抽样检验和抽样分布
抽样与抽样分布

抽样与抽样分布在统计学中,抽样是一种常用的数据收集方法,通过从总体中选择一部分样本来进行研究和分析。
抽样的目的是通过样本来推断总体的特征和性质。
在进行抽样时,我们需要了解抽样的方法和抽样分布的概念。
一、抽样方法1. 无偏抽样无偏抽样是指所有样本有相同被选中的机会。
这样可以确保样本的代表性,从而减小样本估计值和总体真值之间的误差。
常见的无偏抽样方法包括简单随机抽样、系统抽样和分层抽样等。
2. 有偏抽样有偏抽样是指样本的选择并不具有相等的机会。
这样可能导致样本的代表性不足,从而产生较大的估计误差。
有时,有偏抽样也可以用于特定的研究目的,但需要明确地说明和分析偏差带来的影响。
二、抽样分布1. 抽样分布的概念抽样分布是指统计量在各个可能样本上的取值分布。
统计量可以是样本均值、样本方差等。
抽样分布的性质对于进行统计推断和假设检验非常重要。
2. 样本均值的抽样分布样本均值的抽样分布在中心极限定理的条件下近似服从正态分布。
中心极限定理指出,当样本容量足够大时,无论总体分布如何,样本均值的抽样分布都会接近正态分布。
3. 样本比例的抽样分布样本比例的抽样分布在满足一些条件的情况下也近似服从正态分布。
这些条件包括样本容量足够大、总体比例接近0.5以及样本与总体之间的独立性等。
4. 样本方差的抽样分布样本方差的抽样分布不服从正态分布。
通常情况下,样本方差的抽样分布呈右偏态,即偏度大于0。
为了得到样本方差的抽样分布,可以使用抽样分布的近似分布,如卡方分布。
三、应用案例抽样与抽样分布的方法和理论在实际统计学中有广泛的应用。
以下是一些常见的应用案例:1. 调查研究在进行调查研究时,我们经常需要从总体中选择一部分样本进行问卷调查或面访。
通过利用抽样与抽样分布的方法,我们可以将样本的调查结果推广到总体中,从而得到总体的特征和性质。
2. 假设检验假设检验是统计学中常用的推断方法之一。
通过比较样本统计量与假设的总体参数值,我们可以判断假设的合理性。
统计学-抽样分布与抽样方法

保持不变,每一次抽样中各总体单位被抽到的机会 都相同,每次抽样结果相互独立。 ②每一总体单位都有被重复抽取的可能。
5.2 抽样调查的方法
一、两种抽样方式(续):
(2)不重复抽样 ——也称不放回抽样,指被抽到的单位不再放回总
体,每次仅在余下的总体单位中抽取下一个样本的 抽样方法。 特点: ①任一总体单位都不会被重复抽到; ②每次抽样结果都受到以前各次抽取结果的影响,因 此各次抽取结果是不独立的; ③可以一次抽取所需要的样本单位数。 ❖ 在实际应用中通常采用的都是不重复抽样方法。
总体
群1
群2
…… 群k
个体1 个体2 个体3 个体4 个体5 个体6
5.2 抽样调查的方法
3.整群抽样
❖特点:
▪ 抽样时只需群的抽样框,可简化工作量 ▪ 调查的地点相对集中,节省调查费用,方便
调查的实施 ▪ 当群中的元素差异性大时,整群抽样得到的
结果比较好。在理想状态下,每一群是整个 总体小范围内的代表。如对人口普查资料进 行复查,就采用整群抽样的方式。
5.1 抽样调查的概念、特点和作用
五、全及总体和抽样总体 ❖全及总体,简称总体,是指所要认识对象的全
体,是许多同质性单位的集合。通常用大写字 母N来表示(容量)。 ❖抽样总体,简称样本,是从全及总体中随机抽 取出来,代表全及总体部分单位的集合。通常 用小写字母n来表示(容量) 。
▪ 样本容量(Sample size):样本中所含个体的数量。分为 大样本(>30)、小样本(<30)。
▪ 样本个数:又称为样本可能数目。是指从一个总体中可以 抽取的样本个数。
5.2 抽样调查的方法
抽样分布、参数估计和假设检验

抽样分布一、抽样分布的理论及定理 (一) 抽样分布抽样分布是统计推断的基础,它是指从总体中随机抽取容量为n 的若干个样本,对每一样本可计算其k 统计量,而k 个统计量构成的分布即为抽样分布,也称统计量分布或随机变量函数分布。
(二) 中心极限定理中心极限定理是用极限的方法所求的随机变量分布的一系列定理,其内容主要反映在三个方面。
1.如果总体呈正态分布,则从总体中抽取容量为n 的一切可能样本时,其样本均数的分布也呈正态分布;无论总体是否服从正态分布,只要样本容量足够大,样本均数的分布也接近正态分布。
2.从总体中抽取容量为n 的一切可能样本时,所有样本均数的均数(X μ)等于总体均数(μ)即μμ=X3.从总体中抽取容量为n 的一切可能样本时,所有样本均数的标准差(X σ)等于总体标准差除以样本容量的算数平方根,即n X σσ=中心极限定理在统计学中是相当重要的。
因为许多问题都使用正态曲线的方法。
这个定理适于无限总体的抽样,同样也适于有限总体的抽样。
中心极限定理不仅给出了样本均数抽样分布的正态性依据,使得大多数数据分布都能运用正态分布的理论进行分析,而且还给出了推断统计中两个重要参数(即样本均数X μ与样本标准差X σ)的计算方法。
(三)抽样分布中的几个重要概念1.随机样本。
统计学是以概率论为其理论和方法的科学,概率又是研究随机现象的,因此进行统计推断所使用的样本必须为随机样本(random sample )。
所谓随机样本是指按照概率的规律抽取的样本,2.抽样误差。
从总体中抽取容量为n 的k 个样本时,样本统计量与总体参数之间总会存在一定的差距,而这种差距是由于抽样的随机性所引起的样本统计量与总体参数之间的不同,称为抽样误差。
3.标准误。
样本统计量分布的标准差或某统计量在抽样分布上的标准差,符号SE 或Xσ表示。
根据中心极限定理其标准差为n X σσ=正如标准差越小,数据分布越集中,平均数的代表性越好。
统计学 第三章抽样与抽样分布

=10
= 50 X
总体分布
n= 4
x 5
n =16
x 2.5
x 50
X
抽样分布
从非正态总体中抽样
结论:
从非正态中体中抽样,所形成 的抽样分布最终也是趋近于正态分 布的。只是样本容量需要更大些。
总结:中心极限定理
设从均值为,方差为 2的一个任意总体中抽 取容量为n的样本,当n充分大时(超过30),样本 均值的抽样分布近似服从均值为μ、方差为σ2/n的
总体
样本
参数
统计量
总体与样本的指标表示法
总体参数
样本统计量
(Parameter) (Sample Statistic)
容量 平均数 比例 方差 标准差
N
n
X
x
p
2
s2
s
小练习
某药品制造商感兴趣的是用该公司开发的某 种新药能控制高血压人群血压的比例。进行了一 项包含5000个高血压病人个体的研究。他发现用 这种药后80%的个体,他们的高血压能够被控制。 假定这5000个个体在高血压人群中具有代表性的 话,回答下列问题: 1、总体是什么? 2、样本是什么? 3、识别所关心的参数 4、识别此统计量并给出它的值 5、我们知道这个参数的值么?
正态分布
一个任意分 布的总体
x
n
当样本容量足够 大时(n 30) , 样本均值的抽样 分布逐渐趋于正 态分布
x
X
总体分布
正态分布
非正态分布
大样本 小样本 大样本 小样本
正态分布
正态分布
非正态分布
三 中心极限定理的应用
中心极限定理(Central Limit theorem) 不论总体服从何种分布,从中抽取
统计学抽样与抽样分布

3. 需要包含所有低阶段抽样单位的抽样框;同时由于
实行了再抽样,使调查单位在更广泛的范围内展开
4. 在大规模的抽样调查中,经常被采用的方法
概率抽样(小结)
非概率抽样
n也叫非随机抽样,是指从研究目的出发,根据调查者的 经验或判断,从总体中有意识地抽取若干单位构成样本。
n重点调查、典型调查、配额抽样(是按照一定标准或一 定条件分配样本单位数量,然后由调查者在规定的数额内 主观地抽取样本)、方便抽样(指调查者按其方便任意选 取样本。如商场柜台售货员拿着厂家的调查表对顾客的调 查)等就属于非随机抽样。
样本分量:其中每一个Xi是一个随机变量,称为样本 分量。
样本观察值:一次抽样中所观察到的样本数据x1、x2、 x3称为样本观察值。 对于某一既定的总体,由于抽样的方式方法不同,样 本容量也可大可小,因而,样本是不确定的、而是可5
一、 几个概念
(二)样本总体与样本指标
样本指标(统计量)。在抽样估计中,用来反 映样本总体数量特征的指标称为样本指标,也 称为样本统计量或估计量,是根据样本资料计 算的、用以估计或推断相应总体指标的综合指 标。
3
总体和参数(续)
通常所要估计的总体指标有
X
NX
一、 几个概念
(二)样本总体与样本指标
样本总体。简称样本(Sample),它是按照随机原则, 从总体中抽取的部分总体单位的集合体 。
样本容量:样本中所包含的个体的数量,一般用n表示。 在实际工作中,人们通常把n≥30的样本称为大样本, 而把n<30的样本称为小样本。
(二)抽样平均误差(抽样标准误)
抽样平均误差是反映抽样误差一般水平的指标(因为 抽样误差是一个随机变量,它的数值随着可能抽取的 样本不同而或大或小,为了总的衡量样本代表性的高 低,就需要计算抽样误差的一般水平)。通常用样本 估计量的标准差来反映所有可能样本估计值与其中心 值的平均离散程度。
抽样分布知识点总结

抽样分布知识点总结抽样分布是统计学中一个重要的概念,它描述了在进行抽样时得到的样本统计量的分布情况。
抽样分布是统计推断的基础,它可以帮助我们理解抽样误差以及估计参数的可信度。
在本文中,我们将对抽样分布的基本概念、性质和相关理论进行总结和讨论。
一、基本概念1.1 抽样与总体在统计学中,总体是指我们想要研究的所有个体的集合,而抽样则是从总体中选取一部分个体作为样本,以获得对总体特征的估计。
抽样可以是随机抽样、分层抽样、系统抽样等方法,目的是代表性地反映总体的特征。
1.2 样本统计量在抽样中,对样本数据进行统计分析得到的统计量称为样本统计量,常见的样本统计量有均值、方差、标准差、比例等。
样本统计量能够提供有关总体参数的估计和推断。
1.3 抽样分布抽样分布是描述样本统计量的分布情况的统计学概念。
当我们从总体中抽取多个样本,并计算每个样本的统计量时,得到的这些统计量的分布就是抽样分布。
抽样分布可以反映出样本统计量的可变性、偏移和分布形态等特征。
二、性质2.1 中心极限定理中心极限定理是抽样分布理论中的重要定理,它描述了在一定条件下,样本均值的抽样分布近似服从正态分布。
中心极限定理对于理解抽样分布的性质和应用具有重要意义,也为许多统计推断方法提供了理论基础。
2.2 大数定律大数定律是另一个重要的抽样分布性质,它描述了当样本容量足够大时,样本均值会收敛于总体均值,即样本均值的抽样分布会集中在总体均值附近。
大数定律为我们理解样本统计量的稳定性和准确性提供了重要参考。
2.3 置信区间置信区间是根据抽样分布推断总体参数的一种方法,通过对抽样分布的分布情况进行分析,我们可以建立对总体参数的置信区间,从而对总体特征进行推断。
置信区间对于统计推断的可信度和精度有着重要的作用。
三、理论基础3.1 样本容量样本容量是影响抽样分布的一个重要因素,在实际抽样中,样本容量的大小对于样本统计量的分布情况有着重要的影响。
通常情况下,样本容量越大,抽样分布的稳定性和准确性越高。
统计学原理教案中的抽样与抽样分布揭示学生如何进行抽样和利用抽样分布进行推断

统计学原理教案中的抽样与抽样分布揭示学生如何进行抽样和利用抽样分布进行推断统计学是一门研究收集、分析和解释数据的学科,而抽样和抽样分布则是统计学中至关重要的概念。
本文将探讨统计学原理教案中的抽样和抽样分布,以揭示学生如何进行抽样和利用抽样分布进行推断。
首先,我们来理解抽样的概念。
在统计学中,抽样是指从总体中选择一部分个体进行观察和研究。
总体是指我们感兴趣的整体,而样本则是从总体中选取的一部分个体。
通过抽样,我们可以通过研究样本来推断总体的特征,这是由于抽样的随机性能够保证样本与总体的代表性。
接下来,让我们了解抽样的方法。
常见的抽样方法包括简单随机抽样、系统抽样、分层抽样和整群抽样等。
每种抽样方法都有其特点和适用范围。
简单随机抽样是一种随机选择样本的方法,每个个体被选择的概率相同。
系统抽样是按照一定的规律选择样本,例如每隔一定数量选择一个个体。
分层抽样是将总体分成若干层次,然后从每个层次中抽取样本。
整群抽样则是将总体分成若干群体,然后随机选择一些群体并全面调查其中的个体。
选择合适的抽样方法可以更好地保证样本的代表性和可靠性。
抽样之后,我们需要了解抽样分布的概念。
在统计学中,抽样分布是指根据大量抽样的结果所得到的分布。
常见的抽样分布包括正态分布、t分布和F分布等。
其中,正态分布是抽样分布的重要特例,它在许多情况下都可以作为近似的抽样分布来使用。
t分布则用于小样本情况下的推断,它相比于正态分布更为宽阔且更适用于样本数据较少的情况。
F分布常用于分析方差比较和回归模型中的显著性分析。
抽样分布的重要性在于它可以帮助我们进行推断。
根据抽样分布的性质,我们可以利用统计推断方法进行参数估计和假设检验。
参数估计是根据样本的统计量来估计总体的参数值,例如通过样本均值估计总体均值。
假设检验是用来判断总体参数是否在某个范围内或是否相等的统计方法。
通过抽样分布的理论知识,我们可以进行参数估计和假设检验,并对总体进行推断。
在统计学原理教案中,抽样和抽样分布是学生学习的重点内容。
《统计学》第9章 抽样与抽样分布

二、抽样中的基本概念
⚫ 样本比例(成数)
p = n1 ,q = n0 = 1− p
n
n
⚫ 样本是非标志的标准差
(n = n0 + n1)
sp =
n p (1− p) =
n −1
n pq n −1
⚫ 样本是非标志的方差
s
2 p
=
n n −1
p(1 −
p)
=
n n −1
pq
第一节 抽样和抽样方法
三、抽样方法
三、抽样方法
⚫ 多阶段抽样
⚫ 在实践中总体所包括的单位数很多,分布很广,通过一次 抽样就选出有代表性的样本是很困难的。此时可将整个抽 样过程分为几个阶段,然后逐阶段进行抽样,最终得到所 需要的有代表性的样本。
第一节 抽样和抽样方法
三、抽样方法
⚫ 多阶段抽样
⚫ 阶段数不宜过多,一般采用两个、三个阶段,至多四个阶 段为宜,否则,手续繁琐,效果也不一定好。
第一节 抽样和抽样方法
二、抽样中的基本概念
⚫ 总体参数
⚫ 总体参数是根据总体各单位的标志值或特征计算的、反 映总体某一属性的综合指标。
⚫ 总体参数是唯一的、确定的常数,但一般情况下又是未 知的。
⚫ 常用的总体参数有 ⚫ 总体均值 ⚫ 总体标准差、总体方差 ⚫ 总体比例(成数)
第一节 抽样和抽样方法
⚫ 样本标准差
s =
1 n −1
n i =1
(xi
−
x )2,或s
=
1
m
m
(xi − x )2 fi
fi −1 i=1
i =1
⚫ 样本方差
( ) ( ) s2 = 1 n n −1 i=1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纯随机抽样的常用抽样方法
1)抽签法:将总体容量全部加以编号, 并编成相应的号签,然后将号签充分混合后 逐个抽取,直到抽到预定需要的样本容量为 止。
缺点:总体容量很多时,编制号签的工作 量很大,且很难掺和均匀。
4、重复抽样和不重复抽样
有放回抽样:总体中的每个个体单位可以不止 一次地被选中的抽样。
无放回抽样:总体中的每个个体被选中的次数 不多于一次。
5、样本统计量的总体参数符号
名称
样本
总体
定义 从总体中抽出的部分单位数 研究对象的全部单位总数
特征
统计量
参数
样本容量:n 符号 样本平均数:x
样本比例: p
样本标准差:s
样本方差
总体容量:N 总体平均数:μ 总体比例:p 总体标准差:σ
总体方差: 2
三、随机抽样和判断抽样
❖ 随机抽样:按照随机原则抽取样本,在总体 中所有单位被抽中的机会是均等的。
❖ 判断抽样:根据个人或集体的设想或经验, 从总体中有目的地抽取样本。
三、非抽样误差和抽样误差
❖ 1、非抽样误差:在调查登记过程中发生的误 差和由于主观因素破坏了随机原则而产生的 系统性偏差。
抽样检验和抽样分布
第一节 抽样及抽样中的几个基本概念
一、抽样的概念和特点 1、抽样:从所研究的对象中随机地取出其中一
部分来观察,由此而获得有关总体的信息。
2、抽样的3个特点: 1)遵守随机原则; 2)推断被调查现象的总体特征; 3)计算推断的准确性和可靠性。
二、抽样的基本概念
1、全及总体和样本总体 全及总体是我们所要研究的对象,而样本总体则是 我们所要观察的对象,两者是有区别而又有联系的 不同范畴。 ❖ 全及总体又称母体:具有某种共同性质的许多单位 的集合体。 ❖ 样本总体:又称子样,简称样本,是从全及总体中 随机抽取出来,代表全及总体的那部分单位的集合 体。样本总体的单位数称为样本容量,通常用小写 英文字母n来表示。
❖
样本代表性问题:随着样本容量的增大,样本 对总体的代表性越来越高,并且当样本单位 数足够多时,样本平均数愈接近总体平均数 。
2.全及指标和抽样指标
❖ 全及指标:根据全及总体各个单位的标志值 或标志属性计算的,反映总体某种属性或特 征的综合指示称为全及指标。常用的全及指 标有总体平均数(或总体成数)、总体标准 差(或总体方差 )。
3、样本容量和样本个数
❖ 样本容量:指一个样本所包含的单位数。通常将样 本单位数不少于30个的样本称为大样本,不及3 0个的称为小样本。社会经济统计的抽样调查多属 于大样本调查。样本个数又称样本可能数目。指从 一个总体中可能抽取的样本个数。一个总体有多少 样本,则样本统计量就有多少种取值,从而形成该 统计量的分布,此分布是抽样推断的基础。
等距抽样的一个例子
某企业有职工5000名,现要随机抽取100人进行 家庭收入水平调查。
抽取方法:按与研究目的无直接关系的姓 名笔划对总体进行排列,把总体划分为 K=5000/100=50个相等的间隔,在第1至 第50人中随机抽取一名,如抽到第10名 ,后面间隔依次抽取第60,110,160, 210,…直到4960为止,总共抽取50同 名职工组成一个抽样总体。
❖ 抽样指标:由样本总体各单位标志值计算出 来反映样本特征,用来估计全及指标的综合 指标称为统计量(抽样指标)。统计量是样 本变量的函数,用来估计总体参数,因此与 总体参数相对应,统计量有样本平均数(或 抽样成数)、样本标准差(或样本方差 )。
❖ 注意: 对于一个问题全及总体是唯一确定的,所
以全及指标也是唯一确定的,全及指标也称为参数 ,它是待估计的数。而统计量则是随机变量,它的 取值随样本的不同而发生变化。
等距抽样的优点:(1)能保证被抽取到的样
本单位在全及总体中均匀分布;(2)简化抽 样过程。
等距抽样应注意:要避免抽样间隔或样本距
离和现象本身的节奏性或循环周期相重合。
三、类型抽样
类型抽样:将全及总体中的所有单位按某一
主要标志分组,然后在各组中采用纯随机抽 样或等距抽样方式,抽取一定数目的调查单 位构成所需的样本。
2、抽样误差:是指由于随机抽样的偶然因素 使样本各单位的结构不足以代表总体各单位 的结构,而引起抽样指标和全及指标之间的 绝对离差。不包含登记性误差和不遵守随机 原则造成的偏差。
❖ 影响抽样误差的因素有:总体各单位标志值 的差异程度;样本的单位数;抽样的方法;抽 样调查的组织形式。
第二节 随机抽样设计
适用范围:主要适用于总体情况比较复杂,
各类型或层次之间的差异较大,而总体单位 又较多的情形,分层使层内各单位之间的差 异减小,层间差异扩大。
(一)类型比例抽样
按照总体单位数在各组之间的比例,分
配各组的抽样单位数。即:各类型中抽
取的样本单位数ni占该类型所有单位数Ni 的比例是相等的,等同于样本单位总数n
K
ni
i1
(二)类型适宜抽样
在抽取样本单位数时,要考虑各类型组
包含的单位数不同和标志单位数,变动程度(
)小的
i
组要少多抽样本数,使得各类型组的变
动程度( i )在所有类型组变动程度之
2)随机数字法:用字母顺序或身份证号等任 何方便的方法对总体容量编者按号,利用随 机数表从1到总体容量N中随机抽取n(样本 容量数)个数,遇到那些不在编号里的数字 需跳过。
二、等距抽样:先将总体各单位按某一有关
标志(或无关标志)排队,然后相等距离或 相等间隔抽取样本单位K 。根据需要抽取的样 本单位数(n)和全及总体单位数(N),可 以计算出抽取各个样本单位之间的距离和间 隔,即:K=N/n,然后按此间隔依次抽取必 要的样本单位。
占总体单位数N的比例,即:
n n n n 1 2 3 K n
N1 N2 N3
NN K
各类型组应抽取的样本单位数为:
N n i n n N i N i N
样本比率抽样样本容量:按前面指定的比例
(n/N)从每组的Ni单位中抽取ni个单位即构成 一个抽样总体,其样本容量为:
n= n1+ n2+ n3+…+ nk=