《函数列一致连续和一致收敛及等度连续的关系》一文的反例

合集下载

关于一致收敛

关于一致收敛

关于一致收敛,我提出了一些自然应该产生的问题,主要看定义和提出的问题,希望可以看完定义和从这个定义出发的许多问题,这里大部分比较简单,尤其是根据定义验证性质的希望可以验证一下,根据定义便可以得出的,其他的了解一下,可以等寒假或者以后再想。

尤其举反例部分不用着急想,比如weierstrass 函数的反例和最后的一段比较难,不用浪费精力去着急想,了解一下即可,但心里要装着这些问题,不要放弃。

1一致收敛的定义:关键是共同的N (与x 无关),任意号与存在号的选择与排序问题,比如有四个空,每个空填写任意与存在,一共有2^4种可能,另外还可以对这些做排序(4!),就有2^4*4!=384种不同的结果,但其中只有一种是可以描述一致收敛的定义,因而这样的话,定义的准确性就显得很是必要了,这里仅仅有一种正确刻画了一致收敛0,,,.n Given any there exists a capital N such that f f whenever n N εε-><>0ε∀(任给,对任意固定的,对每个给定的)>,N ∃(存在找得到)正整数, n N ∀使得对一切的(当……时)(或者用符号)>,,.(,)()()n x E s t such that f x f x ε∀∈-对一切的()<(一致性体现在,有共同的N 不依赖于x ,试若把x E ∀∈对一切的()放在,N ∃(存在找得到)正整数前,则是逐点收敛的定义(N 依赖于x ),从逻辑上完全不是同一句话)注:n x ε∀(从“对一切的()”开始的部分等价于用上确界范数的描述<)2对定义的提问:1 well-defined ?(是不是恰到好处的)比如对集合E 要有什么要求?如果说函数列分别按照逐点收敛和按照一致所得的极限函数存在的话,这个极限函数唯一吗?2如果是well-defined ,那么它的否定的正面描述是什么?并且举出一致收敛和不一致收敛的例子来体会定义(好例子的标准:1简洁(而并非去整自己去找很难的例子)2能反映一些重要性质体会到为什么一致收敛,为什么不一致收敛)既要有正面例子,又要有反面的例子3一致收敛于逐点收敛的区别及其蕴含关系是什么?4每一种收敛方式都对应于一个基本列的表述方式,对比于n 维实空间,连续函数空间也是一个距离空间,那么它的基本列是什么定义,基本列与收敛列之间的关系呢?即它完备吗?注意到在考虑函数空间时候,我们考虑的是把函数作为一个“元素”放到整个函数空间中去看,因此我们在函数空间中引入了一致收敛的概念,注意力集中到函数作为一个元素上去,因而一致收敛的时候要求N 与x 要无关5类似地可以问,连续函数空间中的子集有界是什么意思?也就有了一致有界的概念(感觉上应该这个界也和x 无关) 类似有开球的概念(;){:,,0}E E B f g C f C f g δδδ=∈∈-<>特别连续函数列是一致有界的如果它能包含在一个球里为了强调这里的有界和x 无关,称其一致有界,可以证明函数列一致有界的定义的等价叙述如下:.n M s t f M x E f M ∈存在一正数,对一切的正整数,<(即对一切的,<)类似的拓扑的语言都合适地可以移到连续函数空间上来,如什么是开集,什么是闭集,什么是紧集(这个时候的有界[指的是一致有界]闭集是否还是紧致(等价于列紧[可以证明一般的距离空间中的紧致和列紧是一回事])的呢?),什么是内点,孤立点,极限点,边界点,闭包为了简便和具体些,下面函数列定义在一个实数的子集合I 上6可以问一致收敛是否是一致有界的?如果回答否定还可以问:有界函数列(对每个固定的n ,存在一个大M ,使得对一切()n x E f x M ∈,<,这里是一致有界的意思吗?一致有界和普通的函数有界有什么区别?)一致收敛的话,极限函数有界吗,这些函数列在集合I 上一致有界吗?进而如果在I 上考虑的函数列一致收敛,且它的极限函数有界,这个函数列是否一致有界呢?如果不是的话,这个函数列是否会从某项开始一致有界呢?7可以考虑逐点收敛和一致收敛的函数列的代数性质(无论命题成立与否都要有一些适当的例子放在心里)两个函数列逐点收敛,他们的和函数列与积函数列逐点收敛吗?两个函数列一致收敛,他们的和函数列与积函数列一致收敛吗?两个对了,那么有限个应该也对,为什么?8一致有界函数列的和与积是否一致有界呢?9设函数列定义在一个闭区间I (一般定义在一个紧致集合上)上逐点收敛意义下的函数列与极限函数之间的关系有下面的问题可以问函数列连续,极限函数连续吗?函数列可导,极限函数也可导?如果可导的话,先对函数列求导,再求极限函数,与先求极限函数再求极限函数的导数是一回事吗?类似的可积应该也有与可导的问题,这样已经有5个问题了10如果收敛方式改为一致收敛呢?就得到10个问题了(其中会遇到一个问题,例子不大好举,即是否有可导函数列一致收敛,它的极限函数处处连续,但是不可导,如果存在的话,不可导点是有限的,可数的,不可数,甚至处处不可导的例子又能否举出来?即weierstrass 函数,这样的函数有些病态,那么可以考察一些常见的病态函数(如黎曼函数R (x ),狄利克雷函数D(x),n ()()()lim ()(),n n n n f x f x f x f x f x a →∞=逐点收敛到,记为且是一个收敛到0的数列,)的基本的解析性质,如连续性,可导性,可积性。

数学分析课程中的几个反例-FudanUniversity

数学分析课程中的几个反例-FudanUniversity

数学分析课程中的几个反例1.处处连续处处不可导的函数在数学分析的发展历史上,数学家们一直猜测:连续函数在其定义区间中,至多除去可列个点外都是可导的。

也就是说,连续函数的不可导点至多是可列集。

虽然这一猜测是错误的,但数学家在很长一段时期一直没能找到反例,原因是在当时函数的表示手段有限,而仅仅从初等函数或从分段初等函数表示的角度出发去考虑,是找不到反例的。

但是随着级数理论的发展,函数表示的手段扩展了,数学家可以通过函数项级数来表示更广泛的函数类。

Weierstrass 是一位研究级数理论的大师,他于1872年利用函数项级数第一个构造出了一个处处连续而处处不可导的函数,为上述猜测做了一个否定的终结:(0()sin n n n )f x a b ∞==∑x ,b a <<<10, 。

1>ab 下面叙述的反例在证明上要相对简易些,它是由荷兰数学家Van Der Waerden 于1930年给出的。

设(x )表示x 与最邻近的整数之间的距离,例如当x = 1.26,则(x ) = 0.26;当x = 3.67,则ϕϕϕ(x ) = 0.33。

显然ϕ(x )是周期为1的连续函数,且。

2/1)(≤ϕx 注意 当y x ,21,[+∈k k 或]1,21[++k k 时,成立|||)()(|y x y x −=−ϕϕ。

Van Der Waerden 给出的例子是:)(x f = ∑∞=ϕ010)10(n nn x 。

由n n x 10)10(ϕ≤n1021⋅,及∑∞=⋅01021n n 的收敛性,根据Weierstrass 判别法,上述函数项级数关于),(+∞−∞∈x 一致收敛。

所以在连续。

)(x f ),(+∞−∞现考虑在任意一点x 的可导性。

由于的周期性,不妨设,并将x 表示成无限小数)(x f )(x f 10<≤x x = 0.a 1a 2…a n …。

若x 是有限小数时,则在后面添上无穷多个0。

浅析数学分析一致连续

浅析数学分析一致连续

一引入“一致性”的意义数学分析教材中有不少概念,如函数的连续性与一直连续性、函数列的收敛性与一致收敛性,初学者很容易混淆,因而成为“数学分析”中学习的一个难点所在。

数学分析中的三个“一致性”(即一致有界, 一致连续, 一致收敛) 的概念对数学基础知识的学习很重要。

弄清函数的一致连续性的概念和掌握判断函数一致连续的方法无疑是学好函数一致连续性理论的关键。

数学分析教材只给出一致连续的概念和判断函数在闭区间上一致连续的G·康托定理,内容篇幅少,为了使初学者对函数一致连续性的理论有正确的理解和全面的掌握,作为教材内容的适当扩展和补充显然,一致连续要比连续条件强。

但在数学分析教科书中,仅给出一致连续的定义以及利用定义证明函数f(x)在某区间上一致连续的数学方法,呈现了函数一致连续完美的逻辑结果,但学生对定义特别是其中δ的很难理解。

一致连续是一个很重要的概念,在微积分学以及其他学科中常常用到,而且函数列的一致连续性和一致收敛又有着密切关系。

在研究函数列的收敛问题中,常常要用到函数列与函数之间的收敛、一致连续性、一致收敛的关系。

数学分析中的函数一致连续性、函数列一致有界性、函数列一致收敛性、函数项级数一致收敛性、含参变量无穷积分一致收敛性等“一致性”概念是学习上的难点,因此,牢固掌握这些概念及与之有关的理论,对打好分析基础,培养良好的数学素养和创新能力都有着重要的意义。

对函数列的极限函数、函数项级数的和函数以及含参变量积分性质的讨论,常常需要讨论其一致收敛性,而函数项级数的一致收敛性可归结成部分和函数列的一致收敛性的研究,含参变量无穷积分的一致收敛性,又可归结成函数项级数的一致收敛性的研究,故本文着重讨论函数一致连续性和函数列一致收敛性重要概念。

函数一致连续的概念是学生学习高等数学的一个难点,证明某一个函数是否具有一致连续性让许多同学更是无从下手。

为了解决这一难点,化抽象为简单,给出一致连续性的几种等价形式,能帮助同学易于接受。

数学分析 函数列与函数项级数 10.1-10.2一致收敛

数学分析 函数列与函数项级数 10.1-10.2一致收敛

1 1 1 而 n sup f n ( x ) f ( x ) f n ( ) 0 , n 11 2 x( 0 ,1 )
0,
故在(0,1)上不一致收敛.
定理2. (Cauchy收敛原理)
设 f n 定义于I ,
f n 在I上一致收敛
0, N ( ),当n N ( )时, x I , p N * ,
都有 f n p ( x ) f n ( x ) .
证明:

设f n在I上一致收敛于f ,
0, N ( ),当n N ( )时, 对x I , p N * ,
f n ( x ) f ( x ) , f n p ( x ) f ( x ) . 2 2
n
转化为函数列 S n ( x )的三个等价问题 :
可导 可积
反例见P392.
可导? 可积?
§10.2
一致收敛
一、函数列的一致收敛
⒈ f n 定义于[a , b], x0 [a , b], f n ( x0 )收敛
称 f n 在[a , b]上收敛或逐点收敛.
⒉ 设f n在[a , b]逐点收敛于f ,
即lim f n ( x0 ) f ( x0 ), x0 [a , b].
n
0, N ( x0 , ) 0,当n N ( x0 , )时,
f n ( x0 ) f ( x0 )
是否有公共的N , n N时对一切x0 [a , b],
都有 f n ( x0 ) f ( x0 ) ?
有公共的N ( ),与x无关.
⒊一致收敛
定义: f n 在点集I上逐点收敛于f , 若 0, 设

一致连续与连续的关系

一致连续与连续的关系

一致连续与连续的关系我们知道,f(x)在区间I上一致连续,自然f(x)在I上连续,反之不一定.若I为有限闭区间,据Cantor定理,f在[a,b]上连续等价于f在[a,b]上一致连续.现在让我们来讨论开区间以及无穷区间的情况.例1设f(x)在有限开区间(a,b)上连续,试证f(x)在(a,b)上一致连续的充要证1°(必要性)已知∀ε>0,∃δ>0,当x′,x″∈(a,b),|x′-x″|<δ时,有|f(x′)-f(x″)|<ε.故∀x′,x″∈(a,b),a<x′<a+δ,a<x″<a+δ时,有|f(x′)-f(x″)|<ε.Cantor定理,f(x)在[a,b]上一致连续.从而原f在(a,b)上一致连续.注(1)此例表明:在有限开区间上连续函数是否一致连续,取决于函数在端点(2)由此例还可看出,f(x)在(a,b)上一致连续,则f在(a,b)上有界.然而,在(3)当(a,b)改为无穷区间时,该例的必要性不再成立.如f(x)=x,g(x)=sinx在(-∞,+∞)上一致连续,但在端点±∞无极限.对于无穷区间,充分性仍是对的.请看:上一致连续.|f(x′)-f(x″)|<ε(1)(Cauchy准则之“必要性”).2°由Cantor定理,f在[a,Δ+1]上一致连续,故对此ε>0,∃δ1>0,当x′,x″∈[a,Δ+1],|x′-x″|<δ1时,有|f(x′)-f(x″)|<ε.(2)3°令δ=min{1,δ1},则x′,x″>a,|x′-x″|<δ时,x′,x″要么同属于[a,Δ+1],要么同属于(Δ,+∞).从而由(1)、(2)知|f(x′)-f(x″)|<ε.即f在[a,+∞)上一致连续.注如下的证明是错误的:首先利用以上证明的1°,得结论“f在[Δ,+∞)上一致连续”,然后利用Cantor定理,f在[a,Δ]上一致连续,从而f在[a,+∞)上一致连续.其错误在于1°中Δ与ε有关,由1°得不出f在[Δ,+∞)上一致连续.=0.证明:ϕ(x)在[a,+∞)上一致连续.2°利用Cantor定理,可知ϕ(x)在[a,Δ+1]上一致连续,所以对此ε>0,∃δ2>0,当x′,x″∈[a,Δ+1]|x′-x″|<δ2时,有|ϕ (x′)-ϕ(x″)|<ε.3°取δ=min{1,δ1,δ2]时,则x′,x″∈[a,+∞)|x′-x″|<δ时,有|ϕ (x′)-ϕ(x″)|<ε.证毕.我们知道,y=x在(-∞,+∞)内一致连续,但y=x2在(-∞,+∞)内非一致连续.我们要问:在无穷区间上一致连续的函数,当x→±∞时,阶次有何估计.例4设f(x)在(-∞,+∞)上一致连续,则存在非负实数a与b,使对一切x∈(-∞,+∞),都有|f(x)|≤a|x|+b.试证明之.证因为f(x)一致连续,所以∀ε>0,∃δ>0,当|x′-x″|≤δ时,有|f(x′)-f(x″)|<ε.现将ε>0,δ>0固定.由于∀x∈(-∞,+∞),∃n∈Z(整数集),使得x=nδ+x0,其中x0∈(-δ,δ).注意到f(x)在[-δ,δ]上有界,即∃M>0,使得|f(x)|≤M(∀ x∈[-δ,δ]).因此,≤|n|ε+M.|f(x)|≤a|x|+b (∀ x∈(-∞,+∞)).此例说明,若f(x)在(-∞,+∞)内一致连续,则x→∞时,f(x)=O(x).下面我们来看一个使用一致连续性的例子.应∃N x>0,n>N x时|f(x+n)|<ε.可惜这么找得的N x(x∈[0,1])共有无穷多个.无相应∃N i>0,使得n>N i时,|f(x i+n)|<ε.令N=max{N1,…,N k}则n>N时,有|f(x i+n)|<ε(i=1,2,…,k).如此我们虽未找到所需的Δ>0,但至少在[N,+∞)内的每个格点x i+n(i=1,2,…,k,n=N+1,N+2,…)上,有|f(x i+n)|<ε.注意到f(x)在[0,+∞)上一致连续,因此把分划取得足够细,使得格点足够密,可使二格点之间的函数值,与格点的函数值,相差任意小.证1°因f(x)在[0,+∞)上一致连续,所以∀ε>0,∃δ>0,当|x′-x″|<δ(x′,x″>0)时,有(1)(2)4°取Δ=N>0,来证x>Δ时|f(x)|<ε.事实上,∀x>N,记n≡[x]≥N,因x -n∈[0,1),故∃i∈{1,2,…,k},使得|(x-n)-x i|<δ,即|x-(n+x i)||f(x)|≤|f(x)-f(n+x i)|+|f(n+x i)|。

函数列一致连续和一致收敛及等度连续的关系

函数列一致连续和一致收敛及等度连续的关系

285
N (ε) , 使得当时 n > N 时 , 对一切 x ∈ I, 都有 fn ( x ) - f ( x )
是有界区间 , 所以 fn ( a + 0 ) , fn ( b - 0 ) , f ( a + 0 ) ,
f ( b - 0 ) 存在且有限 , fn ( x ) , f ( x ) 在 I 上连续
fn ( x ) - f ( x ) ≤ fn ( x ) - fn ( ai ) fn ( ai ) - f ( ai )

证毕 . 反之不一定成立 . 2 2 2 例如 { fn ( x ) } = { x / ( x + ( 1 = nx ) ) } , f ( x ) = - 0, 显然 lim fn ( x ) = f ( x ) ( x ∈ [ 0, 1 ] )
fn ( x ) - f ( x ) ≤ fn ( x ) - fn ( x λ) fn ( x λ) - f(x λ)
ε ε ε + + =ε 3 3 3 对剩下的 f1 ( x ) , …, fN ( x ) , 由一致连续性 , 每 个 fi ( x ) ( i = 1, 2, …, N ) , 都存在正数 δ , x″ i , 当 x′ ∈ I, x ′ - x ″ <δ i 时 ,有 ε ) - fi ( x ″ ) < fi ( x ′ 3 这时取 δ = m in {δ , x″ 0 ,δ 1 , …, δ N } , 则对任意的 x ′ ∈ I, 当 x ′ - x ″ <δ 时 , 对一切 n, 恒有
[1]

.
则称函数列 { fn ( x ) }在 I上一致收敛于 f ( x ) , 记作 fn ( x ) ] f ( x ) ( n →∞) ; x ∈ I 定义 4 设函数列 { fn ( x ) }定义在区间 I上 , 若对任意正数 ε, 存在正数 δ=δ(ε) , 使得当 x1 , x2 ∈ I且 x1 - x2 <δ 时 , 对一切的 n 有 fn ( x1 ) - fn ( x2 ) <ε

一致收敛函数列函数项级数的性质定理

一致收敛函数列函数项级数的性质定理

确界极限
lim sup |
n xD
fn (x)
f
(x) | 0
命题 设fn(x)C[a, b], 且 fn x 在(a, b)内一致收敛, 则 fn x 在[a, b]上一致收敛.
Weierst(x) | Mn, 且 M n 收敛 un (x) 一致收敛
lim
n
b a
fn
x dx

b a
lim
n
fn x
dx
b
f (x)dx
a
注 用到连续性定理: f C[a, b], 从而f R[a, b]!

推论 (逐项可积性) 设un(x)C[a, b], 且 un (x) n1
在[a, b]上一致收敛, 则
若 fn x D f x, 则D1 D: fn x D 1 f x 若 fn x D f x, 则 fn (x) D f (x), 反之不然.
f n(x)在D上不一致收敛的肯定叙述:
f (x), 0 0,N N, nN N, xN D : | fnN (xN ) f (xN ) | 0.
n1
n1
AD判别法(函数项级数)
二、不一致收敛判别法 结论
不点态收敛 不一致收敛 Cauchy不一致收敛准则
n N , p N, xn D : | fn p (xn ) fn (xn ) | 0
点列极限
xn D :| fn (xn ) f (xn ) | 0 (n )
| fn p (x) fn (x) | .

思考 un (x) 在D上一致收敛的Cauchy准则? n 1

数学分析判断题36个经典反例

数学分析判断题36个经典反例

数学分析判断题36个经典反例本文介绍了数学分析中的36个经典反例,这些反例可以帮助读者更好地理解和掌握分析性数学的相关概念和方法。

反例一:可导不连续函数在某点可导不一定在该点连续,例如函数$f(x)=|x|$在$x=0$处可导,但在该点不连续。

反例二:微积分基本公式不成立微积分基本公式$\int_a^bf(x)dx=F(b)-F(a)$在一些情况下不成立,例如函数$f(x)=x\sin\frac{1}{x}$在$[0,1]$上积分不满足基本公式。

反例三:连续不可导函数在某点连续不一定可导,例如函数$f(x)=|x|$在$x=0$处连续但在该点不可导。

反例四:一致连续性函数一致连续和点连续不等价,有些点连续的函数不一定一致连续,例如函数$f(x)=\sqrt{x}$在$[0,1]$上连续但不一致连续。

反例五:级数收敛性与函数可积性不等价级数收敛的函数不一定可积,例如函数$f(x)=\frac{\sinx}{x}$在$[0,\infty)$上级数收敛但不可积。

反例六:积分换序对于一些函数,交换积分次序会导致结果错误,例如函数$f(x,y)=\frac{xy}{(x^2+y^2)^2}$,交换积分次序后结果不同。

反例七:泰勒级数不收敛某些函数在某点的泰勒级数不收敛,例如函数$f(x)=e^{-\frac{1}{x^2}}$在$x=0$处泰勒级数不收敛。

反例八:函数可导与偏导数存在不等价当函数的偏导数存在且连续时,函数不一定可导,例如函数$f(x,y)=xy\sin\frac{1}{\sqrt{x^2+y^2}}$在原点处偏导数存在但不可导。

反例九:连续与闭集不等价一个连续函数的原像不一定为闭集,例如函数$f(x)=\arctanx$在$(-\infty,\infty)$上连续但原像不是闭集。

反例十:一致收敛不保持函数类如果$f_n(x)$是$[0,1]$上的可积函数,$f_n(x)$在$[0,1]$上一致收敛于$f(x)$,则$f(x)$不一定可积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档