2014年浙江省杭州市建兰中学中考数学模拟试卷(1)解析
浙江省杭州市建兰中学中考数学模拟试卷

中考数学模拟试卷一.仔细选一选(本大题共10道小题,每小题3分,共30分.)下面给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确的答案.1.(3分)sin230°的倒数是(的倒数是( )A.0.5 B.C.4 D.﹣4 2.(3分)中国老龄办公布的《“十一五”期间中国老龄事业发展状况》称,“十一五”期间,中国养老保障制度不断完善.截至2011年初,全国城镇基本养老保险参保人数为25673 0000人,保留两个有效数字后为( )人,保留两个有效数字后为(A.260000000 B.2.6×108C.26×107D.300000000 3.(3分)下列各式计算结果正确的是(分)下列各式计算结果正确的是( )A.a+a=a2B.(3a)2=6a2C.(a+1)2=a2+1 D.a•a=a24.(3分)在反比例函数的每一条曲线上,y都随着x的增大而减小,则k的值可以是( )以是(A.﹣1 B.1 C.2 D.3 5.(3分)人民商场对上周女装的销售情况进行了统计,如下表所示:分)人民商场对上周女装的销售情况进行了统计,如下表所示:紫色 红色红色白色 紫色绿色 白色色黄色黄色 绿色数量(件) 100 180 220 80 520 数量(件)经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是( )经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是(A.平均数.方差.中位数 C.众数 D.方差.平均数 B.中位数6.(3分)某商场的老板销售一种商品,他要以不低于超过进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售( )多降价多少时商店老板才能出售(A.80元B.100元C.120元D.160元7.(3分)如图,⊙O过点B、C.圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为(的半径为( )A. B.2C.3D.8.(3分)已知二次函数y=ax2+bx+c的图象如图,则下列5个代数式:ac,a+b+c,4a﹣2b+c,2a+b,2a﹣b,其值大于0的个数为(的个数为( )以A为圆心,AB为半径的圆弧外切,则.的解集为y=﹣2+的题目有点困难,那么把自己能写出的解答写出一部为圆心,以大于(20.(8分)日本核泄漏可能影响中国盐场,进而影响食盐质量和安全,以及部分地区出现抢购食盐情形,甲、乙两人两次都同时到某盐店买盐,甲每次买盐100kg ,乙每次买盐100元,由于市场因素,元,由于市场因素,虽然这两次盐店售出同样的盐,但单价却不同.若规定谁两次购盐的平虽然这两次盐店售出同样的盐,但单价却不同.若规定谁两次购盐的平均单价低,谁的购盐方式就更合算.问甲、乙两人谁的购粮方式更合算?为什么?均单价低,谁的购盐方式就更合算.问甲、乙两人谁的购粮方式更合算?为什么? 21.(8分)如图,AB 为⊙O 的直径,点C 在⊙O 上,过点C 作⊙O 的切线交AB 的延长线于点D ,已知∠D=30°.(1)求∠A 的度数;的度数;(2)若点F 在⊙O 上,CF ⊥AB ,垂足为E ,CF=,求图中阴影部分的面积.,求图中阴影部分的面积.22.(10分)为了让广大青少年学生走向操场、为了让广大青少年学生走向操场、走进自然、走进自然、走进自然、走到阳光下,走到阳光下,走到阳光下,积极参加体育锻炼,积极参加体育锻炼,我国启动了“全国亿万学生阳光体育运动”.短跑运动,可以锻炼人的灵活性,增强人的爆发力,因此小明和小亮在课外活动中,力,因此小明和小亮在课外活动中,报名参加了短跑训练小组.在近几次百米训练中,报名参加了短跑训练小组.在近几次百米训练中,报名参加了短跑训练小组.在近几次百米训练中,所测所测成绩如图所示,请根据图中所示解答以下问题.成绩如图所示,请根据图中所示解答以下问题.(1)请根据图中信息,补齐下面的表格;)请根据图中信息,补齐下面的表格;第1次 第2次 第3次 第4次 第5次小明小明 13.3 13.4 13.3 13.3 小亮小亮 13.2 13.1 13.5 13.3 (2)分别计算他们的平均数、极差和方差,若你是他们的教练,将小明与小亮的成绩比较后,你将分别给予他们怎样的建议?后,你将分别给予他们怎样的建议?23.(10分)在△ABC 中,D 为BC 边的中点,E 为AC 边上的任意一点,BE 交AD 于点O .某学生在研究这一问题时,发现了如下的事实:(1)当时,有(如图)(2)当时,有(如图)(3)当时,有(如图)在图中,当时,参照上述研究结论,请你猜想用n表示的一般结论,并给出证明(其中n是正整数)24.(12分)如图1,设抛物线y=x2﹣交x轴于A,B两点,顶点为D.以BA为直径作半圆,圆心为M,半圆交y轴负半轴于C.)求抛物线的对称轴;(1)求抛物线的对称轴;的坐标; (2)将△ACB绕圆心M顺时针旋转180°,得到三角形APB,如图2.求点P的坐标;(3)有一动点Q在线段AB上运动,△QCD的周长在不断变化时是否存在最小值?若存在,的坐标;若不存在,说明理由.求点Q的坐标;若不存在,说明理由.(y(x﹣1)..2.1.8m..﹣3..(,2),(﹣,2)..(x﹣5)+(y﹣5)=25.×(AD 19.解:∵MN⊥x轴,点M(a,1),∴S△OMN==2,∴a=4,∴M(4,1),∵正比例函数y=k1x的图象与反比例函数(x>0)的图象交于点M(4,1),∴,解得,∴正比例函数的解析式是,反比例函数的解析式是.20.解:设两人第一次购盐单价为a元,第二次为b元,元,则甲两次购盐平均价为=,乙两次购盐平均价为=,∵﹣==>0,∴甲的平均价大于乙的平均价,∴甲的平均价大于乙的平均价,∴乙的更划算.∴乙的更划算.21.解:(1)连接OC,∵CD切⊙O于点C ∴∠OCD=90°(1分)分)∵∠D=30°分)∴∠COD=60°(2分)∵OA=OC 分)∴∠A=∠ACO=30°;(4分)(2)∵CF⊥直径AB,CF=分)∴CE=(5分)∴在Rt△OCE中,tan∠COE=,OE===2,∴OC=2OE=4(6分)分)∴S 扇形BOC =,(8分)分)∴S 阴影=S 扇形BOC ﹣S △EOC =.(10分)分)22.解:(1)第1次 第2次 第3次 第4次 第5次 小明小明13.3 13.4 13.3 13.2 13.3 小亮小亮13.2 13.4 13.1 13.5 13.3 (2)小明:平均分为13.3,极差为0.2,方差为0.004,小亮:平均分为13.3,极差为0.4,方差为0.02,∵S 2小明<S 2小亮,∴小明同学的成绩较为稳定,但是他的最高成绩没有小亮高,爆发力不够,有待提高.∴小明同学的成绩较为稳定,但是他的最高成绩没有小亮高,爆发力不够,有待提高. 而小亮同学爆发力还行,但是成绩不稳定,需加强.而小亮同学爆发力还行,但是成绩不稳定,需加强.23.解:过D 作DF ∥BE 交AC 于F ,∴AO :AD=AE :AF .∵D 为BC 边的中点,边的中点,∴CF=EF=0.5EC .∵,∴AE :(AE +2EF )=1:(1+n ),AE +2EF=AE +AEn AEn=2EF ,∴AE :EF=2:n .∴AE:AF=2:(n+2).∴=2:(n+2).24.解:(1)由题意可知:抛物线的对称轴为x=1.,则有(2)过P作PE⊥x轴于E,则有△PEB≌△OAC 易知A(﹣1,0)、B(3,0)、C(0,﹣).∴OA=BE=1,OB=AE=3,EP=OC=∴OE=OB﹣BE=2 即P点坐标为(2,).(3)设C关于x轴的对称点为Cʹ(0,),已知抛物线顶点D(1,﹣1).,则有:设直线CʹD的解析式为y=kx+,则有:k+=﹣1,k=﹣1﹣因此直线CD的解析式为y=(﹣1﹣)x+.令y=0,则x=∴Q点坐标为(,0).。
浙江省杭州市建兰中学中考数学模拟试卷05

2014建兰中学中考数学模拟试卷05本试卷满分120分, 考试时间100分钟.一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可以用多种不同的方法来选取正确答案.1.-2的相反数是().A.-2B.2C.-D.2.己知1纳米=0.000000001米,则27纳米用科学记数法表示为( ).A. 27×10-9B. 2.7×10-8C. 2.7×10-9D. -2.7×1083.期中考试后,小明的讲义夹里放了8K大小的试卷纸共12页,其中语文4页、数学2页、英语6页,他随机从讲义夹中抽出1页,是数学卷的概率是( ).A. B. C. D.4.如图折叠直角三角形纸片的直角,使点C落在斜边AB上的点E处. 已知AB=, ∠B=30°, 则DE的长是( ).A. 6B. 4C.D. 25.若点A(m-3,1-3m)在第三象限,则m的取值范围是( ).A. B. C. D.6.下列命题中的真命题是( ).A. 对角线互相垂直的四边形是菱形B. 中心对称图形都是轴对称图形C. 两条对角线相等的梯形是等腰梯形D. 等腰梯形是中心对称图形7.如图,⊙O的半径OA=5,以A为圆心,OA为半径的弧交⊙O于B、C两点,则BC等于( ).A. B. C. D. 88.下列命题:①若b=2a+c,则一元二次方程a+bx+c=O必有一根为-2;②若ac<0, 则方程 c+bx+a=O有两个不等实数根;③若-4ac=0, 则方程 c+bx+a=O有两个相等实数根;其中正确的个数是()23.O个 B.l个 C.2个 D。
3 个9.如图,△ABC内接于⊙O,其外角平分线AD交⊙O于DM⊥AC于M,下列结论:①DB=DC;②AC-AB=2AM;③AC+AB=2CM;④ =2其中正确的有( )A.只有④② B.只有①②③ C.只有③④ D.①②③④10.如图,四个电子宠物排座位:一开始,小鼠、小猴、小兔、小猫分别坐在1、2、3、4号的座位上,以后它们不停地交换位置,第一次上下两排交换位置,第二次是在第一次交换位置后,再左右两列交换位置,第三次是在第二次交换位置后,再上下两排交换位置,第四次是在第三次交换位置后,再左右两列交换位置,…,这样一直继续交换位置,第2008次交换位置后,小鼠所在的座号是().A.1 B.2 C.3 D.4 二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.11.已知,且,则b= .12.已知一个圆锥的底面半径与高分别为3,3,则其侧面积为.13.如图,AB是⊙O的直径,C、D是圆上的两点(不与A、B重合),已知BC=2,tan∠ADC=1,则AB=__________.14.老师给出一个y关于x的函数,甲、乙、丙、丁四位同学各指出这个函数的一个性质:甲:函数图象不经过第三象限;乙:函数图象经过第一象限;丙:当x<2时,y随x的增大而减小;丁:当x<2时y>0.已知这四位同学叙述都正确。
2014年浙江省杭州市中考数学模拟试卷

2014年浙江省杭州市中考数学模拟试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.1.(3分)如图,数轴上点A所表示的数的倒数是()A.﹣2 B.2C.D.2.(3分)(2000•江西)化简(﹣2a)2﹣2a2(a≠0)的结果是()A.0B.2a2C.﹣4a2D.﹣6a23.(3分)函数,一次函数和正比例函数之间的包含关系是()A.B.C.D.4.(3分)(2007•长春)如图,小手盖住的点的坐标可能为()A.(5,2)B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)5.(3分)已知两圆的半径满足方程2x2﹣6x+3=0,圆心距为,则两圆的位置关系为()A.相交B.外切C.内切D.外离6.(3分)(2013•天水)如图,直线l1∥l2,则∠α为()A.150°B.140°C.130°D.120°7.(3分)(2013•石景山区二模)如图是由五个相同的小正方体组成的几何体,则下列说法正确的是()A . 左视图面积最大B . 俯视图面积最小 C . 左视图面积和主视图面积相等 D . 俯视图面积和主视图面积相等 8.(3分)(2013•海淀区一模)在篮球比赛中,某队员连续10场比赛中每场的得分情况如下表所示:场次(场) 12 3 4 5 6 7 8 9 10 得分(分) 134 13 16 6 19 4 4 7 38 则这10场比赛中他得分的中位数和众数分别是( ) A . 10,4 B . 10,7 C . 7,13 D . 13, 49.(3分)(2012•贵港一模)根据下列表格中的对应值,判断方程ax 2+bx+c=0(a ≠0,a ,b ,c 为常数)的根的个数是( ) x 6.17 6.18 6.19 6.20y=ax 2+bx+c0.02 ﹣0.01 0.02 0.04A . 0B . 1C . 2D . 1或210.(3分)对于实数定义一种运算⊗为:a ⊗b=a 2+ab ﹣2,有下列命题: ①1⊗3=2;②方程x ⊗1=0的根为:x 1=﹣2,x 2=1; ③不等式组的解集为﹣1≤x ≤4;④在函数y=x ⊗k 的图象与坐标轴交点组成的三角形面积为3,则此函数的顶点坐标是其中正确的是( )A . ①②③④B . ①②③C . ①②D . ①②④二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案. 11.(4分)与的积为正整数的数是 _________(写出一个即可).12.(4分)已知点P 1(a ﹣1,5)和P 2(2,b ﹣1)关于x 轴对称,则(a+b )2009的值为 _________ . 13.(4分)在同一坐标系中,图形a 是图形b 向上平移3个单位长度得到的,如果图形a 中点A 的坐标为(4,﹣2),则图形b 中与点A 对应的点A ′的坐标为 _________ .14.(4分)(2008•枣庄)已知二次函数y 1=ax 2+bx+c (a ≠0)与一次函数y 2=kx+b (k ≠0)的图象相交于点A (﹣2,4),B (8,2)(如图所示),则能使y 1>y 2成立的x 的取值范围是 _________ .15.(4分)(2013•黄浦区二模)如图,圆心O恰好为正方形ABCD的中心,已知AB=4,⊙O的直径为1,现将⊙O 沿某一方向平移,当它与正方形ABCD的某条边相切时停止平移,记平移的距离为d,则d的取值范围是_________.16.(4分)如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延长线交y轴负半轴于E,双曲线y=的图象经过点A,若S△BEC=8,则k=_________.三、全面答一答(本小题有8个小题,共66分)解答应写出文字说明、证明过程或推理步骤.如果觉得有些题有点困难,那么把自己能写出的解答写出一部分也可以.17.有四张卡片(形状、大小和质地都相同),正面分别写有字母A,B,C,D和一个算式.将这四张卡片背面向上洗匀,从中随机抽取一张,记录字母后放回,重新洗匀再从中随机抽取一张,记录字母.(1)用画树状图或列表法表示两次抽取卡片可能出现的所有情况(卡片可用A,B,C,D表示);(2)分别求抽取的两张卡片上算式都正确的概率.18.如图(1)矩形纸片ABCD,把它沿对角线折叠,会得到怎么样的图形呢?(1)在图(2)中用实线画出折叠后得到的图形(要求尺规作图,保留作图轨迹,只需画出其中一种情况)(2)折叠后重合部分是什么图形?试说明理由.19.(2014•衢州一模)如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)20.2011年全国两会在京召开,公众最关心哪些问题?901班学生就老百姓最关注的两会热点问题,在网络上发布了相应的调查问卷.到目前为止,共有不同年龄段的2880人参与,具体情况统计如下:(1)请将统计表中遗漏的数据补上;(2)扇形图中表示30﹣35岁的扇形的圆心角是多少度?(3)在参加调查的30﹣35岁段中随机抽取一人,关心物价调控或医疗改革的概率是多少?(4)从上表中,你还能获得其它的信息吗?(写出一条即可)21.(2013•江东区模拟)【问题】如图1、2是底面为1cm,母线长为2cm的圆柱体和圆锥体模型.现要用长为2πcm,宽为4cm的长方形彩纸(如图3)装饰圆柱、圆锥模型表面.已知一个圆柱和一个圆锥模型为一套,长方形彩纸共有122张,用这些纸最多能装饰多少套模型呢?【对话】老师:“长方形纸可以怎么裁剪呢?”学生甲:“可按图4方式裁剪出2张长方形.”学生乙:“可按图5方式裁剪出6个小圆.”学生丙:“可按图6方式裁剪出1个大圆和2个小圆.”老师:尽管还有其他裁剪方法,但为裁剪方便,我们就仅用这三位同学的裁剪方法!【解决】(1)计算:圆柱的侧面积是_________cm2,圆锥的侧面积是_________cm2.(2)1张长方形彩纸剪拼后最多能装饰_________个圆锥模型;5张长方形彩纸剪拼后最多能装饰_________个圆柱体模型.(3)求用122张彩纸对多能装饰的圆锥、圆柱模型套数.22.(2008•西湖区模拟)如图1是由两块全等的含30°角的直角三角板摆放而成,斜边AC=10.(1)若将△ADE沿直线AE翻折到如图2的位置,ED'与BC交于点F,求证:CF=EF;(2)求EF的长;(3)将图2中的△AD'E沿直线AE向右平移到图3的位置,使D'点落在BC上,求出平移的距离.23.如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣4与直线y=x交于点A、B,M是抛物线上一个动点,连接OM.(1)当M为抛物线的顶点时,求△OMB的面积;(2)当点M在抛物线上,△OMB的面积为10时,求点M的坐标;(3)当点M在直线AB的下方且在抛物线对称轴的右侧,M运动到何处时,△OMB的面积最大.2014年浙江省杭州市中考数学模拟试卷(8)参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.1.(3分)如图,数轴上点A所表示的数的倒数是()A.﹣2 B.2C.D.考点:倒数;数轴.专题:计算题.分析:由题意先读出数轴上A的数,然后再根据倒数的定义进行求解.解答:解:由题意得数轴上点A所表示的数为﹣2,∴﹣2的倒数是﹣,故选D.点评:此题主要考查倒数的定义,是一道基础题.2.(3分)(2000•江西)化简(﹣2a)2﹣2a2(a≠0)的结果是()A.0B.2a2C.﹣4a2D.﹣6a2考点:整式的混合运算.分析:根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,合并同类项的法则,只把系数相加减,字母与字母的次数不变计算即可.解答:解:(﹣2a)2﹣2a2=4a2﹣2a2=2a2.故选B.点评:本题主要考查积的乘方的性质,合并同类项的法则,熟练掌握运算法则是解题的关键.3.(3分)函数,一次函数和正比例函数之间的包含关系是()A.B.C.D.考点:一次函数的定义.专题:数形结合.分析:根据函数、正比例函数及一次函数的定义解答.解答:解:函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量.根据函数的定义知,一次函数和正比例函数都属于函数的范畴;一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.当b=0时,则成为正比例函数y=kx;所以,正比例函数是一次函数的特殊形式;故选A.点评:本题主要考查了一次函数、正比例函数的定义.解题关键是掌握一次函数的定义条件:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.4.(3分)(2007•长春)如图,小手盖住的点的坐标可能为()A.(5,2)B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)考点:点的坐标.分析:根据点在第三象限点的坐标特点可直接解答.解答:解:∵小手的位置是在第三象限,∴小手盖住的点的横坐标小于0,纵坐标小于0,∴结合选项目这个点是(﹣4,﹣6).故选C.点评:本题主要考查了点在第三象限时点的坐标特征,比较简单.注意四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.(3分)已知两圆的半径满足方程2x2﹣6x+3=0,圆心距为,则两圆的位置关系为()A.相交B.外切C.内切D.外离考点:圆与圆的位置关系;估算无理数的大小;根与系数的关系.专题:常规题型.分析:解答此题,先要求一元二次方程的两根,然后根据圆与圆的位置关系判断条件,确定位置关系.解答:解:解方程2x2﹣6x+3=0得:∴x1+x2=3,x1•x2=,∵O1O2=,x2﹣x1=,x2+x1=3,∴<O1O2<3.∴⊙O1与⊙O2相外交.故选A.点评:本题主要考查圆与圆的位置关系的知识点,综合考查一元二次方程的解法及两圆的位置关系的判断.此类题比较基础,需要同学熟练掌握.6.(3分)(2013•天水)如图,直线l1∥l2,则∠α为()A.150°B.140°C.130°D.120°考点:平行线的性质;对顶角、邻补角;同位角、内错角、同旁内角.专题:计算题.分析:本题主要利用两直线平行,同旁内角互补以及对顶角相等进行做题.解答:解:∵l1∥l2,∴130°所对应的同旁内角为∠1=180°﹣130°=50°,又∵α与(70°+50°)的角是对顶角,∴∠α=70°+50°=120°.故选D.点评:本题重点考查了平行线的性质及对顶角相等,是一道较为简单的题目.7.(3分)(2013•石景山区二模)如图是由五个相同的小正方体组成的几何体,则下列说法正确的是()A.左视图面积最B.俯视图面积最大小C.左视图面积和主视图面积相等D.俯视图面积和主视图面积相等考点:简单组合体的三视图.分析:观察图形,分别表示出三视图由几个正方形组成,再比较其面积的大小.解答:解:观察图形可知,几何体的主视图由4个正方形组成,俯视图由4个正方形组成,左视图由3个正方形组成,所以左视图的面积最小,俯视图面积和正视图面积相等.故选:D.点评:此题主要考查了三视图的知识,解题的关键是能正确区分几何体的三视图,本题是一个基础题,比较简单.8.(3分)(2013•海淀区一模)在篮球比赛中,某队员连续10场比赛中每场的得分情况如下表所示:场次(场) 1 2 3 4 5 6 7 8 9 10得分(分)13 4 13 16 6 19 4 4 7 38则这10场比赛中他得分的中位数和众数分别是()A.10,4 B.10,7 C.7,13 D.13,4考点:众数;中位数.分析:根据中位数和众数的定义进行解答,将这组数据从小到大重新排列,求出最中间两个数的平均数;找数据中出现次数最多的数据即可.解答:解:∵4出现了3次,出现的次数最多,∴众数是4;把这组数据从小到大排列为:4,4,4,6,7,13,13,16,19,38,第5个和第6个数的平均数是(7+13)÷2=10,则中位数是10;故选A.点评:此题考查了中位数与众数,众数是一组数据中出现次数最多的数据,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.9.(3分)(2012•贵港一模)根据下列表格中的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的个数是()x 6.17 6.18 6.19 6.20y=ax2+bx+c 0.02 ﹣0.01 0.02 0.04A.0B.1C.2D.1或2考点:图象法求一元二次方程的近似根.专题:计算题.分析:由表格中的对应值可得出,方程的一个根在6.17﹣6.18之间,另一个根在6.18﹣6.19之间.解答:解:∵当x=6.17时,y=0.02;当x=6.18时,y=﹣0.01;当x=6.19时,y=0.02;∴方程的一个根在6.17﹣6.18之间,另一个根在6.18﹣6.19之间,故选C.点评:本题考查了用图象法求一元二次方程的近似根,当函数值由正变为负或由负变为正时,方程的根在这两个自变量之间.10.(3分)对于实数定义一种运算⊗为:a⊗b=a2+ab﹣2,有下列命题:①1⊗3=2;②方程x⊗1=0的根为:x1=﹣2,x2=1;③不等式组的解集为﹣1≤x≤4;④在函数y=x⊗k的图象与坐标轴交点组成的三角形面积为3,则此函数的顶点坐标是其中正确的是()A.①②③④B.①②③C.①②D.①②④考点:命题与定理.专题:新定义.分析:根据新定义计算得1⊗3=1+1×3﹣2=2,可对①进行判断;根据新定义先得到方程x2+x﹣2=0,再利用因式分解法解得x1=﹣2,x2=1,则可对②进行判断;先根据新定义得到不等式组,然后解不等式组,则可对③进行判断;先根据新定义得到y=x2+kx﹣2,再利用三角形面积公式求出k,然后求抛物线的顶点坐标,再对④进行判断.解答:解:1⊗3=1+1×3﹣2=2,所以①正确;由x⊗1=0得x2+x﹣2=0,解得x1=﹣2,x2=1,所以②正确;化为,此不等组无解,所以③错误;在函数y=x⊗k=x2+kx﹣2的图象与y轴交点坐标为(0,﹣2),与x轴两交点之间的距离=,则×2×=3,解得k=±1,所以抛物线为y=x2+x﹣2或y=x2﹣x﹣2,则顶点坐标分别为、(,﹣),所以④错误.故选C.点评:本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案.11.(4分)与的积为正整数的数是(答案不唯一)(写出一个即可).考点:分母有理化.专题:开放型.分析:只要与相乘,积为正整数即可.从简单的二次根式中寻找.解答:解:与的积为正整数的数是:(答案不唯一).点评:本题考查了实数的有理化因式的确定方法.可以从积或约分两方面考虑.12.(4分)已知点P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,则(a+b)2009的值为﹣1.考点:关于x轴、y轴对称的点的坐标.专题:计算题.分析:根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得﹣1=2,b﹣1=﹣5,再解出a、b的值,然后计算出(a+b)2009的值即可.解答:解:∵点P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,∴a﹣1=2,b﹣1=﹣5,解得:a=3,b=﹣4,∴(a+b)2009=(3﹣4)2009=﹣1,故答案为:﹣1.点评:此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.13.(4分)在同一坐标系中,图形a是图形b向上平移3个单位长度得到的,如果图形a中点A的坐标为(4,﹣2),则图形b中与点A对应的点A′的坐标为(4,﹣5).考点:坐标与图形变化-平移.分析:根据向上平移横坐标不变,纵坐标加求解即可.解答:解:∵图形a是图形b向上平移3个单位长度得到的,图形a中点A的坐标为(4,﹣2),∴设图形b中与点A对应的点A′的坐标为(4,y),则y+3=﹣2,解得y=﹣5,∴点A′的坐标为(4,﹣5).故答案为:(4,﹣5).点评:本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.14.(4分)(2008•枣庄)已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+b(k≠0)的图象相交于点A(﹣2,4),B(8,2)(如图所示),则能使y1>y2成立的x的取值范围是x<﹣2或x>8.考点:二次函数的图象;一次函数的图象.分析:先观察图象确定抛物线y1=ax2+bx+c和一次函数y2=kx+b(k≠0)的交点的横坐标,即可求出y1>y2时,x的取值范围.解答:解:由图形可以看出:抛物线y1=ax2+bx+c和一次函数y2=kx+b(k≠0)的交点横坐标分别为﹣2,8,当y1>y2时,x的取值范围正好在两交点之外,即x<﹣2或x>8.点评:此类题可用数形结合的思想进行解答,这也是速解习题常用的方法.15.(4分)(2013•黄浦区二模)如图,圆心O恰好为正方形ABCD的中心,已知AB=4,⊙O的直径为1,现将⊙O 沿某一方向平移,当它与正方形ABCD的某条边相切时停止平移,记平移的距离为d,则d的取值范围是≤d≤.考点:切线的性质.专题:计算题.分析:如图所示,当圆心运动到与点A重合时,d最大,运动到与点B重合时,d最小,求出OA与OB,即可确定出d的范围.解答:解:作出图形,当圆心O运动到A点时,d最大,当圆心O运动到B点时,d最小,∵正方形ABCD的边长为4,∴对角线为4,则AO=2﹣=;BO=2﹣=,则d的范围为≤d≤.故答案为:≤d≤点评:此题考查了切线的性质,勾股定理,以及正方形的性质,找出d的最大值与最小值是解本题的关键.16.(4分)如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延长线交y轴负半轴于E,双曲线y=的图象经过点A,若S△BEC=8,则k=16.考点:反比例函数系数k的几何意义.专题:压轴题.分析:方法1:因为S△BEC=8,根据k的几何意义求出k值即可;方法2:先证明△ABC与△OBE 相似,再根据相似三角形的对应边成比例列式整理即可得到k=2S△BEC=16.解答:解:方法1:设OB=x,则AB=,过D作DH⊥x轴于H,∵D为AC中点,∴DH为△ABC 中位线,∴DH=AB=,∵∠EBO=∠D BC=∠DCB,∴△ABC∽△E OB,设BH为y,则EO=,BC=2y,∴S△EBC=BC •E=••2y= =8,∴k=16.方法2:∵BD是Rt△ABC斜边上的中线,∴BD=CD=AD,∴∠DBC=∠A CB,又∠DBC=∠OBE ,∠BOE=∠ABC =90°,∴△ABC∽△E OB,∴=,∴AB•OB=BC•OE,∵S△BEC=×BC•OE=8,∴AB•OB=16,∴k=xy=AB•OB=16.故答案为:16.点评:主要考查了用待定系数法求反比例函数的解析式和反比例函数系数k的几何意义.反比例函数系数k的几何意义为:反比例函数图象上的点的横纵坐标之积是定值k,同时|k|也是该点到两坐标轴的垂线段与两坐标轴围成的矩形面积.本题综合性强,考查知识面广,能较全面考查学生综合应用知识的能力.三、全面答一答(本小题有8个小题,共66分)解答应写出文字说明、证明过程或推理步骤.如果觉得有些题有点困难,那么把自己能写出的解答写出一部分也可以.17.有四张卡片(形状、大小和质地都相同),正面分别写有字母A,B,C,D和一个算式.将这四张卡片背面向上洗匀,从中随机抽取一张,记录字母后放回,重新洗匀再从中随机抽取一张,记录字母.(1)用画树状图或列表法表示两次抽取卡片可能出现的所有情况(卡片可用A,B,C,D表示);(2)分别求抽取的两张卡片上算式都正确的概率.考点:列表法与树状图法.专题:计算题.分析:(1)列表得出所有等可能的情况数即可;(2)找出抽取卡片上算式都正确的情况数,即可求出所求的概率.解答:解:(1)列表如下:第二次第一次A A AB B BC C CD D D由表中可以看出,抽取的两张卡片可能出现的结果共有16种且它们出现的可能性相等;(2)从列表(或树状图)可以看出抽取的两张卡片上的算式都正确的共有四种情况,即,(A,A),(A,D),(D,A),(D,D),∴P==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.18.如图(1)矩形纸片ABCD,把它沿对角线折叠,会得到怎么样的图形呢?(1)在图(2)中用实线画出折叠后得到的图形(要求尺规作图,保留作图轨迹,只需画出其中一种情况)(2)折叠后重合部分是什么图形?试说明理由.考点:翻折变换(折叠问题);全等三角形的判定与性质;等腰三角形的判定;作图—复杂作图.分析:(1)以点D为圆心,DC长为半径画弧,以点B为圆心BC长为半径画弧,与前弧交于点E,连接BE,连接DE交于AB于点F,则△FDB是重叠部分;(2)利用折叠的性质和矩形的性质,求得∠FDB=∠ABD即可.解答:解:(1)折叠后得到的图形如图所示:(2)等腰三角形证明:∵△BDE是△BDC沿BD折叠而成∴△BDE≌△BDC,∴∠FDB=∠CDB,∵四边形ABCD矩形,∴AB∥DC,∴∠CDB=∠ABD,∴∠FDB=∠ABD,∴重叠部分,即△BDF是等腰三角形.点评:本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等.也考查了矩形的性质.19.(2014•衢州一模)如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:延长CB交PQ于点D,根据坡度的定义即可求得BD的长,然后在直角△CDA中利用三角函数即可求得CD的长,则BC即可得到.解答:解:延长CB交PQ于点D.∵MN∥PQ,BC⊥MN,∴BC⊥PQ.∵自动扶梯AB的坡度为1:2.4,∴.设BD=5k米,AD=12k米,则AB=13k米.∵AB=13米,∴k=1,∴BD=5米,AD=12米.在Rt△CDA中,∠CDA=90゜,∠CAD=42°,∴CD=AD•tan∠CAD≈12×0.90≈10.8米,∴BC≈5.8米.答:二楼的层高BC约为5.8米.点评:本题考查仰角和坡度的定义,要求学生能借助仰角构造直角三角形并解直角三角形.20.2011年全国两会在京召开,公众最关心哪些问题?901班学生就老百姓最关注的两会热点问题,在网络上发布了相应的调查问卷.到目前为止,共有不同年龄段的2880人参与,具体情况统计如下:(1)请将统计表中遗漏的数据补上;(2)扇形图中表示30﹣35岁的扇形的圆心角是多少度?(3)在参加调查的30﹣35岁段中随机抽取一人,关心物价调控或医疗改革的概率是多少?(4)从上表中,你还能获得其它的信息吗?(写出一条即可)考点:频数(率)分布表;扇形统计图;概率公式.专题:图表型.分析:(1)根据统计表中,关心收入分配的人数是90人,占0.25;根据频数与频率的关系,可知共有90÷0.25=360(人),则关心住房,养老保险的频数,关心医疗改革和其他的频率可知;(2)根据统计表中的数据:易知30﹣35岁的人数为360人,圆心角的度数差应该为百分比乘以360°.(3)根据概率求法,找准两点:①30﹣35岁段全部情况的总数;②符合条件的关心物价调控或医疗改革的数目和;二者的比值就是其发生的概率.(4)从中找到符合题意的正确的信息即可,答案不唯一.解答:解:(1)抽取的30﹣35岁人群的关注情况关心问题收入分配住房问题物价调控医疗改革养老保险其他108 0.3合计360 1(2)360÷2880×360°=45°.故扇形图中表示30﹣35岁的扇形的圆心角是45度;(3)(36+18)÷360=0.15.故关心物价调控或医疗改革的概率是0.15;(4)参加调查的30﹣35岁段的人数最多,答案不唯一.点评:本题考查读频数分布表和扇形统计图的能力和利用统计图表获取信息的能力.同时考查了频数、频率、概率等相关知识,解决此题的关键是根据题目提供的信息进行加工,从中整理出解决下一题的信息,考查了学生们的理解、加工信息的能力.21.(2013•江东区模拟)【问题】如图1、2是底面为1cm,母线长为2cm的圆柱体和圆锥体模型.现要用长为2πcm,宽为4cm的长方形彩纸(如图3)装饰圆柱、圆锥模型表面.已知一个圆柱和一个圆锥模型为一套,长方形彩纸共有122张,用这些纸最多能装饰多少套模型呢?【对话】老师:“长方形纸可以怎么裁剪呢?”学生甲:“可按图4方式裁剪出2张长方形.”学生乙:“可按图5方式裁剪出6个小圆.”学生丙:“可按图6方式裁剪出1个大圆和2个小圆.”老师:尽管还有其他裁剪方法,但为裁剪方便,我们就仅用这三位同学的裁剪方法!【解决】(1)计算:圆柱的侧面积是4πcm2,圆锥的侧面积是2πcm2.(2)1张长方形彩纸剪拼后最多能装饰2个圆锥模型;5张长方形彩纸剪拼后最多能装饰6个圆柱体模型.(3)求用122张彩纸对多能装饰的圆锥、圆柱模型套数.考点:圆锥的计算;一元一次不等式的应用;圆柱的计算.分析:(1)利用圆柱的侧面积公式以及扇形的面积公式即可求解;(2)求得圆锥和圆柱的表面积,以及一张纸的面积,据此即可求得;(3)设做x套模型,根据做圆柱和圆锥所用的纸的数不超过122张,即可列出不等式求解.解答:解:(1)圆柱的地面底面周长是2π,则圆柱的侧面积是2π×2=4πcm2,圆锥的侧面积是×2π×2=2πcm2;(2)圆柱的底面积是:πcm2,则圆柱的表面积是:6πcm2,圆锥的表面积是:3πcm2.一张纸的面积是:4×2π=8π,则1张长方形彩纸剪拼后最多能装饰2个圆锥模型;5张长方形彩纸剪拼后最多能装饰6个圆柱体模型,(3)设做x套模型,则每套模型中做圆锥的需要张纸,作圆柱需要张纸,∴+≤122,解得:x≤,∵x是6的倍数,取x=90,做90套模型后剩余长方形纸片的张数是122﹣(45+75)=2张,2张纸不够坐一套模型.∴最多能做90套模型.故答案是:4π,2π;2,6.点评:考查了圆锥、圆柱的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.22.(2008•西湖区模拟)如图1是由两块全等的含30°角的直角三角板摆放而成,斜边AC=10.(1)若将△ADE沿直线AE翻折到如图2的位置,ED'与BC交于点F,求证:CF=EF;(2)求EF的长;(3)将图2中的△AD'E沿直线AE向右平移到图3的位置,使D'点落在BC上,求出平移的距离.考点:翻折变换(折叠问题);勾股定理;平移的性质.专题:证明题.分析:(1)根据全等三角形对应边相等,AC=AE,再根据翻折的对称性,AD=AD′,所以CD′=AB,然后证明△CD′F与△EBF全等,根据全等三角形的对应边相等即可证明;(2)先根据30°角所对的直角边等于斜边的一半,BF=EF,然后在Rt△BEF中利用勾股定理列式求解即可;(3)根据平移对应点的连线互相平行,D′D″∥AB,又点D′是AC的中点,所以D′D″是△ABC的中位线,然后再根据30°角所对的直角边等于斜边的一半以及三角形中位线定。
00114-【浙江杭州】【建兰】【八年级】【下】【2014】【期中考】

2013学年第二学期初二年级阶段性质量检测(数学)试题卷 2014.4命题者:徐杭超 校对者:华富娟考生须知:1.本试卷分试题卷和答题卷两部分.满分120分,考试时间100分钟.2.答题时,必须在答题卷的密封区内填写校名、班级、学号、姓名、试场号、座位号. 3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应. 4.考试结束后,只需上交答题卷.一、选择题(本题有10个小题,每小题3分,共30分) 1.使等式()55a a a a -=⋅-成立的取值范围是( )A .0a ≥B .05a ≤≤C .5a ≥D .5a ≥或0a ≤ 2.4月是“趣味体育月”,学校组织了篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排15场比赛,则参赛球队的个数是( ) A .5个 B .6个 C .7个 D .8个 3.已知一组数据12345x x x x x 、、、、的平均数是5,则另一组新数组1234512345x x x x x +++++、、、、的平均数是( )A .6B .8C .10D .无法计算4.把方程2830x x -+=化成()2x m n +=的形式,则m n 、的值是( ) A .4,13B .4-,19C .4-,13D .4,195.如果x y ,分别是33-的整数部分和小数部分,那么24xy y -的值为( ) A .1B .2C .31+D .31-6.某中学八年级6班的45名学生进行了跳远测试,成绩如下表:跳远成绩(cm )160 170 180 190 200 220 人数3969 15 3这个班45名同学跳远成绩的中位数和众数分别是( ) A .190,200 B .9,9 C .15,9D .185,2007.已知关于x 的方程()2110kx k x +--=,下列说法正确的是( )A .当0k =时,方程无解B .当1k =时,方程有一个实数解C .当1k =-时,方程有两个相等的实数解D .当0k ≠时,方程总有两个不相等的实数解8.用反证法证明命题“三角形中最多有一个角是直角或钝角”时,下列假设正确的是( ) A .三角形中最少有一个角是直角或钝角 B .三角形中没有一个角是直角或钝角 C .三个角全是直角或钝角D .三角形中有两个(或三个)角是直角或钝角9.如图,平行四边形ABCD 中,5cm 3cm BD AB AD CD ⊥==,,,则AC 的长是( )DCBAA .4cmB .213cmC .13cmD .30cm10.如图:在四边形纸片ABCD 中,13040A C ∠=︒∠=︒,,现将其右下角向内折出FGE △,折痕为EF ,恰使GF AD GE CD ,∥∥,则B ∠的度数为( )GEFCDABA .90︒B .95︒C .100︒D .105︒二、填空题(本题有6个小题,每小题4分,共24分) 11.把代数式()111a a--中的1a -移到根号内,那么这个代数式等于__________. 12.关于x 的方程()20a x m b ++=的解是1235x x =-=,(a m b ,,均为常数,0a ≠),则方程()220a x m b +++=的解是__________.13.已知实数a b ,在数轴上对应位置如图所示,则2222a ab b b ++-=__________. 14.已知实数a b ,分别满足2640a a -+=,2640b b -+=,且a b ≠,则b aa b+的值是__________. 15.已知m 是整数,且满足210521m m ->⎧⎨->-⎩,则关于x 的方程()22242234m x x m x x --=+++的解为__________. 16.在面积为12的平行四边形ABCD 中,过点A 作BC 边的垂直交BC 边所在的直线于点E ,过点A 作CD 边的垂线交CD 边所在的直线于点F ,若46AB BC ==,,则CE CF +的值为__________. 三、解答题(本题有7个小题,共66分,解答应写出文字说明、证明过程或推演步骤) 17.(本小题满6分)计算:①12348212482⎛⎫-++⋅ ⎪ ⎪⎝⎭②()()22851121822------+18.(本小题满分8分)解下列方程:①()()22223x x -=+②()()224250x x ----=19.(本小题满分8分)某中学开展“国学知识竞赛”九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.O九 (2)九 (1)10090807060分数选手编号54321(1)根据图示填写下表:班 级 平均数(分)中位数(分)众数(分)九(1) 85 85 九(2)80(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好; (3)计算两班复赛成绩的方差. 20.(本小题满分10分)如图,在ABC △中,已知6810AB AC BC ===,,;BD CE 、分别是ABC ∠和ACB ∠的平分线,过点A 作AM CE ⊥于M ,AN BD ⊥于N ,连结MN ,求MN 的长是多少?FMNDBA21.(本小题满分10分)如图,在平面直角坐标系中有三个点()()()325120A B C ---,、,、,. (1)求ABC △边BC 上高的长度;(2)画出ABC △关于原点为对称中心的中心对称图形111A B C ,并写出点111A B C 、、的坐标; (3)若以A B C D 、、、为顶点的四边形为平行四边形,直接写出D 点的坐标.11OC BAxy22.(本小题满分12分)电子阅读器“锦书”原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.依此类推,即每多买一台则所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销. (1)某中学需购买6台“锦书”,应去哪家公司购买花费较少?(2)若某中学恰好花费7500元,在同一家公司购买了一定数量的“锦书”,请问是在哪家公司购买的,数量是多少?23.(本小题满分12分)如图,ABC △是等边三角形,点D 是边BC 上的一点,以AD 为边作等边ADE △,过点C 作CF DE ∥交AB 于点F .图②图①FED CB AFECD B A(1)若点D 是BC 边的中点(如图①),求证:EF CD ; (2)若(1)的条件下直接写出AEF △和ABC △的面积比; (3)若点D 是BC 边上的任意一点(除B C 、外如图②),那么(1)的结论是否仍然成立?若成立,请给了证明;若不成立,请说明理由.。
2014年浙江省杭州市中考数学试卷详解

2014年浙江省杭州市中考数学试卷参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)1.(3分)(2014•杭州)3a•(﹣2a)2=()A.﹣12a3B.﹣6a2C.12a3D.6a2【考点】M11N 整式运算M11O 指数幂M11U 乘方【难度】容易题【分析】首先利用积的乘方将括号展开,进而利用单项式乘以单项式求出即:3a•(﹣2a)2=3a×4a2=12a3.故选:C.【解答】C.【点评】此题主要考查了单项式乘以单项式以及积的乘方运算等知识,熟练掌握单项式乘以单项式运算是解题关键.2.(3分)(2014•杭州)已知某几何体的三视图(单位:cm),则这个圆锥的侧面积等于()A.12πcm2B.15πcm2C.24πcm2D.30πcm2【考点】M349 圆锥M415 视图与投影M41A 几何体的表面积,体积【难度】容易题【分析】俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长×母线长÷2.具体为:∵底面半径为3,高为4,∴圆锥母线长为5,∴侧面积=2πrR÷2=15πcm2.故选:B.【解答】B.【点评】由该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形.注意:圆锥侧面积=底面周长×母线长÷2.3.(3分)(2014•杭州)在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=()A.3sin40°B.3sin50°C.3tan40°D.3tan50°【考点】M32B 锐角三角函数M32D 解直角三角形【难度】容易题【分析】利用直角三角形两锐角互余求得∠B的度数,然后根据正切函数的定义即可求解.具体为:∠B=90°﹣∠A=90°﹣40°=50°,又∵tanB=,∴AC=BC•tanB=3tan50°.故选:D.【解答】D.【点评】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.4.(3分)(2014•杭州)已知边长为a的正方形的面积为8,则下列说法中,错误的是()A.a是无理数B.a是方程x2﹣8=0的一个解C.a是8的算术平方根D.a满足不等式组【考点】M116 无理数M11D 平方根、算术平方根、立方根M11Q 因式分解M127 解一元二次方程M12F 解一元一次不等式(组)M338 四边形的面积,周长【难度】容易题【分析】首先根据正方形的面积公式求得a==2,则a是无理数,a是方程x2﹣8=0的一个解,是8的算术平方根都正确;解不等式组,得:3<a<4,而2<3,故错误.故选:D.【解答】D.【点评】此题主要考查了算术平方根的定义,方程的解的定义,以及无理数估计大小的方法,均属于中考常考知识点,考生要注意掌握。
2014年杭州中考数学一模江干区试卷(含答案)

2014年杭州市各类高中招生文化模拟考试数 学考生须知:1. 本试卷满分120分, 考试时间100分钟.2. 答题前, 在答题纸上写姓名和准考证号.3. 必须在答题纸的对应答题位置上答题,写在其他地方无效. 答题方式详见答题纸上的说明.4. 考试结束后, 试题卷和答题纸一并上交.试题卷一.仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可以用多种不同的方法来选取正确答案.1.下列各数中,倒数为– 2的数是( )A. 2B. – 2C. 21D.21- 2.下列各式中,错误..的是( )A. 3)3(2=-B.3=-C. 3)3(2=D. 3=-3. 下列计算正确的是( )4. 图象经过点(2,1)的反比例函数是( )A. 2y x =-B. 2y x =C. 12y x= D. 2y x =5.将一块含60°角的三角板与一无刻度的直尺按如图所示摆放,如果三角板的斜边与直尺的长边平行,则图中1∠等于( )A .30°B .35°C .45°D .60°6. 心率即心脏在一定时间内跳动的次数. 某次九年级体检对5名同学的心率测试结果如下(次/分):76,72,74,76,77. 则下列说法错误..的是( ) A .这组测试结果的众数是76 B. 这组测试结果的平均数75 C. 这组测试结果的中位数是74 D. 这组测试结果的方差是2.3 7. 如图是某几何体的三视图,则该几何体的表面积为( )A. 31224+B. 31216+C. 3624+D. 3616+8. 不等式组⎪⎩⎪⎨⎧>+<--x x a x x 324)3(2无解,则a 的取值范围是( )A.2<aB.a ≤2C. 2>a D. a ≥2 9. 已知⊙O半径为3cm ,下列与⊙O 不是..等圆的是( ) A. ⊙1O 中,120°圆心角所对弦长为B. ⊙2O 中,45°圆周角所对弦长为C. ⊙3O 中,90°圆周角所对弧长为32πcm D. ⊙4O 中,圆心角为60°的扇形面积为32π2cm10.如图,射线AM 、BN 都垂直于线段AB ,点E 为AM 上一点,过点A 作BE 的垂线AC 分别交BE 、BN 于点F 、C ,过点C 作AM 的垂线CD ,垂足为D . 若CD =CF ,则=ADAE( ) A.215- B.412+ C. 21 D.413+(第5题)(第7题)二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案. 11.当3=x 时,分式bx ax +-没有意义,则=b . 12.如图,铁管CD 固定在墙角,BC =5米,∠BCD =55°,则顶端D 的高度为 . 13. 函数b ax y +=的图象如图,则方程0=+b ax 的解为 ;不等式0<b ax +≤2的解集为_______.14. 函数y = 2x 与函数y =x2的图象相交于A ,C 两点,AB 垂直于x 轴于点B ,则△ABC 的面积为 .15. 矩形纸片ABCD 中,AD =15cm ,AB =10cm ,点P 、Q 分别为AB 、CD 的中点. 如图,将这张纸片沿AE 折叠,使点B 与点G 重合,则AGE ∆的外接圆的面积为 . 16. 如图,等腰梯形ABCD 的底边AD 在x 轴上,顶点C 在y 轴正半轴上,B )2,4(,一次函数1-=kx y 的图象平分它的面积. 若关于x 的函数k m x k m mx y +++-=2)3(2的图象与坐标轴只有两个交点,则m 的值为 .三. 全面答一答 (本题有7个小题, 共66分)解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自(第15题)(第13题)(第12题)(第16题)己能写出的解答写出一部分也可以. 17. (本小题满分6分)梯形ABCD 中,AD ∥BC ,请用尺规作图并解决问题. (1)作AB 中点E ,连接DE 并延长交射线CB 于点F ,在DF 的下方作FDG ∠=ADE ∠,边DG 交BC 于点G ,连接EG ;(2)试判断EG 与DF 的位置关系,并说明理由.18.(本小题满分8分)一个数的算术平方根为62-m ,此数的平方根为)2(-±m ,求这个数.19. (本小题满分8分)甲、乙两人每次都从五个数–2,–1,0,1,2中任取一个,分别记作x 、y .在平面直角坐标系中有一圆心在原点、半径为2的圆.(1) 能得到多少个不同的数组(y x ,)?(2) 若把(1)中得到的数组作为点P 的坐标 (y x ,), 则点P 落在圆内的概率是多少?20. (本小题满分10分)如图,点A 的坐标为)0,1(-,点B 在直线42-=x y 上运动. (1)若点B 的坐标是)2,1(-,把直线AB 向上平移m 个单位后,与直线42-=x y 的交点在第一象限,求m 的取值范围;(2)当线段AB 最短时,求点B 的坐标.21. (本小题满分10分)(第17题)(第20题)如图,AB =AC ,AE 是△ABC 中BC 边上的高线,点D 在直线AE 上一点(不与A 、E 重合).(1) 证明:△ADB ≌△ADC ;(2) 当△AEB ∽△BED 时,若cos ∠DBE =32,BC = 8,求线段AE 的长度.22. (本小题满分12分)如图,抛物线与x 轴相交于B 、C 两点,与y 轴相交于点A ,P (a ,m a a ++-272)(a 为任意实数)在抛物线上,直线b kx y +=经过A 、B 两点,平行于y 轴的直线2=x 交直线AB 于点D ,交抛物线于点E .(1)若2=m ,①求直线AB 的解析式;②直线t x =0(≤t ≤)4与直线AB 相交于点F ,与抛物线相交于点G . 若FG :DE =3:4,求t 的值;(2)当EO 平分AED ∠时,求m 的值.23. (本小题满分12分)如图,已知正方形ABCD 的边长为4,点E 、F 分别从C 、A 两点同时出发,以相同的速度作直线运动. 已知点E 沿射线CB 运动,点F 沿边BA 的延长线运动,连结DF 、DE 、EF ,EF 与对角线AC 所在的直线交于点M ,DE 交AC 于点N .(1)求证:DE ⊥DF ;(2)设CE =x ,AMF ∆的面积为y ,求y 与x 之间的函数关系式,并写出自变量的取值范围;(3)随着点E 在射线CB 上运动,NA ·MC 的值是否会发生变化?若不变,请求出NA ·MC 的值;若变化,请说明理由.(第21题)(第22题)2014年杭州市各类高中招生模拟考试数学参考解答和评分标准11. 3- 12.55tan 5 13.3=x ;0≤x <3 14. 2 15.3100π 16. 21041--=或或m 三.解答题(共66分)17.(6分)解:(1)作图 3分 (2) EG ⊥DF 1+2分18.(8分)解:(1)当262-=-m m时,4=m ,此时262=-m ,此数为4; (2)当)2(62--=-m m 时,38=m ,此时032638262<-=-⨯=-m ,不合题意舍去.由(1)(2)得,此数只能为4. (4+4分) 19. (8分)(1) 能得到25个数组; (4分) (2) 点P 落在圆内的概率=259.(4分) 20. (10分)解:待定系数法得直线AB 的解析式为1--=x y ,平移后m x y +--=1,联立得(第23题)(备用图)(第19题)⎩⎨⎧-=+--=421x y m x y ,得⎪⎪⎩⎪⎪⎨⎧-=+=36233m y m x ,因交点在第一象限,所以⎪⎪⎩⎪⎪⎨⎧>->+0362033m m ,得3>m . (2)作AB ⊥直线42-=x y ,垂足为B ,此时线段AB 最短. 过点B 作BE ⊥x 轴,垂足为E ,易证ABE ∆∽DCO ∆,即COBEDO AE =. 因为4,2==DO CO ,x AE +=1,x BE 24-=,所以22441x x -=+,解得57=x ,所以)56,57(-B . (5+5分)21. (10分) (1)∵AB = AC ,AE 是△ABC 中BC 边上的高线,∴BE=CE ,AE ⊥BC ,∴DC=BD 又∵AD = AD , ∴△ADB ≌△ADC. (5分) (2) ∵△AEB ∽△BED ,∴∠BAE = ∠DBE ,∵cos ∠DBE =32,∴cos ∠BAE = 32, 在Rt △BAE 中,cos ∠BAE =32=ABAE,∴2AB = 3AE ,又BC = 8,E 为中点,∴BE =4,∵AE 2 + BE 2 = AB 2, ∴AE 2 +16 =94AE 2 ,解得AE=558. (5分) 22. (12分)(1)若2=m ,①则抛物线的解析式为2272++-=x x y ,得)2,0(A ,)0,4(B ,)0,21(-C 所以直线AB 的解析式为221+-=x y . ②易得)5,2(E ,)1,2(D ,)227,(2++-t t t G ,)221,(+-t t F ,所以DE=4,FG=t t 42+-,因FG:DE=3:4,所以t t 42+-=3,解得3,121==t t . (7分)(2) 抛物线的解析式为m x x y ++-=272,易得),0(m A ,)3,2(+m E ,过点A 作AH ⊥DE 于点H ,可得),2(m H .因EO 平分AED ∠,所以DEO AEO ∠=∠,又因为DE ∥AO ,所以AOE DEO ∠=∠,即AOE AEO ∠=∠,所以AO=AE.在直角AHE ∆中,222EH AH AE +==133222=+,即=m AO=AE=13. (5分)23. (12分)(1)由正方形得AD=CD ,DCE DAF ∠=∠=90,由速度相同得AF=CE ,所以△ADF ≌△CDE ,得FDA ∠=CDE ∠,所以FDA ∠+ADE ∠=CDE ∠+ADE ∠=ADC ∠=90,所以FDE ∠=90,即DE ⊥DF.(2)当40<<x 时,如图1,过点M 作MG ⊥AB ,由CB ⊥AB 得△FMG ∽△FBE ,得BEMGFB FG =,因为MG=AG ,设MG=h ,所以FG=FA+AG=FA+MG=x +h ,FB=x +4,BE=4x -,得xhx h x -=++44,得24x h -=,2421x x y -⋅==x x +-241.当4>x 时,如图2,过点M 作MG ⊥AB ,同理可得BEMGFB FG =,因为MG=AG ,设MG=h ,所以FG=FA-AG=FA-MG=x -h ,FB=x +4,BE=-x 4,得44-=+-x h x h x ,得24-=x h ,2421-⋅=x x y =x x -241.(第22题)(第23题图1)(第23题图2)(3)由(2)得△FMG ∽△FBE ,BE MG FB FG ==21,所以21=FE FM ,即M 为FE 中点,又由△ADF ≌△CDE 得DF=DE ,连结DM ,DM 为FDE ∠平分线,即45=∠MDE ,又45=∠=∠DAN DCM ,所以M D C ∠=MND ∠,所以△NAD ∽△DCM ,得MCADCD NA =,即16=⋅=⋅CD AD MC NA .(第23题图3)。
2014杭州中考数学模拟试卷
(第6(℃(第36(第22014杭州中考数学模拟试卷4一、选择题(本题有10个小题, 每小题3分, 共30分)1.3-的相反数是A .3B .3-C .13-D .132.太阳光线与地面成60º的角,照射在地面上的一只皮球上,皮球在地面上的投影长是103cm ,则皮球的直径是A .3B .15C .10D .833.如图为我市5月某一周每天的最高气温统计,则这组数据(最高气温)的众数与中位数分别是A .29,29B .29,30C .30,30D .30,29.54.若55x x -=-,下列不等式成立的是 A .50x -> B .50x -<C.5x -≥0D .5x -≤05.连续掷两次骰子,出现点数之和等于4的概率为 A .136B .118C .112D .196.如图,BD 是⊙O 的直径,∠CBD =30,则∠A 的度数为A .30B .45C .60D .75DD D7.小明用一个半径为5cm ,面积为15π2cm 的扇形纸片,制作成一个圆锥的侧面(接缝处不重叠),那么这个圆锥的底面半径为A .3cmB .4cmC .5cmD .15cm8.如图,ABC △和的DEF △是等腰直角三角形,90C F ∠=∠=,24AB DE ==,.点B 与点D 重合,点A B D E ,(),在同一条直线上,将ABC △沿D E →方向平移,至点A 与点E 重合时停止.设点B D ,之间的距离为x ,ABC △与DEF △重叠部分的面积为y ,则准确反映y 与x 之间对应关系的图象是9.已知二次函数2y ax bx c =++中,其函数y 与自变量x 之间的部分对应值如下表所示:x… 0 1 2 3 …y… 5 2 1 2 …点A (1x ,1y )、B (2x ,2y )在函数的图象上,则当101x <<,223x <<时,1y 与2y 的大小关系正确的是A .1y ≥2yB .12y y >C .12y y <D .1y ≤2y10.如图,已知Rt ABC △,1D 是斜边AB 的中点,过1D 作11D E AC ⊥于E 1,连结1BE 交1CD 于2D ;过2D 作22D E AC ⊥于2E ,连结2BE 交1CD 于3D ;过3D 作33D E AC ⊥于3E ,…,如此继续,可以依次得到点45D D ,,…,n D ,分别记112233BD E BD E BD E △,△,△,…,n n BD E △的面积为123S S S ,,,…n S .则(第11题O PBAD G EAHOA .n S =14nABC S △ B .n S =13n +ABC S △ C .n S =()121n +ABC S △D .n S =()211n +ABC S △二、填空题 (本题有6个小题, 每小题4分, 共24分)11.如图,⊙O 的半径OA =10cm ,弦AB =16cm ,P 为AB 上一动点, 则点P 到圆心O 的最短距离为 cm .12.在创建国家生态园林城市活动中,某市园林部门为扩大城市的绿化面积,进行了大量的树木移载.下表记录的是在相同的条件下移栽某种幼树的棵数与成活棵数:请依此估计这种幼树成活的概率是 .(结果用小数表示,精确到0.1)13.有八个球编号是①到⑧,其中有六个球一样重,另外两个球都轻1克,为了找出这两个球,用天平称了三次,结果如下:第一次①+②比③+④重,第二次⑤+⑥比⑦+⑧轻,第三次①+③+⑤和②+④+⑧一样重.那么,这两个轻球的编号移栽棵数100100010000成活棵数 89919008AECBDO(第16题F(第15题是 .14.如图,任意一个凸四边形ABCD ,E 、F 、G 、H 分别是各边的中点,图中阴影部分的两块面积之和是四边形ABCD 的面积的 .15.如图是瑞典人科赫(Koch )在1906年构造的能够描述雪花形状的科赫雪花图案.图形的作法是,从一个正三角形开始,把每条边分成三等份,然后以各边的中间长度为底边.分别向外作正三角形,再把“底边”线段抹掉.反复进行这一过程,就会得到一个“雪花”样子的曲线.这是一个极有特色的图形:在图形不断变换的过程中,它的周长趋于无穷大,而其面积却趋于定值.如果假定原正三角形边长为a ,则可算出下图每步变换后科赫雪花的周长:1C =3a ,2C = ,3C = ,…,则n C = .16.如图,矩形纸片ABCD ,点E 是AB 上一点,且BE ∶EA =5∶3,EC =5BCE 沿折痕EC 向上翻折,若点B 恰好落在AD 边上,设这个点为F ,则(1)AB = ,BC = ;(2)若⊙O 内切于以F 、E 、B 、C 为顶点的四边形,则⊙O 的面积= .三、解答题(本题有8个小题,共66分)17. (本小题满分6分)(1)计算:01(π4)2---;(2)解不等式2335x --≤12x+.18.(本小题满分8分)一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积和体积.俯 4(第18题19.(本小题满分8分)在数学学习中,及时对知识进行归纳和整理是完善知识结构的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:① ;②;③ ;④ ;(2)如果点C 的坐标为(1,3),那么不等式kx b +≤11k x b +的解集是 .20.(本小题满分10分)已知A ,B 两点在直线l 的同侧,试用直尺(没有刻度)和圆规,在l 上找两点C 和D (CD 的长度为定值a ),使得AC +CD +DBx+x(第19题图)一次函数与方程的关系一次函数与不等式的关系21.(本小题满分10分) 某中学为促进课堂教学,提高教学质量,对九年级学生进行了一次“你最喜欢的课堂教学方式”的问卷调查.根据收回的问卷,学校绘制了如下图表,请你根据图表中提供的信息,解答下列问题.(1)请把三个图表中的空缺部分都补充完整;(2)你最喜欢以上哪一种教学方式或另外的教学方式,请提出你的建议,并简要说明理由(字数在20字以内).3学生自行阅读教材,独立思考304 分组讨论,解决问题 0.2522.(本小题满分12分)如图,以△AOD 的三边为边,在AD 的同侧作三个等边三角形△AED 、△BOD 、21E△AOF,请回答下列问题并说明理由:(1)四边形OBEF是什么四边形?(2)当△AOD满足什么条件时,四边形OBEF是菱形?是矩形?(3)当△AOD满足什么条件时,以O、B、E、F为顶点的四边形不存在?(第23题图)24.(本小题满分12分) 如图,在平面直角坐标系中,已知点A 坐标为(2,4),直线2=x 与x 轴相交于点B ,连结OA ,抛物线2x y =从点O 沿OA 方向平移,与直线2=x 交于点P ,顶点M 到A 点时停止移动.(1)求线段OA 所在直线的函数解析式;(2)设抛物线顶点M 的横坐标为m ,①用m 的代数式表示点P 的坐标;②当m 为何值时,线段PB 最短;(3)当线段PB 最短时,相应的抛物线上是否存在点Q ,使△QMA 的面积与△PMA 的面积相等,若存在,请求出点Q 的坐标;若不存在,请说明理由.数学参考解答和评分标准一、选择题(每题3分,共30分)二、填空题(每题4分,共24分)11. 6,12. 0.9,13.④⑤,14. 12,15.2C=433a;3C=24()33a;nC=14()33n a-,(1+1+2分)16. AB=24,BC=30,⊙O的面积=100π.(1+1+2分)三.解答题(共66分)17.(6分)解:(1)原式=1212-+……………………1+1+1分=12- …………………………1分(2)3046x -+≤55x + …………………………1分x ≤21- …………………………1分18.(6分)解:该几何体的形状是直四棱柱(答直棱柱,四棱柱,棱柱也给2分).………………………2分由三视图知,棱柱底面菱形的对角线长分别为4cm ,3cm .∴ 菱形的边长为52cm , ………………………1分棱柱的侧面积=52×8×4=80(cm 2). ………………………2分棱柱的体积=12×3×4×8=48(cm 3). ………………………1分19.(6分)解:(1)①0kx b +=;②11y k x b y kx b =+⎧⎨=+⎩;③kx b +>0;④kx b +<0;(1+1+1+1分)(2)如果点C 的坐标为(1,3),那么不等式kx b +≤11k x b +的解集是x ≥1.(2分)20.(8分)解:(1)过点A 作l 的垂线(尺规作图);在垂线上截取,找到对称点 A ′,(2分) (2)过点B 作l 的垂线(尺规作图),垂足为M ,在l 上截取线段MN =a ; (2分) (3)分别以B 点为圆心,以a 长为半径画弧,l以N 点为圆心,以BM 长为半径画弧,交于点B ′;(2分)(4)连接A ′B ′交l 于点C ,在l 上截取线段CD =a .(2分)21.(8分)解:(1)100,0.5,0.15,50(每空0.5分);(图略)(每图2分)(2)2分,无建议与理由得1分22.(10分)解:(1)平行四边形;(3分)(2)当OA =OD 时,四边形OBEF 为菱形;(2分)当∠AOD =1500时,四边形OBEF 为矩形;(2分)(3)当∠AOD =600时,以O 、B 、E 、F 为顶点的四边形不存在.(3分)(每小题无理由只得1分)23.(10分)解:(1)设年平均增长率为x ,根据题意得: (1分)210(1)14.4x +=(2分) 解得:2.0=x (1分)答:年平均增长率为20%(1分)(2)设每年新增汽车数量最多不超过x 万辆,根据题意得: (1分)2010年底汽车数量为14.490%x ⨯+2011年底汽车数量为(14.490%)90%x x ⨯+⨯+∴ (14.490%)90%x x ⨯+⨯+15.464≤(2分)∴ 2x ≤(1分)答:每年新增汽车数量最多不超过2万辆(1分)24.(12分 )解:(1)设OA 所在直线的函数解析式为kx y =,∵A (2,4),∴42=k , 2=∴k , ∴OA 所在直线的函数解析式为2y x =.………………………………………………2分(2)①∵顶点M 的横坐标为m ,且在线段OA 上移动,∴2y m =(0≤m ≤2).∴顶点M 的坐标为(m ,2m ).∴抛物线函数解析式为2()2y x m m =-+.∴当2=x 时,2(2)2y m m =-+224m m =-+(0≤m ≤2). ∴点P 的坐标是(2,224m m -+) ……………………………………4分 ② ∵PB =224m m -+=2(1)3m -+, 又∵0≤m ≤2, ∴当1m =时,PB 最短. ……………………………………6分(3)当线段PB 最短时,此时抛物线的解析式为()212+-=x y . 假设在抛物线上存在点Q ,使Q M A P M AS S =. 设点Q 的坐标为(x ,223x x -+). ①当点Q 落在直线OA 的下方时,过P 作直线PC //AO ,交y 轴于点C , ∵3PB =,4A B =, ∴1AP =,∴1O C =,∴C 点的坐标是(0,1-). ∵点P 的坐标是(2,3),∴直线PC 的函数解析式为12-=x y .∵Q M A P M AS S =,∴点Q 落在直线12-=x y 上. ∴223x x -+=21x -.解得122,2x x ==,即点Q (2,3). ∴点Q 与点P 重合.∴此时抛物线上不存在点Q ,使△QMA 与△AP M 的面积相等. ②当点Q 落在直线OA 的上方时,作点P 关于点A 的对称称点D ,过D 作直线DE //AO ,交y 轴于点E ,∵1A P =,∴1E OD A ==,∴E 、D 的坐标分别是(0,1),(2,5),∴直线DE 函数解析式为12+=x y . ∵Q M A P M AS S =,∴点Q 落在直线12+=x y 上. ∴223x x -+=21x +.解得:12x =22x =代入12+=x y ,得15y =+25y =-∴此时抛物线上存在点(12Q ,()225,222--Q 使△QMA 与△PM A 的面积相等.综上所述,抛物线上存在点(12Q ,()225,222--Q 使△QMA 与△PM A 的面积相等.……………………………………………12分。
2014年浙江省杭州市中考数学试卷-答案
3
3
3
3
(2) 8 3
【解析】解:(1)圆心坐标分别为
圆 P 与直线 l1 , l2 相切, P 在 y 轴正半轴时,圆心 P1(0,2) ;
圆 P 与直线 l1 , l 相切. P 在第一象限时,圆心 P2 (
3 ,1) ; 3
圆 P 与直线 l2 , l 相切, P 在第一象限时,圆心 P3 ( 3,1)
图为扇形,扇形的半径为 5,弧长为 6 ,所以扇形的面积为 1 6 5=15 ,故选 B. 2
【考点】几何体的三视图及圆锥侧面积的计算.
3.【答案】D 【解析】在 RtABC 中, A 40 ,B 50 , BC 3 , tan B AC , AC BC tan B 3tan50 ,故
2
【考点】统计图与中位数.
15.【答案】 y 1 x2 1 x 2 或 y 1 x2 3 x 2
84
84
【解析】 抛物线 y ax2 bx c(a≠0) 过点 A(0,2) , B(4,3) 和点 C,c 2 ,16a 4b 2 3 , 点 C 在
2/8
【解析】解方程组
1
3 1 3
x x
y y
4 2
得
x=9 , y 1
x
y
9
(1)
8
.
【考点】二元一次方程组的解.
14.【答案】15.6
【解析】中位数是一组按大小顺序排列起来的数据中处于中间位置的一个数或中间两个数的平均数由统计
图可以看出六个整点的气温分别是 4.5℃ ,10.5℃,15.3℃ ,19.6℃, 20.1℃和15.9℃,按从小到大顺序排列为 4.5℃,10.5℃,15.3℃,15.9℃,19.6℃, 20.1℃.中位数是 15.3+15.9 =15.6℃.
2014年浙江省杭州市建兰中学中考数学模拟试卷(1)及答案
ADEP BC2014建兰中学中考数学模拟试卷01考生须知:本卷共三大题,24小题. 全卷满分为120分,考试时间为100分钟. 一、选择题(本题有10个小题,每小题3分,共30分)1. (根据初中教与学中考全程复习训练题改编)16的平方根是 ( ▲ )A. 4B. 2C. ±4D.±22. (根据初中教与学中考全程复习训练题改编)估算331-的值 ( ▲ )A .在2和3之间B .在3和4之间C .在4和5之间D .在5和6之间3. (根据2010年中考数学考前知识点回归+巩固 专题12 反比例函数改编)若反比例函数ky x=的图象经过点(3)m m ,,其中0m ≠,则此反比例函数的图象在( ▲ )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限 4. (引中考复习学案视图与投影练习题)由两块大小不同的正方体搭成如图所示的几何体,它的主视图是( ▲)5. (原创)把二次根式1(x-1)1x-中根号外的因式移到根号内,结果是( ▲ ) A . 1x -B . 1x --C . 1x --D .1x -6.(根据九下数学作业题改编)如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于C ,若25A =∠.则D ∠等于( ▲ )A .20 B .30 C .40 D .50 7. (原创)函数134y x x =-+-中自变量x 的取值范围是( ▲ )A .x ≤3B .x =4C . x <3且x ≠4D .x ≤3且x ≠48. (引九年级模拟试题卷)函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( ▲ )9. (原创)如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒ 的菱形,剪口与折痕所成的角α 的度数应为( ▲ )A .15︒或30︒B .30︒或45︒C .45︒或60︒D .30︒或60︒ 10. (引黄冈市 2010年秋期末考试九年级数学模拟试题)正方形ABCD 、正方形BEFG 和正方形RKPF 的位置如图所示,点G 在线段DK 上,正方形BEFG 的边长为4,则DEK △的面积为( ▲ )A、10 B、12 C、14 D、16二、填空题(共6小题,每题4分.共24分)11. (根据黄冈市2010年秋期末考试九年级数学模拟试题改编)一条弦把圆分成2:3两部分,那么这条弦所对的圆周角的度数为____▲______. 12. (根据2011年中考调研试卷改编)一串有趣的图案按一定的规律排列(如图):按此规律在右边的圆中画出的第2011个图案: 。
2014建兰中学中考数学模拟试卷02
2014建兰中学中考数学模拟试卷02考生须知: 本试卷1. 本试卷分试题卷和答题卷两部分,满分120分, 考试时间100分钟。
2. 答题时, 应该在答题卷密封区内写明校名, 姓名和准考证号。
3. 所有答案都必须做在答题卷标定位置上, 请务必注意试题序号和答题序号相对应。
4. 考试结束后, 上交试题卷和答题卷。
试题卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内。
注意可以用多种不同的方法来选取正确答案。
1.(原创)当2x =-时,二次根式52x -的值为 ( ) A.1 B.±1 C.3 D.±32.(原创)据中新网3月11日综合消息称,云南盈江县10日中午发生5.8级地震,经初步统计,导致的经济损失达18.85亿元。
其中,居民伤亡及房屋倒塌、损坏等直接经济损失8亿余元,居民实物损失9500万元,交通、电力、水利、卫生、通信等市政基础设施及教育、公共管理、社会团体、厂矿、商贸企业等直接经济损失近10亿元。
其中经济损失总额用科学计数法表示为 ( ) A.1.0×108 B.9.5×107 C.8×108 D.1.885×1093.观察下列图形,从图案看是轴对称图形的有 ( )A.1个B.2个C.3个D.4个4. 下图是由八个相同小正方体组合而成的几何体,则其左视图是 ( )5.(原创)若1++y x 与()22--y x 互为相反数,则3)3(y x -的值为 ( )A.1B.9C.–9D.276.(原创)有下列表述:①a 一定不是负数;②无理数是无限小数;③平方根等于它本身的数是0或1;④对角线相等且互相垂直的四边形是正方形;⑤圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线;⑥一个圆锥的侧面积是一个面积为4π平方厘米的扇形,那么这个圆锥的母线长L 和底面半径R 之间的函数关系是正比例函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年浙江省杭州市建兰中学中考数学模拟试卷(1)一、选择题(本题有10个小题,每小题3分,共30分) 1.(3分)(2015•张家界模拟)的平方根是( ) A . B . 2 C . ±2 D .2.(3分)(2015•大庆模拟)估算的值( )A . 在2和3之间B . 在3和4之间C . 在4和5之间D . 在5和6之间3.(3分)(2013•崇左)若反比例函数的图象经过点(m ,3m),其中m ≠0,则此反比例函数图象经过( )A . 第一、三象限B . 第一、二象限C . 第二、四象限D . 第三、四象限 4.(3分)(2009•温州)由两块大小不同的正方体搭成如图所示的几何体,它的主视图是( )A .B.C.D.5.(3分)(2014•日照三模)把二次根式(x ﹣1)中根号外的因式移到根号内,结果是( )A .B .C .D . 6.(3分)(2011•兰州)如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于点C ,若∠A=25°,则∠D 等于( )A 20°B 30°C 40°D 50°....7.(3分)(2015•攀枝花模拟)函数中自变量x的取值范围是()A .x≤3 B.x=4 C.x<3且x≠4 D.x≤3且x≠48.(3分)(2008•芜湖)函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()A .B.C.D.9.(3分)(2009•绵阳)如图,把一个长方形的纸片对折两次,然后剪下一个角,把剪下的这个角展开,若得到一个锐角为60°的菱形,则剪口与折痕所成的角α的度数应为()A .15°或30°B.30°或45°C.45°或60°D.30°或60°10.(3分)(2014•日照三模)正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为()A .10 B.12 C.14 D.16二、填空题(共6小题,每题4分.共24分)11.(4分)(2000•广西)一条弦把圆分为2:3两部分,那么这条弦所对的圆周角的度数为.12.(4分)(2014•日照三模)一串有趣的图案按一定的规律排列(如图):按此规律在右边的圆中画出的第2011个图案:.13.(4分)(2014•上城区校级模拟)与的比例中项是.14.(4分)(2015•攀枝花模拟)已知,,则代数式x2﹣3xy+y2的值为.15.(4分)(2014•包头模拟)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为.16.(4分)(2010•十堰)如图,n+1个上底、两腰长皆为1,下底长为2的等腰梯形的下底均在同一直线上,设四边形P1M1N1N2面积为S1,四边形P2M2N2N3的面积为S2,…,四边形P n M n N n N n+1的面积为S n,通过逐一计算S1,S2,…,可得S n=.三、解答题(共8小题,共66分)17.(6分)(2009•江苏)计算:(1);(2).18.(6分)(2014•上城区校级模拟)已知关于x的函数y=(k﹣1)x2+4x+k的图象与坐标轴只有2个交点,求k的值.19.(6分)(2015•宜兴市二模)“知识改变命运,科技繁荣祖国”.我区中小学每年都要举办一届科技比赛.如图为我区某校2011年参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图(1)该校参加机器人、建模比赛的人数分别是人和人;(2)该校参加科技比赛的总人数是人,电子百拼所在扇形的圆心角的度数是°,并把条形统计图补充完整;(3)从全区中小学参加科技比赛选手中随机抽取80人,其中有32人获奖.今年我区中小学参加科技比赛人数共有2485人,请你估算今年参加科技比赛的获奖人数约是多少人?20.(6分)(2014•日照三模)如图,已知在等腰△ABC中,∠A=∠B=30°,过点C作CD⊥AC 交AB于点D.(1)尺规作图:过A,D,C三点作⊙O(只要求作出图形,保留痕迹,不要求写作法);(2)求证:BC是过A,D,C三点的圆的切线.21.(8分)(2013•青岛校级自主招生)如图,一艘渔船位于海洋观测站P的北偏东60°方向,渔船在A处与海洋观测站P的距离为60海里,它沿正南方向航行一段时间后,到达位于海洋观测站P的南偏东45°方向上的B处.求此时渔船所在的B处与海洋观测站P的距离(结果保留根号).22.(10分)(2008•福州)如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.23.(10分)(2008•黄石)某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A型利润B型利润甲店200 170乙店160 150(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W 关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?24.(14分)(2015•攀枝花模拟)已知:直角梯形OABC中,BC∥OA,∠AOC=90°,以AB 为直径的圆M交OC于D、E,连接AD、BD、BE.(1)在不添加其他字母和线的前提下,直接写出图1中的两对相似三角形.,;(2)直角梯形OABC中,以O为坐标原点,A在x轴正半轴上建立直角坐标系(如图2),若抛物线y=ax2﹣2ax﹣3a(a<0)经过点A、B、D,且B为抛物线的顶点.①写出顶点B的坐标(用a的代数式表示);②求抛物线的解析式;③在x轴下方的抛物线上是否存在这样的点P:过点P做PN⊥x轴于N,使得△PAN与△OAD 相似?若存在,求出点P的坐标;若不存在,说明理由.2014年浙江省杭州市建兰中学中考数学模拟试卷(1)参考答案与试题解析一、选择题(本题有10个小题,每小题3分,共30分)1.(3分)(2015•张家界模拟)的平方根是()A .B.2 C.±2 D.考点:算术平方根;平方根.分析:首先根据算术平方根的定义化简,然后根据平方根的定义即可得出结果.解答:解:∵=4,又∵22=4,(﹣2)2=4,∴的平方根为±2;故选C.点评:本题主要考查了平方根和算术平方根的定义.解题注意算术平方根和平方根的区别.平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.2.(3分)(2015•大庆模拟)估算的值()A .在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间考点:估算无理数的大小.分析:首先求出的范围,再两边都减去1即可得出答案.解答:解:∵5<<6,∴5﹣1<﹣1<6﹣1,∴4<﹣1<5,故选C.点评:本题考查了估算无理数的大小,关键是求出的范围.3.(3分)(2013•崇左)若反比例函数的图象经过点(m,3m),其中m≠0,则此反比例函数图象经过()A .第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限考点:待定系数法求反比例函数解析式;反比例函数的性质.专题:计算题;压轴题.分析:由反比例函数的图象经过点(m,3m),其中m≠0,将x=m,y=3m代入反比例解析式中表示出k,根据m不为0,得到k恒大于0,利用反比例函数图象的性质得到此反比例函数图象在第一、三象限.解答:解:∵反比例函数的图象经过点(m,3m),m≠0,∴将x=m,y=3m代入反比例解析式得:3m=,∴k=3m2>0,则反比例y=图象过第一、三象限.故选A点评:此题考查了利用待定系数法求反比例函数解析式,以及反比例函数的性质,熟练掌握待定系数法是解本题的关键.4.(3分)(2009•温州)由两块大小不同的正方体搭成如图所示的几何体,它的主视图是()A .B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可.解答:解:从正面看可得到一个正方形右上角有一个正方形,故选C.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.(3分)(2014•日照三模)把二次根式(x﹣1)中根号外的因式移到根号内,结果是()A .B.C.D.考点:二次根式的性质与化简.专题:计算题.分析:根据被开方数大于等于0,分母不为0,可得出1﹣x>0,则x﹣1<0,再将x﹣1移到根号内即可.解答:解:∵≥0且1﹣x≠0,∴1﹣x>0,∴x﹣1<0,∴(x﹣1)=﹣=﹣.故选B.点评:本题考查了二次根式的性质与化简,是基础题,注意被开方数大于等于0,分母不为0.6.(3分)(2011•兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于()A .20°B.30°C.40°D.50°考点:切线的性质;圆周角定理.专题:计算题.分析:先连接BC,由于AB 是直径,可知∠BCA=90°,而∠A=25°,易求∠CBA,又DC是切线,利用弦切角定理可知∠DCB=∠A=25°,再利用三角形外角性质可求∠D.解答:解:如右图所示,连接BC,∵AB 是直径,∴∠BCA=90°,又∵∠A=25°,∴∠CBA=90°﹣25°=65°,∵DC是切线,∴∠BCD=∠A=25°,∴∠D=∠CBA﹣∠BCD=65°﹣25°=40°.故选C.点评:本题考查了直径所对的圆周角等于90°、弦切角定理、三角形外角性质.解题的关键是连接BC,构造直角三角形ABC.7.(3分)(2015•攀枝花模拟)函数中自变量x的取值范围是()A .x≤3 B.x=4 C.x<3且x≠4 D.x≤3且x≠4考点:函数自变量的取值范围.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解答:解:根据二次根式有意义,分式有意义得:3﹣x≥0且x﹣4≠0,解得:x≤3.故选A.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.8.(3分)(2008•芜湖)函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()A .B.C.D.考点:二次函数的图象;一次函数的图象.分析:根据a、b的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.解答:解:当a>0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A、D不正确;由B、C中二次函数的图象可知,对称轴x=﹣>0,且a>0,则b<0,但B中,一次函数a>0,b>0,排除B.故选:C.点评:应该识记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.9.(3分)(2009•绵阳)如图,把一个长方形的纸片对折两次,然后剪下一个角,把剪下的这个角展开,若得到一个锐角为60°的菱形,则剪口与折痕所成的角α的度数应为()A .15°或30°B.30°或45°C.45°或60°D.30°或60°考点:菱形的性质;剪纸问题.专题:计算题;压轴题.分析:如图:折痕为AC与BD,∠ABC=60°,性质:菱形的对角线平分对角,可得∠ABD=30°,易得∠BAC=60°.所以剪口与折痕所成的角a的度数应为30°或60°.解答:解:∵四边形ABCD是菱形,∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC,∵∠BAC=60°,∴∠BAD=180°﹣∠ABC=180°﹣60°=120°,∴∠ABD=30°,∠BAC=60°.∴剪口与折痕所成的角a的度数应为30°或60°.故选:D.点评:此题主要考查菱形的判定以及折叠问题,有助于提高学生的动手及立体10.(3分)(2014•日照三模)正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为()A .10 B.12 C.14 D.16考点:全等三角形的性质.专题:几何图形问题;数形结合.分析:连DB,GE,FK,则DB∥GE∥FK,再根据正方形BEFG的边长为4,可求出S△DGE=S△GEB,S△GKE=S△GFE,再由S阴影=S正方形GBEF即可求出答案.解答:解:如图,连DB,GE,FK,则DB∥GE∥FK,在梯形GDBE中,S△DGE=S△GEB(同底等高的两三角形面积相等),同理S△GKE=S△GFE.∴S阴影E,=S△GEB+S△GEF,=S正方形GBEF,=4×4=16故选:D.点评:本题主要考查正方形的性质,三角形和正方形面积公式以及梯形的性质,属于数形结合题.二、填空题(共6小题,每题4分.共24分)11.(4分)(2000•广西)一条弦把圆分为2:3两部分,那么这条弦所对的圆周角的度数为72°或108°.考点:圆心角、弧、弦的关系.分析:先求出这条弦所对圆心角的度数,然后分情况讨论这条弦所对圆周角的度数.解答:解:如图,连接OA、OB.弦AB将⊙O分为2:3两部分,则∠AOB=×360°=144°;∴∠ACB=∠AOB=72°,∠ADB=180°﹣∠ACB=108°;故这条弦所对的圆周角的度数为72°或108°.点评:此题考查了圆周角定理以及圆内接四边形的性质;需注意的是在圆中,一条弦(非直径)所对的圆周角应该有两种情况,不要漏解.12.(4分)(2014•日照三模)一串有趣的图案按一定的规律排列(如图):按此规律在右边的圆中画出的第2011个图案:.考点:规律型:图形的变化类.专题:压轴题;规律型.分析:观察图形,图形在做顺时针的旋转,并且每旋转4次一个周期,则可以用2011除以4余数为3,从而确定是一个什么样的图象.解答:解:由分析得:图象的变换是以4为周期的,2011除以4的余数为3,则第2011与第3个图形一样.故答案为:.点评:考查了规律型:图形的变化,本题关键是找到图形的变换规律.图形变换是以4为周期的,2011除以4的余数为3,则第2011与第3个图形一样.13.(4分)(2014•上城区校级模拟)与的比例中项是±1.考点:比例线段.专题:计算题.分析:根据比例中项的概念,利用比例的基本性质计算得到与的比例中项的值.解答:解:与的比例中项=±=±1.点评:理解比例中项的概念:当比例式中的两个内项相同时,即叫比例中项.根据比例的基本性质进行计算.14.(4分)(2015•攀枝花模拟)已知,,则代数式x2﹣3xy+y2的值为95.考点:二次根式的化简求值.分析:把x,y值代入,先相加减再把分母为无理数的分母有理化.解答:解:代入x,y的值得x2﹣3xy+y2=()2﹣3×+()2,=+﹣3,=50+48﹣3,=95.故填95.点评:本题考查二次根式的化简,先相加减再分母有理化从而求得.15.(4分)(2014•包头模拟)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为2.考点:轴对称-最短路线问题;正方形的性质.专题:计算题;压轴题.分析:由于点B与D关于AC对称,所以连接BD,与AC的交点即为F点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.解答:解:连接BD,与AC交于点F.∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为12,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.故所求最小值为2.故答案为:2.点评:此题主要考查轴对称﹣﹣最短路线问题,要灵活运用对称性解决此类问题.16.(4分)(2010•十堰)如图,n+1个上底、两腰长皆为1,下底长为2的等腰梯形的下底均在同一直线上,设四边形P1M1N1N2面积为S1,四边形P2M2N2N3的面积为S2,…,四边形P n M n N n N n+1的面积为S n,通过逐一计算S1,S2,…,可得S n=.考点:相似三角形的判定与性质;等腰梯形的性质.专题:压轴题;规律型.分析:先求出一个小梯形的高和面积,再根据相似三角形对应高的比等于对应边的比求出四边形P n M n N n N n+1上方的小三角形的高,然后用小梯形的面积减上方的小三角形的面积即可.解答:解:如图,根据题意,小梯形中,过D作DE∥BC交AB于E,∵上底、两腰长皆为1,下底长为2,∴AE=2﹣1=1,∴△AED是等边三角形,∴高h=1×sin60°=,S梯形=×(1+2)×=,设四边形P n M n N n N n+1的上方的小三角形的高为x,根据小三角形与△AM n N n相似,AN n=2n,由相似三角形对应边上高的比等于相似比,可知,解得x==,∴S n=S梯形﹣×1×,=﹣.点评:解答本题关键在于看出四边形P n M n N n N n+1的面积等于一个小梯形的面积减掉它上方的小积,而小三角形的面积可以利用相似三角形的性质求出,此题也就解决了.三、解答题(共8小题,共66分)17.(6分)(2009•江苏)计算:(1);(2).考点:分式的混合运算;绝对值;算术平方根;零指数幂.分析:按照实数的运算法则依次计算,注意负指数为正指数的倒数;任何非0数的0次幂等于1.解答:解:(1)原式=2﹣1+2=3.(2)原式=.点评:(1)本题是一道常见的且难度不大的实数运算基础题,主要考查绝对值、零次方和算术平方根,属于容易题.一道难度中等的分式混合运算题,其运算顺序是先将括号内通分,再将分式除法转化为分式乘法.本题通分后容易错的地方时将多项式a2﹣1,a2﹣2a+1因式分解错误.18.(6分)(2014•上城区校级模拟)已知关于x的函数y=(k﹣1)x2+4x+k的图象与坐标轴只有2个交点,求k的值.考点:抛物线与x轴的交点.专题:计算题.分析:当k﹣1=0时,函数为一次函数,与坐标轴有两个交点,当k﹣1≠0时,函数为二次函数,若△=0,则抛物线与x轴有一个交点,与y轴有一个交点,若图象经过原点,抛物线与坐标轴有两个交点.解答:解:分情况讨论:(ⅰ)k﹣1=0时,得k=1.此时y=4x+1与坐标轴有两个交点,符(ⅱ)k﹣1≠0时,得到一个二次函数.①抛物线与x轴只有一个交点,△=16﹣4k(k﹣1)=0,解得k=;②抛物线与x轴有两个交点,其中一个交点是(0,0),把(0,0)代入函数解析式,得k=0.∴k=1或0或.点评:本题考查了一次函数、二次函数的图象与坐标轴的交点情况.关键是理解题意,利用分类讨论的思想逐步解答.19.(6分)(2015•宜兴市二模)“知识改变命运,科技繁荣祖国”.我区中小学每年都要举办一届科技比赛.如图为我区某校2011年参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图(1)该校参加机器人、建模比赛的人数分别是4人和6人;(2)该校参加科技比赛的总人数是24人,电子百拼所在扇形的圆心角的度数是120°,并把条形统计图补充完整;(3)从全区中小学参加科技比赛选手中随机抽取80人,其中有32人获奖.今年我区中小学参加科技比赛人数共有2485人,请你估算今年参加科技比赛的获奖人数约是多少人?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)由图知参加机器人、建模比赛的人数;(2)参加建模的有6人,占总人数的25%,根据总人数=参加航模比赛的人数÷25%,算出电子百拼比赛的人数,再算出所占的百分比×360°;(3)先求出随机抽取80人中获奖的百分比,再乘以我市中小学参加科技比赛比赛的总人数.解答:解:(1)由条形统计图可得:该校参加机器人、建模比赛的人数分别是4人,6人;故答案为:4,6.(2)该校参加科技比赛的总人数是:6÷25%=24,电子百拼所在扇形的圆心角的度数是:(24﹣6﹣6﹣4)÷24×360°=120°,故答案为:24,120.(3)32÷80=0.4,0.4×2485=994,答:今年参加科技比赛比赛的获奖人数约是994人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(6分)(2014•日照三模)如图,已知在等腰△ABC中,∠A=∠B=30°,过点C作CD⊥AC 交AB于点D.(1)尺规作图:过A,D,C三点作⊙O(只要求作出图形,保留痕迹,不要求写作法);(2)求证:BC是过A,D,C三点的圆的切线.考点:切线的判定;等腰三角形的性质.专题:作图题.分析:(1)由已知得到△ACD是直角三角形,那么过A,D,C三点作⊙O,根据圆周角是直角所对的弦是直径得,AD为⊙O的直径,所以作AD的中点O即为圆心,再以点O为圆心,OA长为半径即可作出⊙O.(2)先连接OC,已知已知在等腰△ABC中,∠A=∠B=30°,能求出∠ACB=120°,在⊙O中OA=OC,得到,∠ACO=∠A=30°,那么∠BCO=∠ACB﹣∠ACO=120°﹣30°=90°,从而推出BC是过A,D,C三点的圆的切线.解答:解:(1)作出圆心O,以点O为圆心,OA长为半径作圆;(2)证明:∵CD⊥AC,∴∠ACD=90°.∴AD是⊙O的直径连接OC,∵∠A=∠B=30°,∴∠ACB=120°,又∵OA=OC,∴∠ACO=∠A=30°,∴∠BCO=∠ACB﹣∠ACO=120°﹣30°=90°.∴BC⊥OC,∴BC是⊙O的切线.点评:此题考查的是等腰三角形的性质和切线的判定及尺规作图,关键是首先确定AD为直径,再作圆.根据已知推出BC⊥OC.21.(8分)(2013•青岛校级自主招生)如图,一艘渔船位于海洋观测站P的北偏东60°方向,渔船在A处与海洋观测站P的距离为60海里,它沿正南方向航行一段时间后,到达位于海洋观测站P的南偏东45°方向上的B处.求此时渔船所在的B处与海洋观测站P的距离(结果保留根号).考点:解直角三角形的应用-方向角问题.专题:应用题;压轴题.分析:过点P作PC⊥AB,垂足为C,根据题意可得∠APC=30°,∠BPC=45°,AP=60,然后在Rt△APC中可表示出PC,在Rt△PCB中可表示出PB,进而可得出答案.解答:解:过点P作PC⊥AB,垂足为C,根据题意可得出:∠APC=30°,∠BPC=45°,AP=60,在Rt△APC中,∵cos∠APC=,∴PC=PA•cos∠APC=30,在Rt△PCB中,∵,∴.答:当渔船位于P南偏东45°方向时,渔船与P的距离是30海里.点评:本题考查解直角三角形的应用,有一定的难度,解答本题的关键是理解方向角含义,正确记忆三角函数的定义.22.(10分)(2008•福州)如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.考点:二次函数综合题.专题:压轴题.分析:(1)△BDA沿BD翻折,使点A落在BC边上的点F处,可以知道四边形ADFB是正方形,因而BF=AB=OC= 2,则CF=3﹣2=1,因而E、F的坐标就可以求出.(2)顶点为F 的坐标根据第一问可以求得是(1,2),因而抛物线的解析式可以设为y=a (x﹣1)2+2,以点E、F、P 为顶点的三角形是等腰三角形,应分EF是腰和底边两种情况进行讨论.当EF是腰,EF=PF时,已知E、F点的坐标可以求出EF的长,设P点的坐标是(0,n),根据勾股定理就可以求出n的值.得到P的坐标.当EF是腰,EF=EP时,可以判断E到y 轴的最短距离与EF的大小关系,只有当EF大于E 到y轴的距离,P才存在.当EF是底边时,EP=FP,根据勾股定理就可以得到关于n的方程,就可以解得n的值.(3)作点E关于x轴的对称点E′,作点F关于y轴的对称点F′,连接E′F′,分别与x轴、y轴交于点M,N,则点M,N就是所求点.求出线段E′F′的长度,就是四边形MNFE的周长的最小值.解答:解:(1)E(3,1);F(1,2).(2)在Rt△EBF中,∠B=90°,∴EF=.设点P的坐标为(0,n),其中n>0,∵顶点F(1,2),∴设抛物线解析式为y=a(x﹣1)2+2(a≠0).①如图1,当EF=PF时,EF2=PF2,∴12+(n﹣2)2=5.解得n1=0(舍去);n2=4.∴P(0,4).∴4=a(0﹣1)2+2.解得a=2.∴抛物线的解析式为y=2(x ﹣1)2+2②如图2,当EP=FP时,EP2=FP2,∴(2﹣n)2+1=(1﹣n)2+9.解得(舍去)③当EF=EP 时,EP=,这种情况不存在.综上所述,符合条件的抛物线解析式是y=2(x﹣1)2+2.(3)存在点M,N,使得四边形MNFE的周长最小.如图3,作点E关于x轴的对称点E′,作点F关于y 轴的对称点F′,连接E′F′,分别与x轴、y轴交于点M,N,则点M,N就是所求点.∴E′(3,﹣1),F′(﹣1,2),NF=NF′,ME=ME′.∴BF′=4,BE′=3.∴FN+NM+M E=F′N+NM+ ME′=E′F′=.又∵,∴FN+MN+M E+EF=5+,此时四边形MNFE的周长最小值是.点评:本题主要考查了待定系数法求函数解析式,求线段的和最小的问题基本的解决思路是根据对称转化为两点之间的距离的问题.23.(10分)(2008•黄石)某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A型利润B型利润甲店200 170乙店160 150(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W 关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?考点:一次函数的应用;一元一次不等式组的应用.专题:方案型.分析:(1)首先设甲店B型产品有(70﹣x),乙店A型有(40﹣x)件,B型有(x﹣10)件,列出不等式方程组求解即可;(2)由(1)可得几种不同的分配方案;(3)依题意得出W与a的关系式,解出不等式方程后可得出使利润达到最大的分配方案.解答:解:依题意,分配给甲店A型产品x件,则甲店B型产品有(70﹣x)件,乙店A型有(40﹣x)件,B型有{30﹣(40﹣x)}件,则(1)W=200x+170(70﹣x)+160(40﹣x)+150(x﹣10)=20x+16800.由,解得10≤x≤40.(2)由0≥17560,∴x≥38.∴38≤x≤40,x=38,39,40.∴有三种不同的分配方案.方案一:x=38时,甲店A型38件,B型32件,乙店A 型2件,B型28件;方案二:x=39时,甲店A型39件,B型31件,乙店A 型1件,B型29件;方案三:x=40时,甲店A型40件,B型30件,乙店A 型0件,B型30件.(3)依题意:200﹣a>170,即a<30,W=(200﹣a)x+170(70﹣x)+160(40﹣x)+150(x ﹣10)=(20﹣a)x+16800,(10≤x≤40).①当0<a<20时,20﹣a>0,W随x增大而增大,∴x=40,W有最大值,40件,B型30件,乙店A型0件,B型30件,能使总利润达到最大;②当a=20时,10≤x≤40,W=16800,符合题意的各种方案,使总利润都一样;③当20<a<30时,20﹣a<0,W随x增大而减小,∴x=10,W有最大值,即甲店A型10件,B型60件,乙店A型30件,B型0件,能使总利润达到最大.点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题意,(1)根据A型、B型产品都能卖完,列出不等式关系式即可求解;(2)由(2)关系式,结合总利润不低于17560元,列不等式解答;(3)根据a的不同取值范围,代入利润关系式解答.24.(14分)(2015•攀枝花模拟)已知:直角梯形OABC中,BC∥OA,∠AOC=90°,以AB 为直径的圆M交OC于D、E,连接AD、BD、BE.(1)在不添加其他字母和线的前提下,直接写出图1中的两对相似三角形.△OAD∽△CDB,△ADB∽△ECB;(2)直角梯形OABC中,以O为坐标原点,A在x轴正半轴上建立直角坐标系(如图2),若抛物线y=ax2﹣2ax﹣3a(a<0)经过点A、B、D,且B为抛物线的顶点.①写出顶点B的坐标(用a的代数式表示)(1,﹣4a);②求抛物线的解析式;③在x轴下方的抛物线上是否存在这样的点P:过点P做PN⊥x轴于N,使得△PAN与△OAD 相似?若存在,求出点P的坐标;若不存在,说明理由.考点:二次函数综合题.专题:综合题;压轴题.分析:(1)由圆周角定理知:∠ADB=90°,首先可联想到的相似三角形是△BCD和△DOA;易知∠BAD=∠BED。