一元线性回归,方差分析,显著性分析
第三节 线性回归的显著性检验及回归预测

xy
i
n
]
2 b x i x i yi a x i 0 SS , SS E , SS R依赖: a y bx
5
注意:三个平方和SS , SS E , SS R的自由度分别记为 f , f E , f R , 则它们之间也有等式成立: f fE fR 且:f n-1, f E n 2, 则f R f f E 1.
2
x
i 1
n
i
x
2
式中:se为回归估计标准差
置信区间估计(例题分析)
【例】求出工业总产值的点估计为100亿元时, 工业总产值95%置信水平下的置信区间. yc 100 解:根据前面的计算结果,已知n=16, • se=2.457,t(16-2)=2.1448 • 置信区间为 1 (73 57.25)2
一元线性回归的方差分析表
离差来源 平方和 自由度 F值 SS R 回 归 SS y y 2 1 F R ci SS E 2 剩余 n-2
SS E yi yci
( n 2)
总计
SS yi y
2
n-1
8
线性关系的检验(例题分析)
1. 提出假设 H0 : 0; 2. 计算检验统计量F
i
(x
x ) nS xi
2 2
( xi )
2
③根据已知条件实际计算统计量t的值; ④ 比较②与③中的计算结果,得到结论.
3
回归系数的假设
b Se 1
对例题的回归系数进行显著性检验(=0.05)
H0 : 0;
i
H1 : 0
方差分析与回归分析的原理

方差分析与回归分析的原理方差分析和回归分析是统计学中常用的两种数据分析方法,它们都用于研究变量之间的相互关系,但是基于不同的背景和目的,其原理和应用也有所不同。
首先,我们来了解一下方差分析。
方差分析是一种用于比较两个或多个群体均值差异的统计方法。
它基于对总体方差的分解来分析不同因素对群体之间差异的贡献程度。
具体来说,方差分析将总体方差分解为组内变异和组间变异两部分,然后通过计算F统计量来判断组间变异是否显著大于组内变异。
方差分析可以用于很多场景,比如医疗研究中分析不同药物对疾病治疗效果的差异、教育研究中比较不同教学方法对学生成绩的影响等。
在进行方差分析时,需要明确一个自变量(也称为因素或处理)和一个因变量(也称为响应变量)。
自变量是被研究者主动操作或选择的变量,而因变量是根据自变量的不同取值而发生变化的变量。
方差分析的基本原理是通过对不同组之间的变异进行比较,来判断组间是否存在统计显著差异。
方差分析的核心思想是使用F统计量来判断组间变异与组内变异的比例是否显著大于1。
通过计算F值并与临界值进行比较,可以得出结论是否存在显著差异。
如果F值大于临界值,则可以拒绝原假设,表明不同组之间存在显著差异;如果F值小于临界值,则接受原假设,认为组间差异不显著。
接下来,我们来了解一下回归分析。
回归分析是统计学中用于研究变量之间关系的一种方法。
它研究的是一个或多个自变量对因变量的影响程度和方向。
回归分析可以用于预测未来趋势、解释变量之间的关系、探究因果关系以及确定主要影响因素等。
回归分析分为线性回归和非线性回归两种。
线性回归是最常用的一种回归方法,它假设自变量与因变量之间存在线性关系。
以一元线性回归为例,我们假设因变量Y可以用一个自变量X的线性函数来表示,即Y = β0 + β1X + ε,其中β0和β1是回归系数,ε是误差项,代表了未被自变量解释的因素。
通常,回归分析的目标是估计出回归系数的值,并利用这些系数来解释因变量与自变量之间的关系。
回归分析

回归系数,因此失去两个自由度。 回归系数,因此失去两个自由度。
♦
dfR=dfT-dfE=1
⑷.计算方差
♦ ♦
回归方差 残差方差
SS R MS R = df R
SS E MS E = df E
⑷.计算F ⑷.计算F值
MS R F= MS E
⑹.列回归方程的方差分析表
表21-1 回归方程方差分析表
变异 来源 回归 残差 总变异 平方和 自由度 方差 F 值 概率
♦
β=0 H0:β=0 H1:β≠0
♦
统计量计算
ΣX 2 − (ΣX ) / n bYX t= = bYX ⋅ SEb MS E
2
50520 − 710 2 / 10 = 1.22 × = 3.542 13.047
二.一元线性回归方程的评价── 二.一元线性回归方程的评价── 测定系数
♦
一元线性回归方程中, 一元线性回归方程中,总平方和等于回归平
2 2
SS R = SST
(21.5)
r2
X的变异
Y的变异
图21-1 21-
测定系数示意图
图21-2 21-
测定系数示意图
♦
例3:10名学生初一对初二年级数学成 10名学生初一对初二年级数学成
绩回归方程方差分析计算中得到: 绩回归方程方差分析计算中得到:
♦ SST=268.1
♦
2
SSR=163.724
数学成绩估计初二数学成绩的回归方程; 数学成绩估计初二数学成绩的回归方程;将另一 学生的初一数学成绩代入方程, 学生的初一数学成绩代入方程,估计其初二成绩
Y = 1.22 X − 14.32 = 1.22 × 76 − 14.32 = 78.4
一元线性回归方程的显著性检验

回归方程的显著性检验回归方程的显著性检验的目的是对回归方程拟合优度的检验。
F检验法是英国统计学家Fisher提出的,主要通过比较两组数据的方差S2,以确定他们的精密度是否有显著性差异。
回归方程显著性检验具体方法为:由于y的偏差是由两个因素造成的,一是x变化所引起反应在S回中,二是各种偶然因素干扰所致S残中。
将回归方程离差平方和S回同剩余离差平方和S残加以比较,应用F检验来分析两者之间的差别是否显著。
如果是显著的,两个变量之间存在线性关系;如果不显著,两个变量不存在线性相关关系。
n个观测值之间存在着差异,我们用观测值yi与其平均值的偏差平方和来表示这种差异程度,称其为总离差平方和,记为由于所以式中称为回归平方和,记为S回。
称为残差平方和,记为。
不难证明,最后一项。
因此S总=S回+S残上式表明,y的偏差是由两个因素造成的,一是x变化所引起,二是各种偶然因素干扰所致。
事实上,S回和S残可用下面更简单的关系式来计算。
具体检验可在方差分析表上进行。
这里要注意S回的自由度为1,S残的自由度为n-2,S总的自由度为n-1。
如果x与y有线性关系,则其中,F(1,n-2)表示第一自由度为1,第二自由度为n-2的分布。
在F表中显著性水平用表示,一般取0.10,0.05,0.01,1-表示检验的可靠程度。
在进行检验时,F值应大于F表中的临界值Fα。
若F<0.05(1,n-2),则称x与y 没有明显的线性关系,若F0.05(1,n-2)<F<F0.01(1,n-2),则称x与y有显著的线性关系;若F>F0.01(1,n-2),则称x与y有十分显著的线性关系。
当x与y有显著的线性关系时,在表2-1-2的显著性栏中标以〝*〞;当x与y有十分显著的线性关系时,标以〝**〞。
方差分析与回归分析

方差分析与回归分析在统计学中,方差分析(ANOVA)和回归分析(Regression Analysis)都是常见的统计分析方法。
它们广泛应用于数据分析和实证研究中,有助于揭示变量之间的关系和影响。
本文将对方差分析和回归分析进行介绍和比较,让读者更好地理解它们的应用和区别。
一、方差分析方差分析是一种统计方法,用于比较两个或更多组别的均值是否存在显著差异。
它通过计算组内变异和组间变异的比值来判断不同组别间的差异是否具有统计显著性。
在方差分析中,通常有三种不同的情形:单因素方差分析、双因素方差分析和多因素方差分析。
单因素方差分析适用于只有一个自变量的情况。
例如,我们想要比较不同教育水平对收入的影响,可以将教育水平作为自变量分为高中、本科和研究生三个组别,然后进行方差分析来检验组别之间的收入差异是否显著。
双因素方差分析适用于有两个自变量的情况。
例如,我们想要比较不同教育水平和不同工作经验对收入的影响,可以将教育水平和工作经验作为自变量,进行方差分析来研究其对收入的影响程度和相互作用效应。
多因素方差分析适用于有多个自变量的情况。
例如,我们想要比较不同教育水平、工作经验和职位对收入的影响,可以将教育水平、工作经验和职位作为自变量,进行方差分析来探究它们对收入的联合影响。
方差分析的基本原理是计算组内变异和组间变异之间的比值,即F 值。
通过与临界F值比较,可以确定差异是否显著。
方差分析的结果通常会报告组间平均差异的显著性水平,以及可能存在的交互作用。
二、回归分析回归分析是一种统计方法,用于研究自变量与因变量之间的关系。
它通过建立一个数学模型来描述自变量对因变量的影响程度和方向。
回归分析分为简单线性回归和多元线性回归两种类型。
简单线性回归适用于只有一个自变量和一个因变量的情况。
例如,我们想要研究体重与身高之间的关系,可以将身高作为自变量、体重作为因变量,通过拟合一条直线来描述二者之间的关系。
多元线性回归适用于有多个自变量和一个因变量的情况。
统计学中的方差分析与回归分析比较

统计学中的方差分析与回归分析比较统计学是以搜集、整理、分析数据的方法为研究对象的一门学科,随着现代科技的不断进步,统计学在许多领域中都扮演着至关重要的角色。
在统计学的研究中,方差分析和回归分析都是两种常见的方法。
然而,这两种方法之间的区别是什么?它们各自的优缺点又是什么呢?本文将就这些问题进行探讨。
一、方差分析是什么?方差分析,也称为ANOVA (analysis of variance),是一种用于分析各个因素对于某一变量影响力大小的方法。
在统计数据分析中,可能有多个自变量(影响因素),这时我们需要检验这些因素中哪些是显著的,即在该因素下所得的计算值与总计算值之间是否存在显著性差异。
因此,方差分析的基本思想是对总体方差进行分析,检验各个因素是否会对总体造成显著影响。
二、回归分析是什么?回归分析则是研究两个变量之间关系的一种方法。
一个自变量(independent variable)是已知的、独立的变量,一个因变量(dependent variable)是需要预测或解释的变量。
回归分析的主要目的是利用自变量对因变量进行预测,或者解释自变量与因变量之间的关系。
回归分析一般有两种,即简单线性回归和多元回归。
三、方差分析与回归分析的比较1. 适用范围方差分析适用于多个自变量之间的比较;回归分析则适用于对单个因变量的预测。
2. 关心的变量在方差分析中,我们关心的是各个自变量对总体造成的显著影响程度;在回归分析中,我们关心的是自变量与因变量之间的相关性。
3. 变量类型方差分析和回归分析处理的数据类型也不相同。
在方差分析中,自变量通常为分类变量(catogorical variable),而因变量通常为连续量(continuous variable)。
而在回归分析中,自变量和因变量都为连续量。
4. 独立性假设方差分析的独立性假设要求各组之间是相互独立、没有相关的,而回归分析的独立性假设要求各个观测或实验之间是独立的。
方差分析和回归分析

方差分析和回归分析方差分析和回归分析是统计学中常用的两种数据分析方法。
它们分别用于比较多个样本之间的差异以及建立变量之间的函数关系。
本文将对方差分析和回归分析进行介绍和比较。
一、方差分析方差分析(Analysis of Variance,简称ANOVA)是一种用于比较多个样本均值是否存在差异的统计方法。
方差分析通过比较组间和组内的方差来判断样本均值是否存在显著差异。
方差分析需要满足一些基本假设,如正态分布假设和方差齐性假设。
方差分析可以分为单因素方差分析和多因素方差分析。
单因素方差分析是指只有一个自变量(因素)对因变量产生影响的情况。
多因素方差分析则包含两个或两个以上自变量对因变量的影响,可以用于分析多个因素交互作用的效应。
方差分析的步骤包括建立假设、计算各组均值和方差、计算F值和判断显著性等。
通过方差分析可以得到组间显著性差异的结论,并进一步通过事后多重比较方法确定具体哪些组之间存在显著差异。
二、回归分析回归分析(Regression Analysis)是一种用于分析自变量和因变量之间关系的统计方法。
回归分析通过建立一种数学模型,描述自变量对因变量的影响程度和方向。
回归分析可用于预测、解释和探索自变量与因变量之间的关系。
回归分析可以分为线性回归和非线性回归。
线性回归是指自变量和因变量之间存在线性关系的情况,可以用一条直线进行拟合。
非线性回归则考虑了自变量和因变量之间的非线性关系,需要采用曲线或其他函数来进行拟合。
回归分析的步骤包括建立模型、估计参数、检验模型的显著性、预测等。
回归模型的好坏可以通过拟合优度、回归系数显著性以及残差分析等指标进行评估。
三、方差分析与回归分析的比较方差分析和回归分析都是常用的统计方法,但它们有一些区别。
主要区别包括:1. 目的不同:方差分析用于比较多个样本之间的差异,判断样本均值是否存在显著差异;回归分析则用于建立自变量和因变量之间的函数关系,预测和解释因变量。
2. 自变量个数不同:方差分析一般只有一个自变量(因素),用于比较不同组别之间的差异;回归分析可以包含一个或多个自变量,用于描述自变量对因变量的影响关系。
第15讲 一元线性回归分析

n
i 1
2
2 2 ˆ ˆ 2b yi y xi x b xi x i 1 i 1
i 1
n
i 1
n
ˆS /S ˆ b ˆ2 S S bS ˆ . b S yy 2bS xy xx xy xx yy xy
例2 求例1中误差方差的无偏估计。
采用最小二乘法估计参数a和b,并不需要事先知道Y与x之间 一定具有相关关系,即使是平面图上一堆完全杂乱无章的散 点,也可以用公式求出回归方程。因此μ(x)是否为x的线性函 数,一要根据专业知识和实践来判断,二要根据实际观察得 到的数据用假设检验方法来判断。
即要检验假设 H0 : b 0, H1 : b 0, 若原假设被拒绝,说明回归效果是显著的,否则, 若接受原假设,说明Y与x不是线性关系,回归方程 无意义。回归效果不显著的原因可能有以下几种:
将每对观察值( xi , yi )在直角坐标系中描出它相应的点 (称为散点图),可以粗略看出 ( x)的形式。
基本思想
(x, Y)
回归分析 回归方程
采集样本信息 ( xi, yi )
散点图
回归方程参数估计、显著性检验
对现实进行预测与控制
一元回归分析:只有一个自变量的回归分析 多元回归分析:多于一个自变量的回归分析
x1 x2 x3
xi
xn
整理得 na ( xi )b yi ,
( xi )a ( xi )b xi yi .——正规方程组
2 i 1 i 1 i 1
n
i 1
n
i 1
n
na ( xi )b yi ,
i 1 i 1
n
n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元线性回归分析及方差分析与显著性检验
某位移传感器的位移x 与输出电压y 的一组观测值如下:(单位略)
设x 无误差,求y 对x 的线性关系式,并进行方差分析与显著性检验。
(附:F 0。
10(1,4)=4.54,F 0。
05(1,4)=7.71,F 0。
01(1,4)=21.2)
回归分析是研究变量之间相关关系的一种统计推断法。
一. 一元线性回归的数学模型
在一元线性回归中,有两个变量,其中 x 是可观测、可控制的普通变量,常称它为自变量或控制变量,y 为随机变量,常称其为因变量或响应变量。
通过散点图或计算相关系数判定y 与x 之间存在着显著的线性相关关系,即y 与x 之间存在如下关系:
y =a +b ∗x +ε (1)
通常认为ε~N (0,δ2)且假设δ2与x 无关。
将观测数据(x i ,y i ) (i=1,……,n)代入(1)再注意样本为简单随机样本得:
{y i =a +b ∗x i +εi
ε1⋯εn 独立同分布N (0,σ2)
(2) 称(1)或(2)(又称为数据结构式)所确定的模型为一元(正态)线性回归模型。
对其进行统计分析称为一元线性回归分析。
模型(2)中 EY= a +b ∗x ,若记 y=E(Y),则 y=a+bx,就是所谓的一元线性回归方程,其图象就是回归直线,b 为回归系数,a 称为回归常数,有时也通称 a 、b 为回归系数。
设得到的回归方程
bx b y
+=0ˆ 残差方程为N t bx b y y
y v t t t i ,,2,1,ˆ0Λ=--=-= 根据最小二乘原理可求得回归系数b 0和b 。
对照第五章最小二乘法的矩阵形式,令
⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎪
⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=N N N v v v V b b b x x x X y y y Y M M M M 2102121ˆ111
则误差方程的矩阵形式为
V b
X Y =-ˆ 对照X A L V ˆ-=,设测得值 t
y 的精度相等,则有
Y X X X b
T T 1)(ˆ-= 将测得值分别代入上式,可计算得
,)()
)((2
1
1
2
1
1
1
xx
xy N
t t N t t N
t t N
t t N
t t t l l x x N y x y x N b =
--=
∑∑∑∑∑=====x b y x x N y x x y x b N t N
t t t t N
t t N t t N t t N t t -=--=
∑∑∑∑∑∑======1
1
2
21
111
2
0)()
)(())((
其中
2
111
2
2
1
1112
11
2
12
1
1)(1)()
)((1)()()(1)(11∑∑∑∑∑∑∑∑∑∑∑∑============-=-=-=--=-=-==
=
N
t t N t N
t t t yy N
t t N
t t N
t t t t N
t t xy N
t t N
t t N
t t xx N t t
N
t t
y N y y y l y x N y x y y x x l x N x x x l y
N
y x
N x
二、回归方程的方差分析及显著性检验
问题:这条回归直线是否符合y 与x 之间的客观规律回归直线的预报精度如何?
解决办法:
方差分析法—分解N 个观测值与其算术平均值之差的平方和;从量值上区别多个影响因素;用F 检验法对所求回归方程进行显著性检验。
(一)回归方程的方差分析
总的离差平方和(即N 个观测值之间的变差)
∑==-=N
t yy t l y y S 12)(,1-=N S ν
可以证明:
S=U+Q
其中
∑==-=N
t xy t bl y y U 12)(,1=U ν
xy yy N
t t t bl l y
y Q -=-=∑=1
2)ˆ(,2-=N Q ν U —回归平方和,反映总变差中由于x 和y 的线性关系而引起 y 变化的部分。
Q —残余平方和,反映所有观测点到回归直线的残余误差,即其它因素对y 变差的影响。
(二)回归方程显著性检验— F 检验法
基本思路:方程是否显著取决于U 和Q 的大小,U 越大Q 越小说明y 与x 的线性关系愈密切。
计算统计量F
Q
U
Q U F νν//=
对一元线性回归,应为
)
2/(1
/-=
N Q U F
查F 分布表,根据给定的显著性水平α和已知的自由度1和N-2进行检验: 若, ),2,1(01.0-≥N F F 回归在0.01的水平上高度显著。
),2,1()2,1(01.005.0-<≤-N F F N F 回归在0.05的水平上显著。
),2,1()2,1(05.010.0-<≤-N F F N F 回归在0.1的水平上显著。
),2,1(10.0-<N F F 回归不显著。
(三)残余方差与残余标准差
残余方差:排除了x 对y 的线性影响后,衡量y 随机波动的特征量。
22-=
N Q
σ
残余标准差:
2-=
N Q σ
含义:σ越小,回归直线的精度越高。
程序如下:
test=[1 5 10 15 20 25;
0.1051 0.5262 1.0521 1.5775 2.1031 2.6287] N=length(test(1,:));
sx=0;sx2=0;sy=0;sy2=0;sxy=0;Lxy=0;Lyy=0; for i=1:N
sx=sx+test(1,i); sx2=sx2+test(1,i)^2; sy=sy+test(2,i); sy2=sy2+test(2,i)^2; sxy=sxy+test(1,i)*test(2,i);
Lxy=Lxy+(test(1,i)-sum(test(1,:))/N)*(test(2,i)-sum(test(2,:)/N));
Lyy=Lyy+(test(2,i)-sum(test(2,:))/N)^2;
end
r=[N,sx;sx,sx2]\[sy;sxy];
a=r(1);b=r(2);
U=b*Lxy;
Q=Lyy-U;
F=(N-2)*U/Q;
x=test(1,:);y=a+b*x;eq=sum(test(2,:))/N;
ssd=0;ssr=0;
for i=1:N
ssd=ssd+(test(2,i)-y(i))^2;
ssr=ssr+(y(i)-eq)^2;
end
sst=ssd+ssr;
RR=ssr/sst;
str=[blanks(5),'y=','(',num2str(a),')','+','(',num2str(b),')','*x']; disp(' ')
disp('回归方程为')
disp(str)
disp('R^2拟合优度校验')
strin=['R^2=',num2str(RR)];
disp(strin)
disp('方差检验:')
strin=['sgm^2=',num2str(sgm)];
disp(strin)
disp('F-分布显著性校验')
stri=['F计算值',num2str(F),blanks(4),'自由度f1=1,f2=',num2str(N-2)]; disp(stri)
disp('注:请对照F-分布表找到所需置信水平下的F临界值Fa,若F>Fa,则通过检验。
') yy=a+b*test(1,:);
plot(test(1,:),test(2,:),'r.'),hold on
plot(test(1,:),yy,'b-'),hold off
title(str)
结果如下:
test =
1.0000 5.0000 10.0000 15.0000 20.0000 25.0000
0.1051 0.5262 1.0521 1.5775 2.1031 2.6287
回归方程为:
y=(0.0003321)+(0.10514)*x
R^2拟合优度检验:
R^2=1
方差检验:
sgm^2=8.1002e-008
F-分布显著性检验:
F计算值:56408931.6024 自由度:f1=1,f2=4
注:请对照F-分布表找到所需置信水平下的F临界值Fa,若F>Fa,则通过检验。