09 工程力学-梁的弯曲变形
工程力学弯曲变形教学课件

复合弯曲
构件在多个方向上的弯曲,如螺 旋弹簧。
特点
弯曲构件应力状态复杂,难以直 观描述。
弯曲变形的应用领域
建筑结构
如板材、梁、柱等结构的设计。
管道工程
例如油气管道的输送、变形与控制。
车辆工程
比如汽车、火车的车体、悬挂、轮轴等的设计。
机械制造
如转子、齿轮的制造及加工工艺的设计。
工程力Байду номын сангаас弯曲变形的研究方法
工程实例分析:高速铁路钢轨的弯曲变形
1 设计要求
2 轨道变形及寿命
3 分析方法
轨道线形和理论分析准确, 轨道表面平整,满足高速 列车的舒适性要求。
铁路轨道在使用过程中会 发生弯曲变形和垂向变形, 会影响轨道寿命和车辆行 驶安全。
载荷计算、应力分析、变 形分析、疲劳寿命分析、 几何形状优化等方法。
弯曲变形未来发展趋势
2 应用
纯弯曲在平面构件及杆件的弯曲变形分析有广泛应用,而复合弯曲则常见于薄壳结构的 变形分析。
工程力学对弯曲变形的判定准则
1
最大应力准则
理想的弯曲构件上,弯曲应力分布处,最大应力是许容应力的一定倍数。
2
最大应变准则
理想的弯曲构件上弯曲应变分布处,最大应变是许容应变的一定倍数。
3
能量方法
包括弯曲形态能、应变能等计算方法。
2 影响
材料弹性模量越大,弯曲变形的刚度越大;模量越小,刚度越小。
不同材料的弯曲特性
铝合金
木材
弯曲特性良好,重量轻,易加工, 耐腐蚀性能好。
弯曲特性较好,在建筑结构、家 具等领域有广泛应用。
钢材
弯曲特性相对较强,适用于制造 各种构件。
基础理论:欧拉梁理论
梁纯弯曲变形

梁纯弯曲变形引言梁纯弯曲变形是工程力学中的一个重要概念。
在结构力学和土木工程中,梁是一种常见的结构元素,承受着各种外部荷载。
当外部荷载作用于梁上时,梁会发生变形。
本文将探讨梁在纯弯曲状态下的变形特性和相关的理论基础。
纯弯曲的概念纯弯曲是指梁所受的外部荷载仅产生弯矩作用,而不产生剪力作用。
在梁的纵轴上,上部受拉,下部受压,梁在这种状态下发生弯曲变形。
纯弯曲情况下,梁的截面仅发生弯矩引起的形状变化,并不会发生剪切变形。
纯弯曲对于大跨度的梁和悬臂梁等结构具有重要意义。
纯弯曲变形的理论基础梁纯弯曲变形的理论基础可以通过两种方法进行分析:理论分析和数值分析。
理论分析理论分析方法中,我们可以利用梁的弯矩-曲率关系来分析纯弯曲变形。
弯矩-曲率关系描述了梁截面上的弯矩和截面曲率之间的关系。
根据弯矩-曲率关系,我们可以计算出梁的曲率分布,从而得到梁的变形情况。
此外,利用材料力学中的应力-应变关系,还可以计算出梁截面上的应力分布。
数值分析数值分析方法中,我们可以使用有限元方法来模拟梁的纯弯曲变形。
有限元方法将梁划分为许多小的单元,通过求解弯矩和力的平衡方程,可以得到梁单元上的位移和应力分布。
通过将所有单元的位移组合起来,可以得到整个梁的变形情况。
纯弯曲变形的计算纯弯曲变形的计算依赖于梁的几何形状、材料特性和外部荷载。
常见的计算方法包括:基于梁理论的计算基于梁理论的计算方法适用于简单、均匀截面的梁。
在这种方法中,我们可以使用梁的截面形状和材料性质,通过弯矩-曲率关系计算出梁的曲率分布。
进一步,可以计算出梁的位移、剪力和应力等参数。
基于有限元分析的计算基于有限元分析的计算方法适用于复杂截面的梁。
在这种方法中,我们将梁划分为许多小的单元,并求解每个单元上的位移和应力分布。
通过将所有单元的位移组合起来,可以得到整个梁的变形情况。
梁纯弯曲变形的应用梁纯弯曲变形的应用广泛,特别是在土木工程和结构设计中。
通过对梁的纯弯曲变形进行分析,可以确定梁的合适截面形状和尺寸,以满足其承受的外部荷载要求。
第九章梁的弯曲变形

a xl
在 x l / 2处
y 0.5l
Fb
(3l 2 4b 2 ) 48 EI
yqx(l32lx2x3) 2E 4 I
A
B
ql3 24EI
x
l 2
ymax
5ql4 384EI
梁的简图
第九章 梁的弯曲变形
挠曲线方程
y6M EI(xllx)2(lx)
yC1
aB
qa4 2EI
yC2
qa4 8EI
3)叠加 y C y C 1 y C 2 2 q E 4a 8 I q E 4a I 5 8 q E 4( a I)
第九章 梁的弯曲变形
例9-5 悬臂梁跨度为 l =2m,截面为矩形,宽b = 100mm,高h =120mm,材料的弹性模量E=210GPa, 梁上载荷如图所示,求自由端A的挠度。
挠曲线方程 y f (x)
第九章 梁的弯曲变形
二、挠度和转角
挠度:截面形心线位 移的垂直分量称为该 截面的挠度,用 y 表 示,一般用 ymax 表示 全梁的最大挠度。
转角:横截面绕中性轴转动产生了角位移,此角
位移称转角,用 表示。小变形时,转角 很小,
则有以下关系:
tanydy
1
(x)
M(x) EI
曲线 y f(x)的曲率
1
(x)
(1yy2)3/2
二阶小量
y (1y2)3/2
M(x) EI
挠曲轴线 近似微分方程
y M(x) EI
第九章 梁的弯曲变形
挠曲轴线 近似微分方程
y
梁的弯曲(工程力学课件)

02 弯曲的内力—弯矩与剪力
3-3截面
M 3 q 2a a 2qa 2
4-4截面
qa 2
5qa 2
2
M 4 FB 2a M C
3qa
2
2
5-5截面
qa 2
M 5 FB 2a
2
02 弯曲的内力—弯矩与剪力
由以上计算结果可以看出:
(1)集中力作用处的两侧临近截面的弯矩相同,剪力不同,说明剪力在
后逐段画出梁的剪力图和弯矩图。
04 弯矩、剪力与载荷集度之间的关系
例8 悬臂梁AB只在自由端受集中力F作用,如图(a)所示,
试作梁的剪力图和弯矩图。
解:
1-1截面: Q1=-F M1=0
2-2截面: Q1=-F M1=-Fl
04 弯矩、剪力与载荷集度之间的关系
例9 简支梁AB在C点处受集中力F作用,如图(a)所示,作此梁的剪力
(2)建立剪力方程和弯矩方程;
(3)应用函数作图法画出剪力Q(x),弯矩M(x)的图线,即为剪力
图和弯矩图
03 弯矩图和剪力图
例9.3 悬臂梁AB在自由端B处受集中载荷F作用,如图(a)所示,试作
其剪力图和弯矩图。
解 :(1)建立剪力方程和弯矩方程
() = ( < < )
() = −( − ) ( ≤ ≤ )
方程和弯矩方程,并作剪力图和弯矩图。
解:(1)求支反力
(2)建立剪力方程和弯矩方程
03 弯矩图和剪力图
(3)绘制剪力图、弯矩图
计算下列5个截面的弯矩值:
03 弯矩图和剪力图
二、用简便方法画剪力图、弯矩图 (从梁的左端做起)
1.无载荷作用的梁段上 剪力图为水平线。 弯矩图为斜直线(两点式画图)。
工程力学--梁的弯曲

2013-7-25
11
非对称弯曲—— 若梁不具有纵对称面,或者,梁虽具有纵 对称面但外力并不作用在对称面内,这种
弯曲则统称为非对称弯曲。
下面几节中,将以直梁的平面弯曲为主,讨论梁的应力和变 形计算。
2013-7-25
12
第二节 梁的计算简图
一 梁的计算简图 梁的支承条件与载荷情况一般都比较复杂,为了便于
M
Q
1、Q 和 M 计算
a
m
P
A
m x
B
a
m
P
用截面法假想地在
横截面mm处把梁分
A
m x
B
为两段,先分析梁左段。
y
RA
m
Q
C
x
A
x
m
a
P
由平衡方程得
A
m
y0
RA Q 0
B
m x
可得
Q = RA
y
RA
Q 称为 剪力
A
x
m
Q
C
m
x
a
P
由平衡方程
m
mC 0
A
m x
B
M RA x 0
m
dx
使dx 微段有 左端向下而右端向上 的相对错动时,横截面 m-m 上 的剪力为负 。或使dx微段有逆时针
m
m
dx
转动趋势的剪力为负。
弯矩符号
当dx 微段的弯曲下凸 (即该段的下半部受拉 )时, 横截面m-m 上的弯矩为正; 当dx 微段的弯曲上凸
+
M m
M
m (受拉)
_
m
(即该段的下半部受压)时,
梁的弯曲变形

第7章-梁的弯曲变形(总32页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第7章 梁的弯曲变形与刚度梁弯曲变形的基本概念7.1.1 挠度在线弹性小变形条件下,梁在横力作用时将产生平面弯曲,则梁轴线由原来的直线变为纵向对称面内的一条平面曲线,很明显,该曲线是连续的光滑的曲线,这条曲线称为梁的挠曲线(图7-2)。
梁轴线上某点在梁变形后沿竖直方向的位移(横向位移)称为该点的挠度。
在小变形情况下,梁轴线上各点在梁变形后沿轴线方向的位移(水平位移)可以证明是横向位移的高阶小量,因而可以忽略不计。
挠曲线的曲线方程:)(x w w = (7-1)称为挠曲线方程或挠度函数。
实际上就是轴线上各点的挠度,一般情况下规定:挠度沿y 轴的正向(向上)为正,沿y 轴的负向(向下)为负(图7-4)。
必须注意,梁的坐标系的选取可以是任意的,即坐标原点可以放在梁轴线的任意地方,另外,由于梁的挠度函数往往在梁中是分段函数,因此,梁的坐标系可采用整体坐标也可采用局部坐标。
7.1.2 转角梁变形后其横截面在纵向对称面内相对于原有位置转动的角度称为转角(图7-3)。
转角随梁轴线变化的函数:)(x θθ= (7-2)称为转角方程或转角函数。
图7-3 梁的转角)(x 图7-2梁的挠曲线由图7-3可以看出,转角实质上就是挠曲线的切线与梁的轴线坐标轴x 的正方向之间的夹角。
所以有:xx w d )(d tan =θ,由于梁的变形是小变形,则梁的挠度和转角都很小,所以θ和θtan 是同阶小量,即:θθtan ≈,于是有:xx w x d )(d )(=θ (7-3) 即转角函数等于挠度函数对x 的一阶导数。
一般情况下规定:转角逆时针转动时为正,而顺时针转动时为负(图7-4)。
需要注意,转角函数和挠度函数必须在相同的坐标系下描述,由式(7-3)可知,如果挠度函数在梁中是分段函数,则转角函数亦是分段数目相同的分段函数。
工程力学第9章 梁弯曲时的刚度计算
w
x
qx
F
x
9.1 挠曲线近似微分方程
9.1.2 挠度和转角的关系
◆挠曲线方程 : w f x
w
挠曲线
w
x
qx
F
x
tan dw
dx
dw
dx
9.1.3 挠曲线近似微分方程
一、挠曲线的曲率公式
1M EI
1
x
M x
EI
d2w
1
x
6EI 2l
l 2
2l 2
l 2
2
11Fl3 96EI
未知约束力单独作用引起的B处挠度
wB FB
FB 2l 3
48EI
FBl 3 6EI
将上述结果代入式(b),得到补充方程
11Fl3 FBl3 0 96EI 6EI
w Mex x2 l2 6EIl
(c)
Me 3x2 l2 6EIl
(d)
(4)计算最大挠度与截面的转角
作出梁的弯矩图如下图所示,全梁弯矩为正。其最大 挠度处的转角为零。故由式(c)有
dw Me 3x2 l2 0 dx 6EIl
从而得最大挠度所在截面的坐标为
2
在集中力 F 单独作用下,大梁跨度中点C的挠度由教材表
7–1第5栏中查出为
wC
F
Fl 3 48EI
将以上结果叠加,即得在均布载荷 和q 集中力 的F 共同作用
下,大梁跨度中点C的挠度
梁的弯曲(应力、变形)
梁的弯曲类型
01
02
03
自由弯曲
梁在受到外力作用时,其 两端不受约束,可以自由 转动。
简支弯曲
梁在受到外力作用时,其 一端固定,另一端可以自 由转动。
固支弯曲
梁在受到外力作用时,其 两端均固定,不能发生转 动。
梁的弯曲应用场景
桥梁工程
桥梁中的梁常常需要进行弯曲变形以承受车辆和 行人等载荷。
稳定性。
06 梁的弯曲研究展望
CHAPTER
新材料的应用研究
高强度材料
随着材料科学的进步,高强度、轻质的新型 材料不断涌现,如碳纤维复合材料、钛合金 等。这些新材料在梁的弯曲研究中具有广阔 的应用前景,能够显著提高梁的承载能力和 刚度。
功能材料
新型功能材料如形状记忆合金、压电陶瓷等, 具有独特的力学性能和功能特性,为梁的弯 曲研究提供了新的思路和解决方案。
反复的弯曲变形可能导致疲劳裂纹的 产生和扩展,影响结构的疲劳寿命。
对使用功能的影响
弯曲变形可能导致结构使用功能受限 或影响正常使用。
04 梁的弯曲分析方法
CHAPTER
理论分析方法
弹性力学方法
01
基于弹性力学理论,通过数学公式推导梁在弯曲状态下的应力
和变形。
能量平衡法
02
利用能量守恒原理,通过计算梁在不同弯曲状态下的能量变化,
详细描述
常见的截面形状有矩形、工字形、圆形等。应根据梁的用途和受力情况选择合适的截面形状。例如, 对于承受较大弯矩的梁,采用工字形截面可以有效地提高梁的承载能力和稳定性。
支撑结构优化
总结词
支撑结构是影响梁弯曲性能的重要因素,合理的支撑结构可以提高梁的稳定性,减小梁 的变形。
工程力学习题库-弯曲变形
第8章 弯曲变形本章要点【概念】平面弯曲,剪力、弯矩符号规定,纯弯曲,中性轴,曲率,挠度,转角。
剪力、弯矩与荷载集度的关系;弯曲正应力的适用条件;提高梁的弯曲强度的措施;运用叠加法求弯曲变形的前提条件;截面上正应力分布规律、切应力分布规律。
【公式】 1. 弯曲正应力 变形几何关系:yερ=物理关系:Ey σρ=静力关系:0N AF dA σ==⎰,0y AM z dA σ==⎰,2zz AAEI EM y dA y dA σρρ===⎰⎰中性层曲率:1MEIρ=弯曲正应力应力:,My Iσ=,max max z M W σ=弯曲变形的正应力强度条件:[]maxmax zM W σσ=≤ 2. 弯曲切应力矩形截面梁弯曲切应力:bI S F y z z S ⋅⋅=*)(τ,A F bh F S S 2323max ==τ工字形梁弯曲切应力:dI S F y z z S ⋅⋅=*)(τ,A F dh F S S ==max τ圆形截面梁弯曲切应力:bI S F y z z S ⋅⋅=*)(τ,A F S 34max =τ弯曲切应力强度条件:[]ττ≤max3. 梁的弯曲变形梁的挠曲线近似微分方程:()''EIw M x =-梁的转角方程:1()dwM x dx C dx EIθ==-+⎰ 梁的挠度方程:12()Z M x w dx dx C x C EI ⎛⎫=-++ ⎪⎝⎭⎰⎰ 练习题一. 单选题1、 建立平面弯曲正应力公式zI My /=σ,需要考虑的关系有()。
查看答案A 、平衡关系,物理关系,变形几何关系B 、变形几何关系,物理关系,静力关系;C 、变形几何关系,平衡关系,静力关系D 、平衡关系, 物理关系,静力关系;2、 利用积分法求梁的变形,不需要用到下面那类条件()来确定积分常数。
查看答案A 、平衡条件B 、边界条件C 、连续性条件D 、光滑性条件3、 在图1悬臂梁的AC 段上,各个截面上的()。
梁的弯曲变形
座处的截面上y=0,固定端的截面上θ=0,y=0;二是根据整个挠曲线
的光滑及连续性,得到各段梁交界处的变形连续条件。
梁的弯曲变形
1.3 用叠加法求梁的变形
由于简单荷载作用下的挠度和转角可以 直接在表8-1中查得,而梁的变形与荷载呈线 性关系,因此,可以用叠加法求梁的变形。即 先分别计算每种荷载单独作用下所引起的转 角和挠度,然后再将它们代数叠加,就得到梁 在几种荷载共同作用下的转角和挠度。
2. 用积分法求梁的变形
对于等截面梁,EI=常数,式(8-23)可改写为
EIy″=-Mx
积分一次,得
EIθ=EIy′=-∫Mxdx+C
(8-24)
再积分一次,即得
EIy= -∫ ∫ Mxdxdx+Cx+D
(8-25)
式(8-24)、式(8-25)中的积分常数C和D,可通过梁的边界条件来决定。
边界条件包括两种情况:一是梁上某些截面的已知位移条件,如铰链支
梁的弯曲变形
梁的弯曲变形
梁的弯曲变形
梁的弯曲变形
梁的弯曲变形
【例8-5】
图8-26
梁的弯曲变形
工程力学
为了得到挠度方程和转角方程,首先需推出一个描述弯 曲变形的基本方程——挠曲线近似微分方程。弯曲变形挠曲 线的曲率表达式为
(8-22) 式(8-22)为研究梁变形的基本公式,用来计算梁变形后中 性层(或梁轴线)的曲率半径ρ。该式表明:中性层的曲率1ρ 与弯矩M成正比,与EI成反比。EI称为梁的抗弯刚度,它反映了 梁抵抗弯曲变形的能力。
2. 转角
梁的弯曲变形
梁变形时,横截面还将绕其中性轴 转过一定的角度,即产生角位移,梁任一 横截面绕其中性轴转过的角度称为该截 面的转角,用符号θ表示,单位为rad,规定 顺时针转为正。例如,图8-24所示的C处 截面的转角为θC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EI f ( x) ( M ( x)) dx C1
EIf ( x) ( ( M ( x)) dx)dx C1 x C2
2.位移边界条件 A C P B P D
支点位移条件:
fA 0
连续条件: 光滑条件:
fB 0
fC fC
fD 0
D 0
( x ) M ( x ) f EI
f
M<0 f ( x) 0
…… (2)
式(2)就是挠曲线近似微分方程。
对于等截面直梁,挠曲线近似微分方程可写成如下形式:
EIf ( x) M ( x)
二、求挠曲线方程(弹性曲线)
1.微分方程的积分
EIf ( x) M ( x)
刚度:
M (X ) f EI z
稳定性: 都与内力和截面性质有关。
一、选择梁的合理截面 矩形木梁的合理高宽比 h
R
北宋李诫于1100年著« 营造法式 » 一书中指出:
矩形木梁的合理高宽比 ( h/b = ) 1.5
b
英(T.Young)于1807年著« 自然哲学与机械技术讲义 » 一书中指出:
第 9章
§9–1 概述
弯曲变形
§9–2 梁的挠曲线近似微分方程及其积分 §9–3 按叠加原理求梁的挠度与转角 §9–4 梁的刚度校核
§9–5 如何提高梁的承载能力
§9-1 概 述
研究范围:等直梁在对称弯曲时位移的计算。 研究目的:①对梁作刚度校核;
②解超静定梁(变形几何条件提供补充方程)。
一、度量梁变形的两个基本位移量
f max f L L
f max 5.19 106 m f 105 m
max 0.423 104 0.001
§9-6
强度:正应力: 剪应力:
如何提高梁的承载能力
M max Wz
* QSz bIz
q0 C x 0.5L dx 0.5L b x
2bq0 dPq ( x)dx db L
由梁的简单载荷变形表, 查简单载荷引起的变形。
(dP)b(3L2 4b 3 ) f dPC 48EI
f
叠加
qb2 (3L2 4b 3 ) db 24EI
f qC f dPC
0.5 L
0
2 P L a 1 f1C 1B a 16EI
= +
a P2
P1=1kN B
C
2 B 0
3 B
P2 a 3 f 2C 3EI
图2
P2 A
图3
M C
ML LaP2 3EI 3EI
+
D
B
P2 La 2 f 3C 3 B a 3EI
L=400mm
A D B
a=0.1m P
1.挠度:横截面形心沿垂直于轴线方向的线位移。用v表示。 与 f 同向为正,反之为负。 P 2.转角:横截面绕其中性轴转 C x 动的角度。用 表示,顺时 v f C1 针转动为正,反之为负。
二、挠曲线:变形后,轴线变为光滑曲线,该曲线称为挠曲线。
其方程为: v =f (x)
小变形
三、转角与挠曲线的关系:
二、结构形式叠加(逐段刚化法):
P
A C
q 例4 按叠加原理求A点转角和C点 B 挠度。
a
P A
a
解、载荷分解如图 由梁的简单载荷变形表, 查简单载荷引起的变形。
=
B
PA
A
q B
Pa 4 EI
2
Pa3 f PC 6 EI
+
qa3 qA 3 EI
5qL4 f qC 24EI
P
z
G
M ( x) max ( x) [ ] W ( x)
二、采用变截面梁 最好是等强度梁,即
若为等强度矩形截面,则高为 6 M ( x) h( x ) x b[ ] Q Q [ ] h( x) 1.5 同时 max 1.5 b[ ] bh( x)
P
三、合理布置外力(包括支座),使 M max 尽可能小。 P
例1 求下列各等截面直梁的弹性曲线、最大挠度及最大转角。 P 解: L 建立坐标系并写出弯矩方程
M ( x) P( x L)
x
f
写出微分方程的积分并积分 应用位移边界条件求积分常数
EIf M ( x) P( L x)
1 EI f P ( L x) 2 C1 2
f ( x)
P ( L x)3 3L2 x L3 6 EI
最大挠度及最大转角
PL2 max ( L) 2 EI
PL3 f max f ( L) 3EI
解:建立坐标系并写出弯矩方程
P( x a ) M ( x) 0 (0 x a) (a x L)
qb2 (3L2 4b 3 ) qL4 db 24EIL 240EI
例6 结构形式叠加(逐段刚化法) 原理说明。 L1 L2 P A f L1 A
刚化AC段C
C f
B x
f f1 f 2
等价
C f 等价 A L2 P Bx f1
=
L2 P B
+
L1
A
L2
刚化BC段
P
B
L1
C
P L2
M B x
D12
4
2 2 2 a2 0.8 1.6a2 时, a2 1.05D1
Wz 5 4.57Wz1
1.6a2
2a2 z
I z 5 9.55I z1
max 2.3 m (= Q A ) f
0.8a2 a2
工字形截面与框形截面类似。
2、根据材料特性选择截面形状 如铸铁类材料,常用T字形类的截面,如下图:
a L f
P
x
写出微分方程的积分并积分
P( a x) EIf 0
(0 x a) ( a x L)
1 3 P ( a x ) C1 x C2 EIf 6 D1 x D2
1 2 P(a x) C1 EIf 2 D1
C右
或写成 fC左 fC右
或写成 C 左
C C
讨论:
①适用于小变形情况下、线弹性材料、细长构件的平面弯曲。 ②可应用于求解承受各种载荷的等截面或变截面梁的位移。 ③积分常数由挠曲线变形的几何相容条件(边界条件、连续条 件)确定。
④优点:使用范围广,直接求出较精确; 缺点:计算较繁。
C
f
f2
§9-4
一、梁的刚度条件
f max f L L
梁的刚度校核
1 1 f (对土建工程 : ( ~ )) 250 1000 L
max
其中[]称为许用转角;[f/L]称为许用挠跨比。通常依此条件 进行如下三种刚度计算: 、校核刚度:
矩形木梁的合理高宽比 为
h h 2 时, 强度最大 ; 3 时, 刚度最大。 b b
一般的合理截面 1、在面积相等的情况下,选择抗弯模量大的截面 z D
Wz1
当
D 3
32
max
4Q 1.33 m 3A
D12
4
a 2时, a R; ( D1 / 2)
Wz 2
z
I z3
D 4
64
(10.84 )4.59I z1
max 2 m
当
D12
4
2a12时, a1 2 D1
bh2 4a13 Wz 4 1.67Wz1 6 6
4 bh3 8a1 Iz4 2.09I z1 12 12
2a1
z
max 1.5 m
a1
当
应用位移边界条件求积分常数
1 3 EIf (0) Pa C2 0 6 1 2 EI (0) Pa C1 0 2
f
a L
P
x
(a ) (a )
f (a ) f (a )
C1 D1
C1a C2 D1a D2
1 1 2 C1 D1 Pa ; C2 D2 Pa 3 2 6
f
L
x
§9-3
按叠加原理求梁的挠度与转角
一、载荷叠加:多个载荷同时作用于结构而引起的变形 等于每个载荷单独作用于结构而引起的变形的代数和。
( P1 P2 Pn ) 1 ( P1 ) 2 ( P2 ) n ( Pn )
f ( P1 P2 Pn ) f1 ( P1 ) f 2 ( P2 ) f n ( Pn )
A
D
B
C
P2
200mm P1=1kN
=
P2=2kN
=
a B P2 P2 M
A
D
B
P1=1kN
C
C
+
+
A
D
B
C P2=2kN
A
D
B
C
L=400mm
A D B
a=0.1m P
Cx
解:结构变换,查表求简单 载荷变形。
200mm P1=1kN f
A
图1
P2=2kN
C
D
B
1B
2 P L 1
16EI
+
D
B
2 P L P2 La 0.4 400 200 1 B ( )0.423 104 (弧度) 16EI 3EI 210 1880 16 3