数学乘法分配律教学反思

合集下载

《乘法分配律》教学反思(优秀10篇)

《乘法分配律》教学反思(优秀10篇)

《乘法分配律》教学反思(优秀10篇)《乘法分配律》教学反思篇一1、知识的学习不是简单的“搭积木”的过程,而是一个生态式“孕育”的过程。

在设计教案时,我们必须从学生的生活经历、知识背景、学习能力、情感与态度等方面解读教材,让学生在现实具体的情境中体验和理解数学。

通过学生经历运用数学知识为学生解决问题和男女生比赛等的练习,引导学生观察、发现、验证、归纳,初步了解感知规律,再次通过练习、描述、完善认识,达到对规律的理解,建立模型,最后又在熟悉的情境中深化认识认识规律,丰富规律的内涵。

2、充分体现寻找规律、描述规律、应用规律、发展规律的过程。

确定教学目标时,我将传统的“使学生理解并掌握乘法分配律”,拓展为“通过经历探索乘法分配律的活动,发现乘法分配律”,在关注结果的同时,更多关注学生获得结果的过程。

学生从对规律的`初步了解、深入理解到应用和拓展,是一个从琐碎到整合,正表述到逆表述,从单一到开放,从静态到动态的过程。

其间培养了学生从“猜想与验证”等探究的方法。

3、学生对知识的应用从新课的学习开始就会形成一种思维定势:学生应用乘法分配律进行简便计算,就是要得到一个整十整百数,这样才叫简便。

而忽视了乘法分配律的真正内涵——改变原来式子的运算顺序,结果不变。

在教学中,我有意识地选择了第(3)组两种情况,让学生明白,乘法分配律不是简便计算,是两个相等算式之间的结构特征,只有当数据比较特殊时,可以运用乘法分配律来改变计算顺序,使原先的计算变得简便。

这种科学的辩证思想的建立,对学生具体问题具体分析,灵活地选择合理的方法计算是十分有利的。

其次,运用乘法分配律,可以用两种方法解决实际问题,增加解决问题的能力。

《乘法分配律》教学反思篇二学生对于乘法分配律和结合律极容易混淆,而且符号容易抄错。

针对这些情况,在教学中应该注意什么呢?1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。

教学时我们往往注重等式两边的外形特点,即a×(b+c)=a×b+a×c缺乏从乘法意义角度的理解。

《乘法分配律》教学反思

《乘法分配律》教学反思

《乘法分配律》教学反思《乘法分配律》教学反思篇一学生对于乘法分配律和结合律极容易混淆,而且符号容易抄错。

针对这些情况,在教学中应该注意什么呢?1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。

教学时我们往往注重等式两边的外形特点,即a×(b+c)=a×b+a×c缺乏从乘法意义角度的理解。

这时教师可提出为什么两个算式是相等的?这里不仅从解题的角度理解,如(2+7)×3=+2×3+7×3是相等的,还有从乘法的意义的角度理解,即左边表示出3个9,右边也表示出3个9,所以(2+7)×3=2×3+7×32、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。

乘法结合律的特征是几个数连乘,而乘法分配律特征是两个数的和乘以一个数或两个积的和。

在练习题中(40+4)×25与(40×4)×25这种题学生特别容易出错。

为了更好地掌握,可多进行一些对比练习,如进行题组对比25×(8+4)和25×8×4;25×125×25×4和25×125+25×8;每组算式有什么特征和区别?符合什么运算定律?应用什么运算定律可以使计算简便?为什么要这样算?3、让学生进行一题多解的练习,加深对乘法结合律和乘法分配律的理解如:125×88;101×89你能有几种方法?125×88①竖式计算②125×8×11③125×(80+8)④(100+25)×88等等。

101×89①竖式计算②(100+1)×89③101×(100-1)④101×(80+9)⑤101×(90-1)等。

对于不同解法,引导学生进行对比分析,什么时候用乘法结合律简便?什么时候用乘法分配律简便?力争达到用简便计算法进行计算成为学生一种自主行为,并能根据题目的'特色灵活选择适当的算法的目的。

《乘法分配律》教学反思8篇

《乘法分配律》教学反思8篇

《乘法分配律》教学反思8篇《乘法分配律》教学反思篇一乘法分配律是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。

乘法分配律也是学生较难理解与叙述的定律。

如何教学能使学生较好的理解乘法分配律的内涵,并能正确的运用定律进行简便运算呢?我做了一下几点尝试。

一、创设师生竞赛,激发学习欲望。

上课教师先出示:(1)8×(125+11)(2)(100+1)×23(3 )648×5+352×5老师和同学们做一个比赛,王老师口算,你们用计算器算,看看谁能获。

结果教师又快又对,学生都很奇怪,教师顺势导入:同学们都特别想知道在比赛过程中,学生用计算器都没有老师口算得快的原因吗?是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?今天我们就来探究其中的奥秘。

这样的导入让学生充满了求知的欲望,激发了学习的热情。

二、设计思考问题,学生自主探究。

出示例题后,学生独立解答,然后教师出示思考问题,学生自主探究。

讨论:1、这两种方法有什么不同?两个算式的`结果如何?用什么符号连接?2、那么等号连接的这两个算式有什么特点和联系呢?请同学们带着老师给出的三个问题展开讨论。

(课件出示问题)生A:我发现左边括号外的那个数,写到右边都要乘两次。

生B:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

整个教学过程通过学生观察、比较、分析理解乘法分配律的含义,教师引导学生概括出乘法分配律的内容。

三、练习有坡度,前后有呼应。

在本课的练习设计上,我力求有针对性,有坡度,同时也注意知识的延伸。

练习的形式多样,课本上的填空题解决以后,设计了判断题和练习题,把学生易出错的问题提前预设好,而且通过练习让学生明白乘法分配律也可以两个数的差,也可以是三个数的和,使学生对乘法分配律的内容得到进一步完整,也为后面利用乘法分配律进行简算打下伏笔。

数学《乘法分配律》优秀教学反思

数学《乘法分配律》优秀教学反思

数学《乘法分配律》优秀教学反思数学《乘法分配律》优秀教学反思1《乘法分配律》是本章的难点,它不是单一的乘法运算,还涉及到加法运算。

教材对于这部分内容的处理方法与前面讲乘法结合律的方法类似。

通过观察几组数目不同的算式,引导学生发现规律,然后归纳、总结,用语言表述出来。

在教学时,我也是按照教学参考书的建议安排教学过程的。

先复习乘法的交换律和结合律,接着导入新课。

通过让学生观察、分析、思考、归纳,最后在教师的引导下总结出乘法分配律并加以运用。

教学过程中,导课比较快,在归纳乘法分配律的内容时,主观上是时间紧张,可课后想想,实际上是引导不到位。

课堂上学生气氛不活跃,思维不积极,难以完整地总结出乘法分配律。

结果,学生对乘法分配律不太理解,运用时问题较多。

如当天在作业时出现的问题就比较多:4有三分之一的学生直接乘,不会简便;尤其是计算59×21+21时,学生发现不了它的特点,不会运用乘法分配律,可以说,本节课上得不是很成功。

今后的工作中,要多向以下几个方面努力:1.多听课,多研究。

尤其是青年教师的课,研究他们的新思想、新方法,改善课堂教学,提高课堂教学艺术和课堂效率。

2.加强同同课教师之间的沟通和交流,相互研究,取长补短,共同进步。

3.认真钻研教材,把握好教材的重点、难点、关键点、易混点,上课时才能做到心中有数,游刃有余。

数学《乘法分配律》优秀教学反思2本节课主要让学生充分感知并归纳乘法分配律,理解其意义。

教学中,我从解决实际问题(买衣服)引入,通过交流两种解法,把两个算式写成一个等式,并找出它们的联系。

让学生初步感知乘法分配律的基础上再让学生举出几组类似的算式,通过计算得出等式。

在充分感知的基础上引导学生比较这几组等式,发现有什么规律?这里我化了一些时间,我发现学生在用语言文字叙述方面有些困难,材上也没有要求,因此,只要学生意思说到即可,后来,我提了这样一个问题,你能用自己喜欢的方式来表示你发现的规律吗?学生立即活跃起来,纷纷用自己喜欢的方式来阐明自己发现的规律:有用字母的,有用符号的,大部分学生会说,没问题。

乘法分配律教学反思

乘法分配律教学反思

乘法分配律教学反思《乘法分配律》教学反思篇一小学数学《乘法分配律》教学反思教学乘法分配律之后,发现学生的正确率很低,特别是对乘法结合律与乘法分配律极容易混淆。

针对这种情况,我认为在教学中应该注意这些问题:1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。

教学中通过解决买水果济青高速公路全长约多少千米?这一问题,结合具体的生活情景,得到了(110+90)2=1102+902这一结果。

这时我们往往比较注意了等式两边的外形结构特点,即两数的和乘一个数=两个积的和。

缺乏从乘法意义角度的理解。

所以这里我们不仅要从解题思路的角度理解两个算式是相等的,还要从乘法的意义的角度理解,即左边表示200个2,右边也表示200个2,所以(110+90)2=1102+9022、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。

乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。

在练习中(40+4)25与(404)25这种题学生特别容易出现错误。

为了学生更好地掌握可以多进行一些对比练习。

如:进行题组对比15(84)和15(8+4);25125258和25125+258;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?3、让学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。

如:计算12588;10189你能用几种方法?12588 ①竖式计算;②125811;③125(80+8);④125(100-12);⑤(100+25)88;⑥(100+20+5)88等等。

10189 ①竖式计算;②(100+1)89;③101(80+9);101(100-11);101(90-1)等。

对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便,什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行间算的条件是不一样的。

2023年人教版数学四年级下册乘法分配律教学反思(精选3篇)

2023年人教版数学四年级下册乘法分配律教学反思(精选3篇)

人教版数学四年级下册乘法分配律教学反思(精选3篇)〖人教版数学四年级下册乘法分配律教学反思第【1】篇〗本节课主要让学生充分感知并归纳乘法分配律,理解其意义。

教学中,我从解决实际问题(买衣服)引入,通过交流两种解法,把两个算式写成一个等式,并找出它们的联系。

让学生初步感知乘法分配律的基础上再让学生举出几组类似的算式,通过计算得出等式。

在充分感知的基础上引导学生比较这几组等式,发现有什么规律?这里我化了一些时间,我发现学生在用语言文字叙述方面有些困难,新教材上也没有要求,因此,只要学生意思说到即可,后来,我提了这样一个问题,你能用自己喜欢的方式来表示你发现的规律吗?学生立即活跃起来,纷纷用自己喜欢的方式来阐明自己发现的规律:有用字母的,有用符号的,大部分学生会说,没问题。

对于应用这一乘法分配律进行后面的练习还可以。

如:书上第55页的第5题,学生都想到用简便方法去列式计算。

整节课,学生还是学的比较轻松的。

关于乘法分配律早在上学期和本册教材的前几个单元的练习题中就有所渗透,虽然在当时没有揭示,但学生已经从乘法的意义角度初步进行了感知,以及初步体会了它可以使计算简便。

今天的教学就建立在这样的基础之上,上午第一节课我在自己班上,后来第二节课去听了一根木头老师的课,现在进行对比,谈一谈自己的感受:首先,值得向一根木头老师学习的是,学生的预习工作很到位。

课前,学生就已经解决了“想想做做”第3、4题,学生通过解决第三题用两种方法求长方形的周长,既巩固了旧知,而且将原来的认识提升了,从解决实际问题的角度进一步感受了乘法分配律。

而第4题通过计算比较,突现了乘法分配律可以使计算简便,体现了应用价值。

我在课前没有安排这样的预习,因此课上的.时间比较仓促。

其次,我在学生解决完例题的问题后,还让学生提了减法的问题,这样做的目的是让学生初步感受对于(a—b)×c=a×b—a×c这种类型的题也同样适合,既扩展了学生的知识面,同时又为明天学习简便运算铺垫。

乘法分配律教学反思

乘法分配律教学反思

乘法分配律教学反思(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、合同协议、总结报告、演讲致辞、规章制度、自我鉴定、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as workplace documents, contract agreements, summary reports, speeches, rules and regulations, self-assessment, emergency plans, teaching materials, essay summaries, other sample essays, etc. If you want to learn about different sample essay formats and writing methods, please stay tuned!乘法分配律教学反思乘法分配律教学反思作为一名人民老师,我们要在教学中快速成长,教学反思能很好的记录下我们的课堂经验,那么什么样的教学反思才是好的呢?下面是本店铺整理的乘法分配律教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。

乘法分配律教师教学反思(精选6篇)

乘法分配律教师教学反思(精选6篇)

乘法分配律老师教学反思〔精选6篇〕乘法分配律老师教学反思〔精选6篇〕乘法分配律老师教学反思篇1这是我对自己上的有关乘法分配律的一课的教学反思,我让她们每次上完课都写一写反思,我想这样她才能真正从实习中有所收获。

她的教学反思如下:乘法分配律不仅是本章的难点也是四年级学习的重点和难点。

它是学生学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的根底上教学的,是一节比拟抽象的概念课,它的重点是让学生感知乘法分配律,知道什么是乘法分配律,难点是理解乘法分配律的意义,并会用乘法分配律进展一些简便运算。

因此在教学过程中,怎样引导学生成为重中之重。

我的教学思路大体为以下几点:第一:在开场的课上,与学生一起回忆了乘法交换律与乘法结合律,做到温故而知新,不至于学生理解乘法分配律时与前两个运算定律相混。

第二:通过询问学生关于校服的问题引入需要解决的问题,在此环节中,我询问了学生们如今的校服是什么样子的,接着呈现了,事先准备好的班级同学穿校服的照片,这样,学生们就会体会到,这堂课与他们息息相关,然后我又问他们想拥有什么样的校服,接着又呈现了搜索到的几张关于校服的个性图片,于是讨论乘法分配律之旅,轰轰烈烈的开场了。

第二:教材中此出问题的主题图是关于植树的问题,但考虑到学生的理解才能有限,我将题目改成校服上衣价钱,校服裤子价钱与总价钱的问题,这样一来,更贴近学生生活。

第三:让学生列示计算的同时请两名同学上黑板做题,这样就节省了一些时间,但仍有缺乏。

缺乏及改良:第一:学生在黑板上书写很是不标准,占去了黑板的很大空间,导致我在询问其他同学答题步骤及板书时无处可写,黑板书写有些许乱。

第二:在两名同学书写完下去之后,我接着就询问了其他同学的不同做法,于是学生只要有一点计算步骤不同的就举手答复,导致答复不完,但各种方法又相似,黑板罗列太多,学生分不清主次。

我想假如在来那名同学书写完后,先不让他们下去,而是留在讲台上解释自己的先算什么后算什么,这样下面的同学也就晓得自己的解题步骤到底属于哪一种,从而也可以节省局部时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学乘法分配律教学反思数学乘法分配律教学反思乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。

乘法分配律也是学生较难理解与叙述的定律,是一节比较抽象的概念课。

我根据教学内容的特点,为学生提供多种探究方法,激发学生的自主意识。

具体设计:先创设兔子吃萝卜的情景,调动学生的学习积极性。

通过买“老伯伯养了10只猴子,每只兔子早上吃4个萝卜,晚上要吃3只萝卜这些猴子一天共要吃掉多少个萝卜?”列出两种不同的式子,让学生通过观察两种不同的计算方法也得到了相同的结果,这两个算式也可用“=”连接。

然后让学生观察这两个等式的特点,仿造上面的等式填空。

(4+5)×25=(14+25)×5=(37+125)×8=。

从而引出乘法分配律的概念:“两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

”用字母形式表示:(a+b)×c=a×c+b×c,他们确实能够体会到两个不同的算式具有相等的关系。

第一步:通过资料获取继续研究的信息。

虽然所得的信息很简单,只是几组具有相等关系的算式,但这是学生通过活动自己获取的,学生对于它们感到熟悉和亲切,用他们作为继续研究的对象,能够调动学生的参与意识。

第三步:应用规律,解决实际问题。

通过对于实际问题的解决,进一步拓宽乘法分配律。

这一阶段,既是学生巩固和扩大知识,又是吸收内化知识的阶段,同时还是开发学生创新思维的重要阶段。

本节课的可取之处:1、为学生提供了充分的数学活动机会,把学生的活动定位在感悟和体验上,引导学生用数学思维方式去发现、去探索。

2、使学生在辨析与争论中,自然而然地完成猜测与验证,形成清晰的认识,在学生举例中使学生感到乘法分配律的一个重要因素,最后由特殊到一般总结字母公式。

3、将模仿式的学习变为探究式的学习。

4、在本课的练习设计上,能力求有针对性,有坡度,同时也注意知识的延伸。

本节课的不足之处:1、习题在安排上在充分理解《乘法分配律》的基础上,可以再安排一些具有思考性的题目,如78×99+78=78×(99+1),为后面的简便运算作伏笔,这样教学效果会更好。

2、在数学术语上还得反复推敲,以达到准确无误。

3、本堂课中新的教学理念有所体现,但在具体的操作中还缺乏成熟的思考,对学生的积极性没有充分调动起来。

我会坚持不断学习理论知识,多听课多向前辈们请教,切实提高业务能力。

乘法分配律是继乘法交换律、乘法结合律之后的新的运算定律,在算术理论中又叫乘法对加法的分配性质,由于它不同于乘法交换律和结合律是单一的运算。

从某种程度上来说,其抽象程度要高一些,因此,对学生而言,难度偏大,是计算的一个难点。

因为它不仅仅是的乘法运算,还涉及到加法运算。

这节课刘老师教学目标定位准确,没有把目标定位局限于探索理解乘法分配律,而是又引导学生应用乘法分配律进行了简便计算,通过学生与学生之间的互相启发与补充,老师的及时点拨,实现对“乘法分配律”这一运算定律的主动建构。

整节课的学习氛围轻松愉悦、学生思维活跃、教学效果非常好。

基本完成教学任务。

刘老师对本课的教学设计很科学,思路清晰,发现问题——观察比较——举例验证——归纳规律——运用规律,让学生经历了从具体到抽象,再由抽象到具体的知识推理方法,这节课不仅教会了乘法分配律,更教会了学生一种数学思想和数学方法,这也正是新课标强调的对学生其中两基培养的体现。

一共25个小组参加植树活动,每组里8人负责挖坑和种树,4人负责抬水和浇树。

重组教材,改变每组的人数,由(4+2)个25,变为(8+6)个25更能凸显出应用乘法分配律后带来的方便,也为乘法分配律的应用打下伏笔和基础。

并且把“挖坑、种树”“抬水、浇树”更改为“挖坑和种树”“抬水和浇树”减少了文字对学生理解带来的困难。

通过引入解决问题让学生得到两个算式。

先捉其意义,再突显其表现的形式。

如(4+2)×25其意义就是6个25与4×25+2×25所表示的也是4个25再加2个25也就是6个25,它们的表示意义一样。

因此得数也一样故成等量关系。

然后观察它们之们的形式变化特点,两个数的和乘以一个数可以写成两个积相加的形式,再捉住因数的特点进行分析。

在此基础上,我并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会。

借助对同一实际问题的不同解决方法让学生体会乘法分配律的合理性。

这是生活中遇到过的,学生能够理解两个算式表达的意思,也能顺利地解决两个算式相等的问题。

二、突破乘法分配律的教学难点让学生亲历规律探索形成过程。

对于探索简洁分配律的过程价值,丝毫不低于知识的掌握价值。

既然是“规律定律”,就是让学生亲历规律形成的科学过程设计中,不着痕迹的让学生不断观察、比较、猜想、验证,从而概括出乘法分配律,在探索、归纳过程中,渗透着从特殊到一般,又由一般到特殊的数学思想和方法。

学生主动去设计、解决,调动学生的积极性。

让学生根据自己的`想法,选择自己喜欢的方案,开放给学生,发挥学生的主体性,通过去发现、猜想、质疑、感悟、调整、验证、完善,验证其内在的规律,从而概括出乘法分配律。

让学生能自由地利用自己的知识经验、思维方式去尝试解决问题,在探究这一系列的等式有什么共同点的活动中。

在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。

在寻找规律的过程中,有同学是横向观察,也有同学是纵向观察,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。

当然,对乘法分配律的意义还需做到更式形结合解释,那就更有利于模型的建立。

建议:在教学中不仅要注意乘法分配律的外形结构,更要注重其内涵。

如两个算式为什么会相等?缺乏从乘法意义的角度进行理解。

在理解这一概念时,尤其要抓住关键词“分别”加以分析,以此深化对数学模型的理解。

否则,象38×99+38这样的形式,就会成为学生练习中的拦路虎。

乘法的分配律学生在本册书中是接触过的。

譬如第42页的应用题第7题,其中就渗透了乘法的分配律。

在数学一课一练上也有过这种类似的形式。

以前在讲的时候是从乘法的意义上来帮助学生理解。

一、抓住重点。

让学生理解乘法分配律的意义。

教材按照得出两道算式,把两道算式写成等式,分析两道算式之间的联系,写出类似的几组算式。

发现规律,用语言或其他方式交流规律,给出用字母式子表示的运算律。

这样的安排,便于学生经历观察、分析、比较和根据的过程。

能使学生在合作交流的过程中,对简洁分配律的认识由感性逐步上升到理性。

教学用书上写道:教学的重点和关键应是引导学生自主发现规律,用语言或其他方式与同伴交流规律。

在教学时,我是按照如上的步骤进行教学的。

可是在我引导学生把算式写成等式的时候让学生观察左右两边算式之间的联系与区别之后,学生就根本不知道从何下手。

在他们的印象中,联系就是根据乘法的意义来进行联系。

根本没有从数字上面去进行分析。

可以说,局限在原先的思维中,而没有跳出来看。

而让学生写出几组算式后,观察分析几组等式左右两边的区别之后,学生也还是无法用语言来表达这一规律。

场面一时之间很冷,后来我只好直接让学生用字母来表示,变化为这样的形式之后,有很多的学生都能够写出来。

我不明白这是为什么,时间我给了,小组也交流了,在小组交流时我已经发现我们班上的学生根本无法发现其中的规律,所以也根本无法用语言来进行表达。

难道是坡度给得不够吗?还是平时的教学中出现了问题。

这些都要一一地去分析。

总之,这个关键今天并没有完成好。

二、考虑学生的学习情况,尊重他们的主观感受。

三、练习中注意乘法分配律的变式。

乘法分配律的意义是用,是为了计算的简便。

所以,在练习中我注意让学生说清楚怎么使用的。

尤其是想想做做第2题中的74×(20+1)和74×20+74。

一定要学生说清楚括号中的1是从哪儿来的。

但是简便的思想渗透得还很不够。

学生在完成想想做做第5题的时候,一大半的学生都没有采用简算的方法。

哪怕他们在经过了第四题的练习时也是一样。

今天教学了运算律——乘法分配律,对于例题的解决,学生能列出不同的算式,45*5+65*5和(45+65)*5,通过各自的计算得出计算结果相同,然后把这两条算式写成等式45*5+65*5=(45+65)*5,学生还能用自己的语言表述自己对等式的理解:45个5加65个5也就是(45+65)个5,然后又让学生再仿写了几个算式后让学生观察等式总结自己的发现,学生会用字母表示出这一规律,但用语言表述有困难了。

想想做做第1题只有几个学生把第3小题填错,其实包括后面的练习中,把A*C+B*C改写成(A+B)*C的正确率要比把(A+B)*C改写成A*C+B*C的正确率高,可能还是学生受以前:45个5加65个5也就是(45+65)个5的理解方法的限制而没学会用自己的语言表述乘法分配律,从而也没能真正掌握乘法分配律含义的缘故吧。

想想做做第2题的第3小题74*(21+1)和74*21+74部分学生没有发现它们是相等的,我让认为相等的学生表述理由,学生能把算式改写成74*21+74*1再运用乘法分配律变形成74*(21+1),学生理解后我补充77*99+77=□(□○□)让学生填空,完成情况好多了,在拓展练习时补充了A*B+B=□(□○□)和A*B+B=□(□○□)让学生进一步真正理解乘法分配律的意义。

但学生在完成想想做做第5题时,学生多习惯列式48*3+48*2来计算,却不能灵活运用所学知识列成(3+2)*48来计算,虽然运用乘法分配律进行简便计算是下一课的学习内容,但我也由此反思出我教学的不足之处,在例题教学时只关注了得出等式,却忽略了让学生比较等式两边的算式哪边比较简便。

于是在第4题的算算比比中才补上了这一点。

相关文档
最新文档