样本与抽样分布--基本概念.ppt
抽样的基本概念

中心极限定理
(图示)
中心极限定理:设从均值为,方差为 2的一个任意总
体中抽取容量为n的样本,当n充分大时,样本均值的抽 样分布近似服从正态分布。
一个任意分 布的总体
当样本容量足够 大时(n >30) , 样本均值的抽样 分布逐渐趋于正 态分布
X
抽样平均误差
1.重复抽样条件下,记算公式为: 2.不重复抽样条件下,计算公式为:
设总体中 N 个总体单位某项标志的标志值分别
为 X1, X 2 , X N ,其中具有某种属性的有 N1个 单位,不具有某种属性的有 N0个单位,则
⒈ 总体平均数(又叫总体均值): ⒉ 总体标准差: ⒊ 总体方差:
⒋ 总体比例: ⒌ 是非标志总体的标准差:
P P1 P 当P 0.5时, P有最大值
3.小于总体标准差 4.与样本容量的关系
抽样分布
更大样本 容量的抽 样分布
某个样本 容量的抽 样分布
x
n
X
P119例4-5
某班组有5个工人,他们的单位工时工资分别是4、6、8、10 、12元,总体服从于正态分布。现用重复抽样方式从5个工 人中抽出2人,计算样本的平均工时工资的抽样平均误差。
解:总体分布的平均数与方差分别是:
练习:计算样本比例的抽样平均误差
1、某县人口10万人,用简单随机不重复抽样 方法抽取1/10的人口进行调查,得知男性 人口比重为51%,求男性人口比重的抽样平 均误差。
2、对某乡进行简单随机重复抽样调查,抽出 100个农户进行调查,得知年收入在1800元 以上的占95%,求农户年收入在1800元以上 比重的抽样平均误差。
第4章 抽样估计
第一节 抽样的基本概念 第二节 抽样分布与中心极限定理 第三节 总体参数估计 第四节 抽样方案的设计与实施*
统计学 第三章抽样与抽样分布

=10
= 50 X
总体分布
n= 4
x 5
n =16
x 2.5
x 50
X
抽样分布
从非正态总体中抽样
结论:
从非正态中体中抽样,所形成 的抽样分布最终也是趋近于正态分 布的。只是样本容量需要更大些。
总结:中心极限定理
设从均值为,方差为 2的一个任意总体中抽 取容量为n的样本,当n充分大时(超过30),样本 均值的抽样分布近似服从均值为μ、方差为σ2/n的
总体
样本
参数
统计量
总体与样本的指标表示法
总体参数
样本统计量
(Parameter) (Sample Statistic)
容量 平均数 比例 方差 标准差
N
n
X
x
p
2
s2
s
小练习
某药品制造商感兴趣的是用该公司开发的某 种新药能控制高血压人群血压的比例。进行了一 项包含5000个高血压病人个体的研究。他发现用 这种药后80%的个体,他们的高血压能够被控制。 假定这5000个个体在高血压人群中具有代表性的 话,回答下列问题: 1、总体是什么? 2、样本是什么? 3、识别所关心的参数 4、识别此统计量并给出它的值 5、我们知道这个参数的值么?
正态分布
一个任意分 布的总体
x
n
当样本容量足够 大时(n 30) , 样本均值的抽样 分布逐渐趋于正 态分布
x
X
总体分布
正态分布
非正态分布
大样本 小样本 大样本 小样本
正态分布
正态分布
非正态分布
三 中心极限定理的应用
中心极限定理(Central Limit theorem) 不论总体服从何种分布,从中抽取
统计学抽样与抽样分布

3. 需要包含所有低阶段抽样单位的抽样框;同时由于
实行了再抽样,使调查单位在更广泛的范围内展开
4. 在大规模的抽样调查中,经常被采用的方法
概率抽样(小结)
非概率抽样
n也叫非随机抽样,是指从研究目的出发,根据调查者的 经验或判断,从总体中有意识地抽取若干单位构成样本。
n重点调查、典型调查、配额抽样(是按照一定标准或一 定条件分配样本单位数量,然后由调查者在规定的数额内 主观地抽取样本)、方便抽样(指调查者按其方便任意选 取样本。如商场柜台售货员拿着厂家的调查表对顾客的调 查)等就属于非随机抽样。
样本分量:其中每一个Xi是一个随机变量,称为样本 分量。
样本观察值:一次抽样中所观察到的样本数据x1、x2、 x3称为样本观察值。 对于某一既定的总体,由于抽样的方式方法不同,样 本容量也可大可小,因而,样本是不确定的、而是可5
一、 几个概念
(二)样本总体与样本指标
样本指标(统计量)。在抽样估计中,用来反 映样本总体数量特征的指标称为样本指标,也 称为样本统计量或估计量,是根据样本资料计 算的、用以估计或推断相应总体指标的综合指 标。
3
总体和参数(续)
通常所要估计的总体指标有
X
NX
一、 几个概念
(二)样本总体与样本指标
样本总体。简称样本(Sample),它是按照随机原则, 从总体中抽取的部分总体单位的集合体 。
样本容量:样本中所包含的个体的数量,一般用n表示。 在实际工作中,人们通常把n≥30的样本称为大样本, 而把n<30的样本称为小样本。
(二)抽样平均误差(抽样标准误)
抽样平均误差是反映抽样误差一般水平的指标(因为 抽样误差是一个随机变量,它的数值随着可能抽取的 样本不同而或大或小,为了总的衡量样本代表性的高 低,就需要计算抽样误差的一般水平)。通常用样本 估计量的标准差来反映所有可能样本估计值与其中心 值的平均离散程度。
《概率与数理统计》第06章 - 样本及抽样分布

(3)g( x1, x2 ,L xn )是统计量g(X1, X2 ,L Xn )的观察值
几个常见统计量
样本平均值
X
1 n
n i 1
Xi
它反映了 总体均值 的信息
样本方差
S 2
1 n1
n i 1
(Xi
X )2
它反映了总体 方差的信息
n
1
1
n
X
2 i
i 1
nX
2
样本标准差
S
1 n
n
1
(
i 1
X
i
是来自总体的一个样本,则
(1) E( X ) E( X ) ,
(2) D( X ) D( X ) 2 n ,
n
(3) E(S 2 ) D( X ) 2
矩估计法的 理论根据
若总体X的k阶矩E( X k ) k存在,则
(4) Ak
1 n
n i 1
Xik
p k
k 1, 2,L .
(3)证明:E(S2 )
定义 设X1 , X2 ,L , Xn是来自总体X的一个样本, g( X1 , X 2 ,L , X n )是X1 , X 2 ,L , X n的函数,若g 中不含未知参数,则g( X1 , X 2 ,L , X n )称是一 个统计量.
请注意 :
(1)X1, X2 ,L
X
是样本,也是随机变量
n
(2)统计量是随机变量的函数,故也是随机变量
1
e
(
xi 2
2
)2
2
n
( xi )2
1
e i1 2 2
n
2
第二节
抽样分布
样本及其抽样分布基本概念

第六章
样本及抽样分布
第1,2节 基本概念
一、总体、个体 二、随机样本、直方图 三、样本函数与统计量 四、小结
一、总体与个体
一个统计问题总有它明确的研究对象.
研究对象的全体称为总体(母体), 总体中每个成员称为个体.
总体
总体 …
研究某批灯泡的心每个 个体的一项(或几项)数量指标和该数量指标 在总体中的分布情况. 这时,每个个体具有 的数量指标的全体就是总体.
直方图
5
8
4.5
7
4 6
3.5 5
3
2.5
4
2
3
1.5 2
1
1 0.5
0
0
140
150
160
170
180
190
200
147
157
167
177
187
197
三、统计量
由样本推断总体特征,需要对样本进行 “加工”,“提炼”.这就需要构造一些样本的 函数,它把样本中所含的信息集中起来.
1. 代表性: X1,X2,…, Xn中每一个与所考察的 总体X有相同的分布. 2. 独立性: X1,X2,…, Xn是相互独立的随机变量.
满足上述两条性质的样本称为简单随机样本. 获得简单随机样本的抽样方法称为简单随机抽样.
为了使大家对总体和样本有一个明确的 概念,我们给出如下定义:
定义 一个随机变量X或其相应的分布 函数F(x)称为一个总体.
4. 直方图 4.1 频数--频率分布表
样本数据的整理是统计研究的基础,整理数据的最 常用方法之一是给出其频数分布表或频率分布表。
例3 为研究某厂工人生产某种产品的能力, 我们随机调查了20位工人某天生产的该种产品 的数量,数据如下
样本及抽样分布

样本及抽样分布§6.1 基本概念一、总体:在统计学中, 我们把所研究的全部元素组成的集合称作母体或总体, 总体中的每一个元素称为个体。
我们只研究感兴趣的某个或者几个指标(记为X),因此把这些指标的分布称为总体的分布,记为X~F(x)。
二、样本:设总体X具有分布函数F(x),若X1, X2,…,Xn是具有分布函数F(x)的相互独立的随机向量,则称其为总体F(或总体X )的简单随机样本, 简称样本,它们的观察值x1,x2, …, xn称为样本观察值, 又称为X 的n 个独立的观察值。
三、统计量:设X 1, X 2, …, X n 是来自总体X 的一个样本, g (X 1, X 2, …, X n )是一个与总体分布中未知参数无关的样本的连续函数,则称g (X 1,X 2,…,X n )为统计量。
统计量是样本的函数,它是一个随机变量,如果x 1, x 2, …, x n 是样本观察值, 则g (x 1, x 2, …, x n )是统计量g (X 1, X 2, …, X n )的一个观察值.四、 常用的统计量:, ,)(x 11s ,,x 1x 1. n12i2n1i 称为样本方差均值仍称为样本它们的观察值为∑∑==--==i i x n n .B ,,1,2,X A ,1k 2.22221S S nn B k ≈-====当样本容量很大时时当时当3.kkkk若总体X 的k 阶矩E(X )存在,则当n时, A .P注:ni i 111. X X ;n ==∑样本均值2n 2i i 112. S (X );n-1X ==-∑样本方差n kk i 113. k A X , k 1, 2,;n i ===∑样本阶原点矩nk i i 114. k B (X ) , k 2, 3,.n k X ==-=∑样本阶中心矩4.样本的联合分布:2) 若总体X 是离散型随机变量,其分布律为 p x =P (X=x ) , x=x 1,x 2,… 则样本X 1, X 2, …, X n 的联合分布:11112(,,)(),,;(1,2,,)nn n i i i i P X y X y P X y y x x i n =======∏其中12n *12i 13)(), ,X , (, ,)()n n i X f x X X f x x x f x ==∏若具有概率密度则的联合概率密度为12121211)(),,,,, ,,,:()()n n n*n i i X ~F x X X X F X X X F x , x ,x F x ==∏若为的一个样本则的联合分布函数为例1:X~U (0,θ),X 1, X 2, …, X n 是来自X 的样本,求(X 1, X 2, …, X n )的联合密度函数。
第四篇抽样和分布1(药学)PPT课件

24
4、整群抽样 先将总体分成若干互不重叠部分(称为群),再 从各群中随机抽取某群或几群作为样本。 例:调查某年级学生上网情况
可把每班作为一群,从中随机抽取一班或几班作 为样本。
该法适用于大规模调查,易于组织,节省人 力物力,但误差较大,适于群体差异较小的调 查对象。
8
实例 研究某地区12岁儿童生长发育情 况,总体和个体应为什么? 显然,总体为该地区的全体儿童
个体为每一个儿童。
当然,衡量儿童生长发育情况要通过诸如身高、 体重等数量指标进行,所以对总体的研究实际上 是对该地区的全体儿童的这些指标值概率分布进 行研究。
9
根据研究指标的多少,总体分为 一维总体-研究一项描述指标,常用随机变量X表示; 多维总体-研究多项描述指标,常用随机向量表示,
14
一般地,对有限总体,应采用有放回抽样,对 无限总体(或数量较多),可采用无放回抽样 (近似看作有放回),否则违背独立性。
简单随机抽样具体实施的方法: 抽签法
随机数法
15
三、统计量(Statistic )
样本是对总体的代表和反映,抽样的目的是利用样本值对 总体进行统计推断。
而对总体进行统计推断,常根据需要的不同,利用样本构 造一些包含所需要的多种信息的量,就是关于样本 X1 ,X2 ,…,Xn的一些函数,这些函数统称为统计量。
3
例如,在几何学中要证明“等腰三角形底角相等”, 只须从“等腰”这个前提出发,运用几何公理,一步一 步推出这个结论.这是演绎推理。
而一个习惯于统计思想的人,可能这样推理: 做很多大小形状不一的等腰三角形,实地测量 其底角,看差距如何,根据所得资料看看可否作 出“底角相等”的结论. 这样做就是归纳式的方法.
《统计学》第9章 抽样与抽样分布

二、抽样中的基本概念
⚫ 样本比例(成数)
p = n1 ,q = n0 = 1− p
n
n
⚫ 样本是非标志的标准差
(n = n0 + n1)
sp =
n p (1− p) =
n −1
n pq n −1
⚫ 样本是非标志的方差
s
2 p
=
n n −1
p(1 −
p)
=
n n −1
pq
第一节 抽样和抽样方法
三、抽样方法
三、抽样方法
⚫ 多阶段抽样
⚫ 在实践中总体所包括的单位数很多,分布很广,通过一次 抽样就选出有代表性的样本是很困难的。此时可将整个抽 样过程分为几个阶段,然后逐阶段进行抽样,最终得到所 需要的有代表性的样本。
第一节 抽样和抽样方法
三、抽样方法
⚫ 多阶段抽样
⚫ 阶段数不宜过多,一般采用两个、三个阶段,至多四个阶 段为宜,否则,手续繁琐,效果也不一定好。
第一节 抽样和抽样方法
二、抽样中的基本概念
⚫ 总体参数
⚫ 总体参数是根据总体各单位的标志值或特征计算的、反 映总体某一属性的综合指标。
⚫ 总体参数是唯一的、确定的常数,但一般情况下又是未 知的。
⚫ 常用的总体参数有 ⚫ 总体均值 ⚫ 总体标准差、总体方差 ⚫ 总体比例(成数)
第一节 抽样和抽样方法
⚫ 样本标准差
s =
1 n −1
n i =1
(xi
−
x )2,或s
=
1
m
m
(xi − x )2 fi
fi −1 i=1
i =1
⚫ 样本方差
( ) ( ) s2 = 1 n n −1 i=1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若总体X是连续型的. 为了获取密度函数f(x),
可选取包含样本观测值的区间(a1,al],并填表绘图:
分布密度估计表
频数 频率 密度估
区间划分 ni ni / n 计值 yi
(a0 , a1]
n1
n1 / n
n1 / n a1 a0
(a1 , a2 ]
n2
n2 / n
n2 / n a2 a1
满足上述要求的样本称为简单随机样本, 获取 简单随机样本的方法称为简单随机抽样。
今后,凡提到的样本都是指简单随机样本。
二、统计量与样本矩
对总体X 推断前需要对样本进行加工或提炼
定义 设 X1, X2, … , Xn 是来自总体X 的样本, 如果函数φ(x1, x2, …, xn)为x1, x2 , …, xn 的一个实 值函数, 且φ 中不包含任何未知参数, 那么称
样本均值 样本方差
1 n
X n i1 Xi
S 2
1 n1
n
(Xi
i 1
X )2
样本标准差
S
1 n1
n i 1
(Xi
X )2
样本k阶原点矩
Mk
1 n
n i 1
X
k i
(k 1, 2, ...)
样本k
n
(Xi
i 1
X )k
(k 1, 2,...)
分布如下表, 试依据这些资料作出成绩频率直方图.
成绩分布表
分布密度估计表
得分范围
得分 人数
频数 频率 密度估
区间划分 ni ni / n 计值 yi
(40,50]
2
(40,50] 2 2/150 2/1500
(50,60] 14
(50,60] 14 14/150 14/1500
(60,70] 32
(60,70] 32 32/150 32/1500
统计量间的关系: M1
X
,
M
2
M2
X2
n1 n
S2
三、经验分布函数与直方图
为了获得总体X 的分布, 先引入一个定义 定义1 设X1, X2, …, Xn是来自总体X 的一个容 量为n的样本, 把它们依大小顺序排列为
X(1) , X(2) ,, X(n) 则称其为样本次序统计量。
由此 样本最大值统计量为 X max X (n)
Fn(x) 1
Fn
(
x)
k n
,
x(k ) x x(k1)
1 , x x(n)
(k=1,2,···,n-1)
O x(1) x(2) … x(n) x
显然, Fn(x)具有分布函数的特征, 且根据大数定律, Fn ( x) P F ( x) (n ), 所以当n较大时, F ( x) Fn ( x). 故通常称 Fn(x)为X 的 经验分布函数.
节目录
第七章 样本与抽样分布
7.1 基本概念 7.2 基本分布 7.3 正态总体的抽样分布
从本章开始, 我们将讲述数理统计的基本内容. 与概率论一样,数理统计是研究随机现象统计规 律性的一门数学学科. 它是以概率论为基础, 由实 际观测资料出发, 研究如何合理地采集或收集资料 并根据观测得到的资料对随机变量的分布数字特 征等作出科学的推断.
x1 , x2 ,, xn 为X1, X2, … , Xn 的一个观测值, 简称 样本观测值
抽样(抽取样本)目的:
通过获取样本(X1, X2, … , Xn)的有限信息 对总体X的概率分布及其各种特征进行推断
抽样要求:
1o 代表性: X1, X2, … , Xn 与总体X 有相同的分布 2o 独立性: X1, X2, … , Xn 是相互独立的随机变量
如:某厂 生产灯泡 的寿命的 全体就是 一个总体
灯泡的寿命
如:每个灯 泡的寿命就 是一个个体
每个个体的出现带有随机性,因此代表总体取 值的变量都是一个随机变量,通常用X(或Y,Z)表示. 总体的概率分布就是随机变量X的概率分布.故今 后将不区分总体与相应的随机变量.常称作总体X. 《数理统计》研究的宗旨:
寻找总体X 的概率分布及其各种特征
F(x) 1
寻求:
EX , DX ,Cov( X ,Y )
E(X kY l )
O
x
E[( X EX )k (Y EY )l ]
从总体X 中抽取一个个体, 就是对总体X 进行 一次试验 (观测), 从总体X 中随机的抽取n个个体:
X1, X2,, Xn 就是对总体X进行了一组试验. 通常把由这n个试 验组成的试验组称为总体X的一个样本(或子样), 样本中个体的数目n称为样本容量,其中的Xi叫样本 的第 i 个分量. 对Xi的一次观测值,记之为xi ,并称
T ( X1, X 2 ,, X n () 是随机变量)
为一个统计量. 若 x1, x2 , …, xn 为样本观测值, 则称
t ( x1, x2 ,, xn )是统计量T 的一个观测值.
例1 当总体期望已知时,有下述统计量:
S 2
1 n
n
(Xi
i 1
)2
常用的统计量
总区间划分要求6~17个, 每区间至少含1个观测值.
频 率 ni P 概 率 ai f ( x)d x
n
ai1
f (x) yi
(al1,al ]
nl
nl / n
nl / n al al1
O
a0 a1 a2 a3 … al-1 al x 频率直方图
例2 从某校升学考卷中随机抽取150份, 其成绩
定义 可知
样本最小值统计量为
样本中值统计量为
X min X (1) Me X ([n/ 2]1)
样本级差为
R X(n) X(1)
取次序统计量的一组观测值 x(1) , x(2) ,, x(n) 则对任意的实数 x, 事件{X ≤x} 发生的频率为
0 , x x(1)
《数理统计》研究的问题:怎样选择有效的 抽样方法采集数据(抽样), 并利用抽样获得的有 限数据, 对被研究的随机现象的规律性作出尽可能 精确而可靠的结论(推断).
7.1 基本概念
一、总体与样本 二、统计量与样本矩 三、经验分布函数与直方图
一、总体与样本
总体(母体):研究对象(取实值)的全体. 个体:组成总体的每个元素.
(70,80] 43
(70,80] 43 43/150 43/1500
(80,90] 39
(80,90] 39 39/150 39/1500
(90,100] 20
(90,100] 20 20/150 20/1500
根据分布密度估计表即可画出频率直方图.