低,空气就会通过动静部件之间的密封间隙泄漏到烟气侧,这就是漏风。
空气预热器漏风率很高,影响锅炉出力和燃烧,增加鼓风机和引风机电耗,降低电厂经济效益。
国家对大型空气预热器漏风率设计值一般在8%以下,但在实际中,运行值一般在12%以上。
随着运行时间的延长,漏风率有可能超过20%;中小型预热器漏风率设计值一般在10%以下,但在工程实际中,运行值一般在15%以上,如果长期运行而没有维修改造,漏风率甚至超过30%。
回转式空气预热器的致命缺点是漏风率大,而且随着运行时间延长,漏风率越来越大。
为了更好地同其它预热器竞争,就必须改进密封系统,降低漏风率。
⑵低温腐蚀和堵灰回转式空气预热器的受热面是由δ=0.5 mm和δ=1.2 mm的薄板轧制成波纹板之后,叠在一起压紧组装而成,当量直径很小,ddl=8.6或ddl=9.8,流通渠道狭窄,很容易造成积灰和堵塞,大中型电站锅炉设计的排烟温度一般低于130 ℃,实际运行值还要低,因而空气预热器冷端受热面壁温较低,容易结露和腐蚀,结露和腐蚀使受热面玷污和积灰,玷污和积灰又反过来影响受热面传热,进一步降低金属壁温,从而又加剧了低温腐蚀。
这种恶性循环,使排烟温度升高,降低锅炉经济性,而且还引起烟风道阻力增加,增加引风机负荷。
堵灰严重时,会造成引风机过载和失速,炉膛抽不出负压,影响锅炉出力和燃烧,影响锅炉和引风机的安全运行,有时不得不停炉冲洗或带负荷冲洗。
低温腐蚀影响受热面使用寿命和蓄热能力,因此积灰和腐蚀一定要引起重视。
⑶受热面磨损受热面磨损主要发生在燃煤锅炉空气预热器的热段受热面,燃煤锅炉烟气中含有大量飞灰,烟气冲刷受热面时,会造成磨损,长时间运行之后,受热面减薄和穿洞。
尤其是受热面顶部,飞灰动能最大,磨损最快,磨损到一定程度,受热面失去刚性,就发生歪倒现象,呈豆芽状。
这样不仅降低了受热面蓄热能力,还增加了通风阻力。
⑷二分仓空气预热器热风带灰烟气携带着灰尘,通过预热器时,由于阻力作用,烟气流速越来越低,灰尘就会积落在受热面上,尤其是靠近中心的仓格,灰尘积落更严重。
当受热面从烟气侧转到空气侧时,刚刚停滞的灰尘又被空气吹起,并随空气进入热风道,形成热风带灰,热风带灰引起的最大问题是热一次风机磨损,例如吉林长山热电厂 410 t/h 锅炉热一次风机的叶轮被磨出6mm深的凹痕,只有涂抹防磨涂料。
⑸三分仓空气预热器一次风泄漏率高三分仓空气预热器结构紧凑,布置方便,调节灵活,热效率高,它代表了空气预热器的最新发展,广泛应用于正压中速磨冷一次风机系统中,这种制粉系统的优点是设计合理经济,一次风机效率高,并免除了送粉风机的费用。
缺点是预热器一次风压高,它把输送煤粉所需的热一次风机压头和鼓风机压头合在一起,加在三分仓预热器的一次风侧,因而一次风压很高。
一次风不仅向烟气侧泄漏,同时也向二次风侧泄漏。
例如,济南锅炉厂为北京巴威公司设计的一台300 MW锅炉空气预热器,用ABB公司的计算程序进行漏风计算,结果如表1。
此表仅仅是理论计算,在工程实际中,由于制造安装和运行的原因,泄漏率可能还要大。
一次风泄漏率一般在25%~55%之间波动。
1 绪论1.1 设计背景随着社会经济的发展人们的生活水平不断进步,人们对生活环境和品质的要求越来越高,使得人们对能源的需求日渐增多。
随着能源危机的爆发,节能一直是人们关注的话题,同时对污染的要求越来越严格(包括热污染)。
换热器的使用,提高锅炉热效率的同时降低排烟温度,减少向环境的热量排放,降低污染。
空气预热器是利用锅炉尾部烟气的热量来加热燃烧所需空气的热交换设备。
空气预热器可吸收烟气热量,使排烟温度降低并减少排烟热损失,提高锅炉效率;同时提高了燃烧空气的温度,有利于燃料的着火、燃烧和燃尽,增强了燃烧稳定性并可提高锅炉燃烧效率;空气预热器还能提高炉膛内烟气温度,强化炉内辐射换热,这相当于以廉价的空气预热器受热面,取代部分价格较高的蒸发受热面,降低锅炉制造成本。
因此,空气预热器已成为现代锅炉的一个重要的、不可缺少的部件。
考查空气预热器的质量如何,主要有三个指标,第一是换热性能,第二是漏风率,第三是烟风阻力。
相对于管式空气预热器,容克式空气预热器具有结构紧凑,体积小,钢耗少,容易布置等优点,因而被广泛应用于大中型电站锅炉上,尤其是300 MW以上锅炉,因布置不下庞大的管箱式预热器,只能使用回转式空气预热器。
回转式空气预热器分为受热面回转(容克式)和风罩回转(诺特谬勒式)两种型式,受热面回转式空气预热器耗电稍大,但漏风不容易控制;风罩回转式预热器耗电少,但密封系统不易控制。
自从1985年引进美国ABB公司预热器技术之后,国产机组几乎全部使用受热面回转式空气预热器,只有进口机组中,有使用风罩回转式预热器的。
目前,空气预热器主要有:板式空气预热器、回转式空气预热器、管式空气预热器及新兴的热管式空气预热器。
⑴板式空气预热器板式空气预热器的主要传热部件是薄钢板,多个薄钢板一起焊接成长方形的盒子,而后数个盒子拼成一组,板式空气预热器就由2到4个钢板焊接盒子组成。
板式空气预热器工作时,烟气会流经盒子的外侧,而空气流经盒子的内侧,通过钢板完成热传导。
板式空气预热器的结构松散而不紧凑,制造需要耗费大量的钢材,因此制造成本较高。
板式空气预热器的盒子由焊接方式拼接,焊接工作量大且缝隙较多,容易出现泄漏。
板式空气预热器目前已经很少被使用。
⑵管式空气预热器管式空气预热器的主要传热部件是薄壁钢管。
管式空气预热器多呈立方形,钢管彼此之间垂直交错排列,两端焊接在上下管板上。
管式空气预热器在管箱内装有中间管板,烟气顺着钢管上下通过预热器,空气则横向通过预热器,完成热量传导。
管式空气预热器的优点是密封性好、传热效率高、易于制造和加工,因此多应用在电站锅炉和工业锅炉中。
管式空气预热器的缺点是体积大、钢管内容易堵灰、不易于清理和烟气进口处容易磨损。
⑶回转式空气预热器回转式空气预热器是指内部设有旋转部件,通过旋转的作用在烟气和空气之间传导热能的一种空气预热器。
回转式空气预热器还能够分为两个类别,也就是受热面旋转的转子回转式空气预热器,和风道旋转的风道回转式空气预热器。
回转式空气预热器的优点是体积小、重量轻、结构紧凑,传热元件承受磨损的余量大,因此回转式空气预热器特别适合应用于大型锅炉。
回转式空气预热器的缺点是内部的机构复杂,消耗电力较大且漏风量较高。
⑷热管式空气预热器若干条热管纵向排列组合置于箱体内,即构成热管式空预器。
箱体被中间隔板分成上下两个区域,上面流动的是空气,下面流动的是烟气。
热管式空预器是一种气~气式换热设备,热管内的工质不断吸收烟气中的热量,传导到上面空气中,完成烟气余热的回收工作。
热管式空气预热器具有传热性能好、阻力损失小、抗低温腐蚀性能较好等优点。
热管式空气预热器的缺点是每立方米的换热面积较小,温度的适应范围较小。
1.2 热管发展史热管的原理首先是由美国俄亥俄州通用发动机公司的R.S.Gaugler于1944年在美国专利中提出的。
1967年一根不锈钢-水热管首次被送入地球卫星轨道并运行成功,从此吸引了很多科学技术工作人员从事热管研究。
1970年在美国出现了供应商品热管的部门,热管的应用范围从宇航扩大到了地面。
1980年美国Q-Dot公司生产了热管废热锅炉,日本帝人工程公司也成功地用热管做成锅炉给水预热器,解决了排烟的露点腐蚀问题。
1984年Cotter较完整地提出了微型热管的理论及展望,为微型热管的研究与应用奠定了理论基础。
70年代以来,热管技术飞速发展,各国的科研机构、高等院校、公司及厂矿均开展了多方面的开发、应用研究,国际间、地区间及各国自身的热管技术交流活动日益频繁。
1973年在德国斯图加特召开了第一届国际热管会议后;1976年在意大利的波伦亚召开了第二届国际热管会议;1978年在美国加尼福利亚州召开了第三届国际热管会议;此后1981年在英国伦敦,1984年在日本筑波,1987在法国格林贝尔,1990年在前苏联明斯克,1992年在中国北京,1995年在美国新墨西哥州,1997在德国斯图加特,1999年在日本东京,2002年在俄罗斯莫斯科,2004年在中国上海分别召开了第四至十三届国际热管会议;除此之外,中日双方从1985年至1994年分别召开了四届双边及多边热管技术研讨会;1996年在澳大利亚墨尔本召开的多边会议正式发展为国际热管技术研讨会。
我国于1970年开始的热管研制工作.首先是为航天技术发展的需要而进行的。
1976年12月7日,在卫星上首次应用热管取得了成功;我国气象卫星也应用了热管,取得了预期的效果。