变压器制作详细说明

合集下载

变压器基础知识制作流程详解

变压器基础知识制作流程详解

变压器基础知识制作流程详解员⼯专业知识培训教材确认审核作成承认⽇期作成⽇期2004 – 11 – 28初版页数共 53页⼯程部第⼀章变压器的概述变压器的最基本型式,包括两组绕有导线的线圈,并且彼此以电感⽅式称合⼀起。

当⼀交流电流(具有某⼀已知频率) 流于其中之⼀组线圈时,于另⼀组线圈中将感应出具有相同频率的交流电压,⽽感应的电压⼤⼩取决于两线圈耦合及磁交链的程度。

⼀般指连接交流电源的线圈称之为“⼀次线圈”(Primamary Coil) ;⽽跨于此线圈的电压称之为“⼀次电压”。

在⼆次线圈的感应电压可能⼤于或⼩于⼀次电压,是由⼀次线圈与⼆次线圈间的“匝数⽐”所决定的。

因此,变压器区分为升压与降压变压器两种。

⼤部份的变压器均有固定的铁⼼,其上绕有⼀次与⼆次的线圈。

基于铁材的⾼导磁性,⼤部份磁通量局限在铁⼼⾥,因此,两组线圈藉此可以获得相当⾼程度的磁耦合。

在⼀些变压器中,线圈与铁⼼⼆者间紧密地结合,其⼀次与⼆次电压的⽐值⼏乎与⼆者的线圈匝数⽐相同。

因此,变压器的匝数⽐,⼀般可作为变压器升压或降压的参考指标。

由于此项升压与降压的功能,使得变压器已成为现代化电⼒系统之⼀重要附属物,提升输电电压使得长途输送电⼒更为经济,⾄于降压变压器,它使得电⼒运⽤⽅⾯更加多元化,我们可以这⼳说,倘⽆变压器,则现代⼯业实⽆法达到⽬前发展的现况。

电⼦变压器除了体积较⼩外,在电⼒变压器与电⼦变压器⼆者之间,并没有明确的分界线。

⼀般提供60Hz电⼒⽹络的电源均⾮常庞⼤,它可能是涵盖有半个洲地区那般⼤的容量。

电⼦装置的电⼒限制,通常受限于整流、放⼤,与系统其它组件的能⼒,其中有些部份属放⼤电⼒者,但如果与电⼒系统发电能⼒相⽐较,它仍然归属于⼩电⼒的范围。

各种电⼦装备常⽤到变压器,理由是:提供各种电压阶层确保系统正常操作;提供系统中以不同电位操作部份得以电⽓隔离;对交流电流提供⾼阻抗,但对直流则提供低的阻抗;在不同的电位下,维持或修饰波形与频率响应。

变压器制作工艺流程

变压器制作工艺流程

变压器制作工艺流程嘿,朋友们!今天咱来聊聊变压器制作工艺流程,这可真是个有趣又神奇的事儿呢!你想啊,变压器就像一个神奇的能量魔法师,能把电压变来变去。

那它是怎么被制造出来的呢?首先得有铁芯呀,这铁芯就像是魔法师的魔法棒,是整个变压器的核心呢!那铁芯可不是随随便便就能弄出来的,得精心挑选材料,就像我们挑衣服一样,得选质量好的、合适的。

然后把这些材料加工成合适的形状,这可需要很高的手艺哦,就跟雕刻大师精心雕琢作品似的。

有了铁芯,接下来就是绕组啦!这绕组就像是魔法师身上缠绕的彩带,可重要了呢!绕组的制作得特别仔细,不能有一点差错,要不然这个魔法师可就不灵啦!把导线一圈一圈地绕上去,还得注意排列整齐,不能乱糟糟的。

然后呢,就是组装啦!把铁芯和绕组组合在一起,就像给魔法师穿上他的魔法袍一样。

这一步也不能马虎,得严丝合缝的,让它们完美结合。

再之后就是一些细节的处理啦,就好比给魔法师化个妆,让他更精神。

什么绝缘啊,固定啊,都得处理好,这样变压器才能安全可靠地工作呀。

你说这变压器制作是不是很神奇?就像我们盖房子一样,一砖一瓦都得精心搭建。

而且每个环节都不能出错,一旦出错,那可就麻烦啦!想象一下,如果没有变压器,我们的生活得变成啥样啊?那些电器可能都没法正常工作啦,那多不方便呀!所以说,变压器制作工艺流程可真是太重要啦!咱再想想,制作变压器的师傅们得多厉害呀,他们就像一群神奇的工匠,用自己的双手打造出这么厉害的东西。

他们得有多大的耐心和细心呀,才能把每一个变压器都做得那么完美。

总之呢,变压器制作工艺流程就是一个充满挑战和乐趣的过程,它让我们的生活变得更加丰富多彩。

我们可得好好珍惜这些变压器呀,它们可是为我们的生活默默奉献着呢!。

变压器制作规格书

变压器制作规格书

绕组层出线端子绕线规格匝数第一层
7-90.1*100励磁线9第二层
1/2/3-4/5/60.1*250励磁线4第三层10-120.1*100励磁线9电感量
磁芯
骨架
底板
耐压测试
温度等级
固定方式
出线方式CCS02404变压器制作规格书
骨架即出线端子。

图纸同名端说明:CLASS F 交代固定,点胶固定 泡Varnish 所有出线均加雪弗龙套管/尼龙绝缘管1.第二层绕组可以分三股出线,进线焊接1/2/3针,出线焊接4/5/6针。

2.严格按照图纸说明的同名端绕线。

3.各绕组层间必须加2层胶带隔离。

3.1脚打白点识别。

绕线制作细节备注
2-4脚 : 磨中柱保证15uH (误差保证正负百分之10)PQ3230 (DMR95/PC44铁氧体)(东磁或天通磁性)PQ3230_6PIN+6PIN 无1脚-7脚:1000VAC (频率:60Hz、时间:60s)密绕密绕
相关测试信息
名称:变压器
制作单位:******绕组结构疏绕方式密绕。

变压器制作工艺标准及要求

变压器制作工艺标准及要求

三:包胶带
▪ 包胶带的方式 ▪ 注意事项
1.包胶带的方式一般有以下几种
A.同組不同層的絕緣方法. B.不同層的絕緣方法. C.最外層的絕緣方法.
5~10mm
5mm 以 上
D.壓線膠帶的貼法
出線處的絕緣
2、注意事项
▪ 胶带须拉紧包平,不可翻起刺破,不可露铜 线.最外层胶带不宜包得太紧,以免影响产品 美观.
4、引线要领
▪ 4.1.1引线长度 按工程程图要 求控制,如须 绞线,长度须 多预留10%.
套管
飛線長度
多芯線時須絞線
10~15mm 吃錫
3mm CREEPAGE(安全間隔) min
▪ 4.1.2套管须深 入挡墙3mm以 上.(如图6.5)
套管 套管
飛線長度
多芯線時須絞線
10~15mm 吃錫
3mmimn CREEPAGE(安全間隔)
定之,且可在磁芯接合处点EPOXY胶固定,点胶后须阴干半 小时再置于120℃烤箱中烘烤一小时。包磁芯之固定胶带须 使用与线包颜色相同之胶带(图纸特殊要求除外), 厂家需符 合UL规格。 ▪ NOTE: 磁芯胶带起绕处与结束处;立式起绕于PIN端中央, 结束于中央;卧式起绕 于PIN1,结束于PIN 1。有加 COPPER则起绕于焊接点,结束于焊接点。
▪ 2.1铜箔绕法除焊点处必须压平外铜箔之起 绕边应避免压在BOBBIN转角处,须自 BOBBIN的中央处起绕,以防止第二层铜箔 与第一层间因挤压刺破胶布而形成短路。
錯誤
正確
BOBBIN COPPER
BOBBIN COPPER
▪ 2.2内铜片于层间作SHIELDING绕组时,其宽度应尽 可能涵盖该层之绕线区域面积, 厚度0.025mm(1mil) 以下时两端可免倒圆角,但厚度在0.05mm(2mils)(含) 以上之铜箔时两端则需以倒圆角方式处理。

变压器绕线和制作方法

变压器绕线和制作方法

变压器绕线和制作⽅法变压器的绕制⽅法计算及注意事项⽣活中各种电器的⼯频变压器⽆论是⾃⾏设计绕制,还是修复烧坏的变压器,都会涉及到部分简单的计算,教科书上的计算公式虽然严谨,但实际运⽤时显得复杂,不甚⽅便。

本⽂介绍实⽤的变压器计算的经验公式。

先看⼀实例:实例:现要制作⼀个80W的降压变压器,输⼊220V 输出45V,请问⽤多⼤胶⼼,初次级各⽤什么线径,绕多少匝?(以下U1为初级电压,U2为次级电压,I1为初级电流,I2为次级电流)1、根据需要的功率确定铁芯截⾯积的⼤⼩S=1.25=1.25√80 ≈11.2cm22、求每伏匝数ωo=45/11.2=4.02匝3、求线圈匝数初级ω1=U1ωo=220X4.02=884.4匝次级ω2=1.05 U2ωo =1.05X45X4.02≈189.9匝4、求⼀、⼆次电流初级I1=P/U1=80/220≈0.36A次级I2=P/U2=80/45≈1.78A5、求导线直径初级d1=0.72 (根号I1)=0.72√0.36≈0.43mm次级d2=0.72 (根号I2)=0.72√1.78≈1.28mm注:此为理论计算值,实际绕制可根据结果改变各值。

本⼈绕制线径均⼤于理论值,扎数⽐变为88:20使⽤时并⽆异常。

单相⼩型变压器简易计算⽅法1、根据容量确定⼀次线圈和⼆次线圈的电流I=P/UI单位A、P单位vA、U单位v.2、根据需要的功率确定铁芯截⾯积的⼤⼩S=1.25√P(注:根号P)S单位cm23、知道铁芯截⾯积(cm2)求变压器容量P=(S/1.25)2(VA)4、每伏匝数ωo=45/S (注:45为系数,下⽂提到)5、导线直径d=0.72√I (根号I)6、⼀、⼆次线圈匝数ω1=U1ωoω2=1.05U2ω(注:考虑损耗,次级扎数要稍⼤些,1.05亦可改变)铁芯的选择根据⾃⼰需要的功率选择合适的铁芯是绕制变压器的第⼀步。

如果铁芯(硅钢⽚)选⽤过⼤,将导致变压器体积增⼤,成本升⾼,但铁芯过⼩,会增⼤变压器的损耗,同时带负载能⼒变差。

变压器的绕制方法和制作流程

变压器的绕制方法和制作流程

变压器的绕制方法和制作流程英文回答:To answer your question about the winding method and manufacturing process of transformers, I would like to explain it step by step.Firstly, let's talk about the winding method. There are two common types of winding in transformers: the concentric winding and the sandwich winding.In concentric winding, the primary and secondary windings are wound on the same cylindrical core, with the primary winding being closer to the core. This type of winding is commonly used in small transformers and is relatively simple to manufacture. It allows for efficient transfer of energy between the primary and secondary windings.On the other hand, sandwich winding involves placingthe primary and secondary windings on separate sections of the core. The primary winding is wound on the core first, followed by an insulating layer, and then the secondary winding is wound on top. This type of winding is used in larger transformers and provides better insulation between the windings, reducing the risk of short circuits.Now let's move on to the manufacturing process of transformers. It typically involves the following steps:1. Core preparation: The core, usually made of laminated iron sheets, is prepared by cutting and stacking the sheets to form the desired shape and size. This ensures minimal energy loss due to eddy currents.2. Winding: The primary and secondary windings are carefully wound around the core according to the chosen winding method. The number of turns and wire size are determined based on the desired voltage ratio and power rating of the transformer.3. Insulation: Insulating materials such as paper orvarnish are applied between the windings and around the core to prevent electrical short circuits and improve the overall insulation of the transformer.4. Impregnation: The windings and core are impregnated with a suitable insulating material, such as epoxy resin, to enhance the insulation and mechanical strength of the transformer. This process also helps to protect the windings from moisture and other contaminants.5. Testing: Various tests are conducted to ensure the quality and performance of the transformer. These tests include insulation resistance test, turns ratio test, and load testing. Any defects or issues are identified and rectified during this stage.6. Enclosure: The transformer is enclosed in a protective housing, which may be made of metal or plastic, to provide mechanical support and protection against external factors such as dust, moisture, and physical damage.In conclusion, the winding method and manufacturing process of transformers involve carefully winding the primary and secondary windings on the core using either concentric or sandwich winding methods. The core is prepared, insulation is applied, impregnation is done, and testing is conducted before enclosing the transformer in a protective housing.中文回答:关于变压器的绕制方法和制作流程,我想逐步解释一下。

高频变压器制作工序

高频变压器制作工序

高频变压器制作工序一. 绕线1. 材料确认1.1 线架规格及材质之确认.1.1.1 BOBBIN规格及材质需正确,且不可有破损或裂痕.1.1.2 工程图面要求拔掉的PIN脚需在绕线前拔掉.1.1.3 PIN脚确认需与工程图面相符,一般有特殊标记为PIN 1(如斜角或凸点等);如果无特殊标记的则参考图面外观图.1.2 铜线规格之确认.1.2.1 WIRE规格及材质需正确,且WIRE不可有破皮、氧化、打结等不良现象.1.3 胶带规格之确认.1.3.1 TAPE规格(宽度、厚度、颜色等)及材质需正确.1.3.2 ACT规格(宽度、层数等)及材质需正确.1.4 套管规格之确认.1.4.1 TUBE规格(大小、长度、颜色等)及材质需正确.1.5 铜箔规格之确认.1.5.1 COPPER FOIL规格(宽度、厚度、长度等)需正确,且无毛边、氧化等不良.1.5.2 是否有要求背胶、焊接引线处理,焊点需平整且需用TAPE正反包住.2. 绕线方式2.1 密绕2.1.1 整齐的绕线,不论是绕一层或是多层,线与线之间都紧密无空隙.2.1.2 要求严格的绕线,在绕两层或以上的绕组时,每绕完一层需加绝缘胶带一层.2.2 疏绕2.2.1 绕线不满一层,线与线之间以相等距离均匀分布.2.3 并绕2.3.1 两股或两股以上铜线同时绕线,依照工程图面采用密绕或疏绕方式绕线.2.4 任意绕2.4.1 有的机种线径细而且圈数较多,绕线时在一定程度上排列整齐,达到最上层时,排线己零乱.2.5 混合绕2.5.1 有的机种为了降低漏电感,在密绕完一层或以上后剩下不足的一层采用疏绕.2.6 逆回绕2.6.1 根据绕线要求,在引出线相反方向起始绕线至引出方向结束的绕线.2.7 同层绕2.7.1 两个或以上绕组分别密绕于同一层上.3. 注意事项3.1 需包ACT的先依工程图面要求靠线槽侧包好,包1TS之ACT可包0.9TS,以利含浸时凡立水良好的渗入底层;包2TS或以上ACT时重迭不可超过5mm,以免线包过胖不利组装CORE及影响漏电感过高.3.2 依照工程图面绕线方式绕线,当结束线跨越绕组回线时需贴固定胶带作隔离,最外层绝缘胶带不宜包得太紧,以免影响产品外观.3.3 原则上铜线从BOBBIN凹槽以一线一槽引出,如凹槽不足可考虑从上槽引出;如无上槽而造成共槽出线的可考虑加TEFLON TUBE避免焊锡短路.3.4 缠线要求紧靠PIN针周围,且不可超过BOBBIN支点,线径小于0.30mm(含)需缠2TS以上,线径小于0.80mm(含)需缠1TS以上,线径大于0.80mm需缠0.8TS以上.3.5 TUBE伸入线槽(或ACT)需2mm以上,套管引出需平齐BOBBIN凹槽或至少达到凹槽2/3高;如卧式无凹槽BOBBIN之套管长度需距PIN针1mm左右.3.6 内铜箔在变压器中一般起屏蔽作用,主要是减小漏电感、激磁电流.包铜箔时原则上焊点朝上,如内铜箔超过1TS(含)时需用胶带隔离防止内部短路.3.7 铜箔取代铜线而做绕组时起导体作用,需背胶后方可使用,主要是满足通过高电流的需要.各焊点需用复合基材包住防止短路.3.8 CT线绞合必须均匀,不可太松也不可太紧.3.9 所有出线均不可太长,以免造成材料浪费,如裁线绕组所用铜线长度与材料分析不符,需及时提出,并由工程部及时变更.二. 焊锡1. 材料确认1.1 锡条之确认1.1.1 锡炉所用之锡条,其锡/铅比例为63/37,锡炉内之杂质污染需及时处理干净.锡炉温度应保持在490℃±10℃.1.1.2 无铅锡条之锡/银比例为99/1.1.2 助焊剂之确认1.2.1 助焊剂及稀释剂之调配依实际情况而定,盛放助焊剂之容器中溶液量依产品而定.2. 作业步骤2.1 将产品整齐排放在粘有双面胶的木条上.2.2 排好版产品之PIN脚沾适量助焊剂.2.3 用锯片刮净锡面,将变压器PIN脚浸入锡中,深度以锡面平齐PIN底部为止.2.4 将焊好锡之产品锡渣清理干净.2.5 剪掉需剪1/2的抽头PIN脚.3. 注意事项3.1 排版木条所粘之双面胶应酌情更换,以免粘性不够时线包掉入锡炉.3.2 PIN脚沾助焊剂时不可太多,以免影响外观,也不可太少而影响焊锡质量.3.3 为防止PIN脚不洁净,锡面需及时处理干净.3.4 不可烫破线包胶带,塑料类BOBBIN不耐高温,必须严格控制好锡炉温度及焊锡时间,否则会使BOBBIN变形、PIN歪斜甚至脱落.3.5 镀锡后的PIN脚需均匀光滑,不可有冷焊、空焊、漏焊、氧化、短路、倒钩或锡围,锡渣需清理干净.3.7 焊锡时间因线径不同而异,如下时间供参考:3.7.1 0.32mm以下焊锡时间: 2-3秒3.7.2 0.80mm以下焊锡时间: 3-4秒3.7.3 0.80mm以上焊锡时间: 4-5秒3.8 特殊产品依实际情况作业.三. 组装铁芯1. 材料确认1.1 铁芯之确认1.1.1 CORE规格、材质、电感需正确,且不可有破损、变形、裂痕或大小不一等不良.1.2 胶带之确认1.2.1 TAPE规格(宽度、厚度、颜色等)及材质需正确.2. 组装铁芯2.1有CT线或飞线的线包剪去多余的部分.2.2 线包较胖的产品需用气压啤机压制线包后方可组装.2.3 CORE装入线包时两只CORE接触面必须保持清洁,CORE结合必须紧密无错位等不良.2.4 有GAP的CORE必须按要求放置,如无注明的则将GAP之CORE放置于PIN端,卧式BOBBIN则将GAP之CORE放置于初级端.2.5 EI型CORE如无注明的将I片放置于顶部.2.6 按工程图面要求方式(胶带或铁夹)固定CORE,用胶带固定CORE的需将胶带切口置于产品底部,需包外铜箔(或外胶)或卧式产品则将胶带切口置于CORE中间,需点胶作业的产品可在一次测试后作业.3. 注意事项3.1 在正式生产前应试样组装10PCS以上,以免含浸后产品批量电感不良.3.2 不同材质的CORE不可组装在同一产品上.3.3 要求背胶的CORE必须依工程图面背胶作业后方可组装,并且所背胶带不可歪斜、皱起及破损,以免产品含浸后胶带翘起.3.4 固定CORE之胶带必须缠紧,以免含浸后电感下降,且不可分层及皱起,胶带切口应平滑以免影响产品外观;如用铁夹固定CORE的产品,铁夹必须置于CORE正中央.3.5 遇上线包较胖的产品,需用气压啤机压制线包后再组装,压制线包时不可压破BOBBIN.3.6 组装CORE时不可弄破线包胶带,以免线包对CORE产生高压不良.3.7 组装好之产品不可有CORE大小不一、错位,点胶产品点胶位置需正确,胶量应适中,所有产品上应无焊油、胶等污物.四. 电气测试1.仪器校对1.1 匝数比测试仪器之确认1.1.1 测试前用校对品校对仪器是否准确.1.2 电感测试仪器之确认1.2.1测试前用校对品校对仪器是否准确.1.3 高压测试仪器之确认1.3.1测试前用校对品校对仪器是否准确.2. 作业步骤2.1 确认测试治具与变压器脚位是否相符.2.2 按工程图面要求设定测试参数,匝数比测试频率为20KHz,测试电压为2.0V,匝数标准为±0.2TS;部分产品(如铁芯GAP或匝数多)会使测试匝数与实际匝数不符,则根据拆解结果设定相应匝数标准.2.3 根据测试仪器功能(洤华310仪器仅可测试匝数比)测试工程图面要求之各项电气性能.2.4 通过测试分选良品与不良品,匝数不良(注明不良绕组)退回前段修理;电感不良如为材料不良则拆下CORE退供货商,如组合不良则由组装人员修理.2.5 按工程图面要求设定测试参数,高压测试一般按初级对次级、初级对铁芯、次级对铁芯之顺序进行测试.3. 注意事项3.1 为防止内部短路,匝数比测试时应加匝间短路测试.3.2 如果为气动测试,测试时应防止BOBBIN支点破损.3.3 高压测试系危险作业,测试人员必须经过培训后方可上岗.3.4 如客户要求高压测试时间为一分钟,为节约时间而提高生产效率,作业时可将高压要求提高至1.2倍而将时间缩短为一秒钟.3.5 测试过程应尽量避免弄歪PIN脚.3.6 所有电气测试必须保证100%为良品方可流程.3.7 为防止混料,所有不良产品需放于有标示之红色盘子.3.8 所有含浸作业后之产品需再次测试电感及高压.五. 焊铜箔1. 材料确认1.1 铜箔之确认1.1.1 COPPER FOIL规格(宽度、厚度、长度等)需正确,且无毛边、氧化等不良.1.1.2 如需背胶之铜箔是否背胶,TAPE是否有气泡、皱折、刺破等不良.1.2 引线之确认1.2.1 WIRE规格及长度需正确,且至少一端己镀锡.1.3 其它材料之确认1.3.1 外围TAPE规格(宽度、厚度、颜色等)及材质需正确,一般情况之外围TAPE宽度应与线包TAPE相同.1.3.2 引线TUBE规格及长度需正确,规格以容易穿入引线为宜.2. 作业步骤2.1 焊内铜箔2.1.1 将铜箔竖立工作台面上,左手拿引线与铜箔成90℃角置于需焊位置,右手拿焊枪迅速焊接引线.2.2 焊外铜箔2.2.1 根据工程图面要求,确定产品在焊外铜箔前是否需包外围胶带,如需包外围胶带需按要求层数包好.2.2.2 将裁好长度之铜箔居线包中间包紧,用焊枪迅速焊接铜箔.2.2.3 在对应位置焊接外铜箔引线,如需加套管则按适当长度加套管.2.2.4 将引线缠于指定PIN脚上.2.3 焊绕组铜箔2.3.1 方法同焊内铜箔.2.3.2 绕组铜箔主要是满足通过高电流的需要,各焊点需用复合基材包住防止短路.3. 注意事项3.1 背胶之铜箔不可有气泡、皱折、刺破等不良.3.2 点锡需适量,焊点需光滑,不可有堆锡及锡尖.3.3 焊接时间不可太长,以免烫破胶带.3.4 外铜箔需包正包平,不可歪向一边,否则可能会造成产品高压不良及影响外观.3.5 绕组铜箔之焊点需用复合基材正反包住,以免造成短路.3.6 外铜箔引线缠接时不可松散,应避免焊锡后造成焊点超高.3.7 焊好外铜箔后所包绝缘胶带不宜包得太紧,以免影响产品外观.六. 真空含浸1. 材料确认1.1 凡立水之确认1.1.1 凡立水与天那水(稀释剂)必须是同一厂家产品才能混合使用,混合后溶液比重为0.90-0.92.2. 作业步骤2.1 将产品整齐排放在含浸板上,放入80℃-100℃烤箱中预热30分钟.2.2 待产品冷却至60℃左右时,将产品整版放入含浸槽内.2.3 启动真空含浸机,抽气至40-50cm/Hg,导入凡立水,使凡立水淹没产品为准(不可淹没PIN脚),连续抽真空、破真空4-5次.2.4 放气后导出凡立水,再抽气至65-75cm/Hg,然后再放气,将产品取出稍吹干.2.5 将产品放入80℃烤箱预热1小时,再将温度调至100℃-110℃烘烤4小时,大颗产品和安规机种需多烘烤2小时.2.6 将产品取出烤箱,自然冷却(特殊情况可用风扇迅速冷却)后流程至下一工段.3. 注意事项3.1 凡立水和天那水为易燃有毒物品,含浸室内需保持良好的通风条件.3.2 每日含浸前必须检测凡立水之比重,凡立水在使用过程中会渐渐粘稠,必须补给稀释剂充分混合,使其比重达到要求.3.3 含浸用具必须定期清理,保持用具干净,以免影响含浸产品外观.3.4 每批产品出烘箱,IPQC必须拆解成品,确认产品最内层是否烘干,线圈是否固定.3.5 含浸后之产品必须保持外观洁净,无块状污物,CORE不可有松动情形.七. 整脚成形1. 调试整脚机1.1 装好适配的整脚板,启动后插入变压器整脚,取出产品检查PIN脚是否合格.2. 整脚作业2.1 将产品逐一插入整脚板整脚成形.2.2 所有经整脚成形之产品应整齐排放于盘中,不可随意乱放以免弄歪PIN脚.2.3 整脚时不可弄破BOBBIN支点及刮伤PIN脚.3. CT线成形3.1 确认CT线是否需加套管及套管材质、规格、长度.3.2 穿入要求之套管,检查镀锡部分长度是否正确.3.3 确认CT线成形位置,将CT线弯向工程图面要求位置.3.4 根据实际情况确定CT线是否需合脚处理.八. 贴标签(捺印)1. 材料确认1.1 标签之确认1.1.1 标签规格、材质及内容需正确,字体清晰,无漏字错字,周期是否有效.1.1.2 印章内容需正确,字体清晰,有周期的需将周期调至有效周期.1.2 产品之确认2.1 产品与标签(印章)是否相符,产品是否己完成贴标签(捺印)之前所有工序.2. 操作步骤2.1 将产品初级(或次级)朝同一方向摆放整齐.2.2 将标签粘贴(或捺印)于产品上.3. 注意事项3.1 标签大小原则上应小于所贴位置面积.3.2 标签需贴正贴平,标签与产品需完全接触,不可贴错、贴反、贴歪及漏贴.3.3 捺印之油墨应清晰,均匀,颜色需正确.九. 外检包装1. 材料确认1.1 包装盒之确认1.1.1 所用包装盒外观尺寸及包装数量是否符合客户要求.1.1.2 包装盒和外箱上之内容与产品料号是否相符.2. 外观检查2.1 确认产品是否完整,外观需洁净,无块状污物(凡立水);各外观尺寸需符合工程图面要求.2.2 BOBBIN不可有裂缝、破损、变形.2.3 CORE不可有严重错位、破损、变形及松动.2.4 TAPE不可有刺破、翘起、烫伤等不良.2.5 TUBE材质及长度是否正确,TUBE不可破损.2.6 要求点胶之产品,胶量及位置需正确,且必须起到固定的作用.2.7 要求打点之产品,颜色及位置需正确,且必须清晰,不可有打错、打反或漏打.2.8 有CT线(或飞线)之产品,出线位置及长度需正确,镀锡部分需光滑且不可有大头.2.9 产品PIN脚必须均匀光滑,不可有冷焊、空焊、漏焊、氧化、短路、倒钩或锡围,锡渣需清理干净.3. 装盒封箱3.1 将检验无误之产品按要求装入盒中.3.2 确认数量无误后封箱.4. 注意事项4.1 所有待包装产品需100%通过电气特性测试.4.2 不良产品必须进行修补,无法修补之产品方可报废.4.3 包装时不可有混料、多装及少装之情形.4.4 海运和空运之产品需慎重包装,以免运输时造成损坏.4.5 包装好之产品需经FQC检验OK后方可出货.。

干式变压器制造工艺流程

干式变压器制造工艺流程

干式变压器制造工艺流程
干式变压器制造主要由原材料检验入库、变压器的组装、线圈的制造、总装配、温控系统的制作调试几大部分组成。

这几部分在变压器制造过程中几乎是同步进行的。

各部件加工完成后进行总装配。

一、原材料、配件、外购件入库
包括金属零件、高低压铜导线(铜箔)、硅钢片绝缘零件、金属结构件、黑色金属、配件、附件的检验入库。

二、变压器部件制作
1、铁芯制造,其中包括硅钢片剪切、硅钢片的预叠、铁芯装配、铁芯绑扎及入炉干燥、铁芯试验。

2、线圈的制造
①首先是绝缘件制作与准备。

②通过分段圆筒式高压线圈绕制、箔式线圈绕制、环氧浇注模具表面处理、环氧树脂浇注、环氧树脂浇注线圈烘焙固化、浇注式线圈脱模、线圈表面处理等一系列工艺流程的加工后线圈转装配工序待进行器身组装。

3、器身装配,其中包括绝缘件装配,器身入炉干燥(绝缘电阻测量)、线圈的套装、插板及夹铁、引线装配、器身半成品做试验。

三、总装配,
1、器身的整理与紧固、铁芯对地绝缘电阻的测量、检查器身清洁度及各零部件的紧固程度,分接线及引线绝缘距离。

2、温控系统,风机的制作、安装、调试。

3、送检,作变压器出厂项目试验,试验合格后按包装、运输及贮存工艺,办理入库手续。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变压器制作详细说明Ⅰ变压器的概述变压器的最基本型式,包括两组绕有导线之线圈,并且彼此以电感方式称合一起。

当一交流电流(具有某一已知频率)流于其中之一组线圈时,于另一组线圈中将感应出具有相同频率之交流电压,而感应的电压大小取决于两线圈耦合及磁交链之程度。

一般指连接交流电源的线圈称之为「一次线圈」(Primamary coil);而跨于此线圈的电压称之为「一次电压.」。

在二次线圈的感应电压可能大于或小于一次电压,是由一次线圈与二次线圈问的「匝数比」所决定的。

因此,变压器区分为升压与降压变压器两种。

大部份的变压器均有固定的铁心,其上绕有一次与二次的线圈。

基于铁材的高导磁性,大部份磁通量局限在铁心里,因此,两组线圈藉此可以获得相当高程度之磁耦合。

在一些变压器中,线圈与铁心二者间紧密地结合,其一次与二次电压的比值几乎与二者之线圈匝数比相同。

因此,变压器之匝数比,一般可作为变压器升压或降压的参考指标。

由于此项升压与降压的功能,使得变压器已成为现代化电力系统之一重要附屑物,提升输电电压使得长途输送电力更为经济,至于降压变压器,它使得电力运用方面更加多元化,吾人可以如是说,倘无变压器,则现代工业实无法达到目前发展的现况。

电子变压器除了体积较小外,在电力变压器与电子变压器二者之间,并没有明确的分界线。

一般提供6OHz 电力网络之电源均非常庞大,它可能是涵盖有半个洲地区那般大的容量。

电子装置的电力限制,通常受限于整流、放大,与系统其它组件的能力,其中有些部份属放大电力者,但如与电力系统发电能力相比较,它仍然归属于小电力之范围。

各种电子装备常用到变压器,理由是:提供各种电压阶层确保系统正常操作;提供系统中以不同电位操作部份得以电气隔离;对交流电流提供高阻抗,但对直流则提供低的阻抗;在不同的电位下,维持或修饰波形与频率响应。

「阻抗」其中之一项重要概念,亦即电子学特性之一,其乃预设一种设备,即当电路组件阻抗系从一阶层改变到另外的一个阶层时,其间即使用到一种设备-变压器。

对于电子装置而言,重量和空间通常是一项努力追求之目标,至于效率、安全性与可靠性,更是重要的考虑因素。

变压器除了能够在一个系统里占有显著百分比的重量和空间外,另一方面在可靠性方面,它亦是衡量因子中之一要项。

因为上述与其它应用方面的差别,使得电力变压器并不适合应用于电子电路上.Ⅱ变压器的原理1.变压器的制作原理:在发电机中,不管是线圈运动通过磁场或磁场运动通过固定线圈,均能在线圈中感应电势,此两种情况,磁通的值均不变,但与线圈相交链的磁通数量却有变动,此为互感应原理.变压器就是一种利用电磁互感应,变换电压,电流和阻抗的器件.2.在电路中,变压器表示符号为:3.技述参数:对不同类型的变压器都有相应的技述要求,可用相应的技述参数表示.如电源变压器的主要技述参数有:额定功率、额定电压和电压比、额定频率、工作温度等级、温升、电压调整率、绝缘性能和防潮性能,对于一般低频变压器的主要技述参数是:变压比、频率特性、非线性失真、磁屏蔽和静电屏蔽、效率等.A.电压比:变压器两组线圈圈数分别为N1和N2,N1为初级,N2为次级.在初级线圈上加一交流电压,在次级线圈两端就会产生感应电动势.当N2>N1时,其感应电动势要比初级所加的电压还要高,这种变压器称为升压变压器:当N2<N1时,其感应电动势低于初级电压,这种变压器称为降变压器.初级次级电压和线圈圈数间具有下列关系:式中n称为电压比(圈数比).当n<1时,则N1>N2,V1>V2,该变压器为降压变压器.反之则为升压变压器.B.变压器的效率:在额定功率时,变压器的输出功率和输入功率的比值,叫做变压器的效率,即η= x100%式中η为变压器的效率;P1为输入功率,P2为输出功率.当变压器的输出功率P2等于输入功率P1时,效率η等于100%,变压器将不产生任何损耗.但实际上这种变压器是没有的.变压器传输电能时总要产生损耗,这种损耗主要有铜损和铁损.铜损是指变压器线圈电阻所引起的损耗.当电流通过线圈电阻发热时,一部分电能就转变为热能而损耗.由于线圈一般都由带绝缘的铜线缠绕而成,因此称为铜损.变压器的铁损包括两个方面.一是磁滞损耗,当交流电流通过变压器时,通过变压器硅钢片的磁力线其方向和大小随之变化,使得硅钢片内部分子相互摩擦,放出热能,从而损耗了一部分电能,这便是磁滞损耗.另一是涡流损耗,当变压器工作时.铁芯中有磁力线穿过,在与磁力线垂直的平面上就会产生感应电流,由于此电流自成闭合回路形成环流,且成旋涡状,故称为涡流.涡流的存在使铁芯发热,消耗能量,这种损耗称为涡流损耗.变压器的效率与变压器的功率等级有密切关系,通常功率越大,损耗与输出功率就越小,效率也就越高.反之,功率越小,效率也就越低.Ⅲ.变压器材料介绍一.线架(BOBBIN)(一)作用:顾名思义,BOBBIN(线架)在变压器中起支撑COIL(线圈)的作用.(二)BOBBIN的分类:1.依据变压器的性质要求不同,按材质分为:热塑性材料,热固性材料.热塑性材料我们常用的有尼龙(NYLON),塑料(PET),塑料( PBT)三种.热固性材料我们常用到的有电木(PM).2.依据变压器的形状不同,BOBBIN又分为立式,卧式,子母式,抽屉式,单元格,双格.(三)特性及用途:1.电木(PM):热固性材料,稳定性高,不易变形,耐温150℃,可承受370℃之高温.表面光滑,易碎,不能回收.用于耐温较高之变压器.2.尼龙(NYLON):热塑性材料,工程塑料,延展性好,不易碎,耐温115℃,易吸水,使用前先用80℃的温度烘烤,使固性稳定.表面光滑,半透明,不易碎.一般用于耐油性强的变压器上.3.塑料(PET):热塑性材料,510系统,硬性高,易成形.不易变形,耐温170℃,表面不光滑,不易碎,一般用于绕线管.4.塑料(PBT):热塑性材料,较软,不易变形,不耐高温(160℃),表面不光滑,不易碎一般用于绕线管*热塑性材料可回收:第一次为20%,第二次为15%,第三次7%.二.铁芯CORE铁芯从用途上分高、低频、COIL三种:1.高频类:铁粉芯Ferrite coreFerrite core用于高频变压器它是一种带有尖晶石结晶状结构的陶磁体,此种尖晶石为氧化铁和其它二价的金属化合物.如kFe2O4(k代表其它金属),目前常使用的金属有锰(Mn)、锌(Zn)、镍(Ni)、镁(Ng)、铜(Cu).其常用组合如锰锌(Mn Zn)系列、镍锌 (Ni Zn)系列及镁锌(Mg Zn)系列.此种材具有高导磁率和阻抗性的物性,其使用频率范围由1kHz到超过200kHz.2.低频类:硅钢片(LAMINATION)硅钢片用于低频变压器,其种类很多,按其制作工艺不同可分为A:锻烧(黑片)、 N:无锻烧(白片)两种.按其形状不同可分为:EI型、UI型、C型、口型.口型硅钢片常在功率较大的变压器中使用,它绝缘性能好,易于散热,同时磁短路,主要用于功率大于500~1000W和大功率变压器中.由两个C型硅钢片组成一套硅钢片称为CD型硅钢片,用CD型硅钢片制作的电源变压器在截面积相同的条件下,窗口愈越高,变压器功率越大.于铁芯两侧可以分别安装线圈,因此变压器的线圈匝数可分配在两个线包上,从而使每个线包的平均匝长较短,线圈的铜耗减小.另外如果把要求对称的两个线圈分别绕在两个线包上,可以达到完全对称的效果.由四个C型硅钢片组成一套硅钢片称为ED型硅钢片.ED型硅钢片制成的变压器外形呈扁宽形,在功率相同的条件下ED型变压器比CD型变压器矮些,宽度大些,另外由于线圈安装在硅钢片中间,有外磁路,因此漏磁小,对整体干扰小.但是它所有线圈都绕在一个线包上,线包较厚,故平均匝长较长,铜耗较大.C型铁芯性能优异所制作之变压器体积小、重量轻、效率高,装配的角度来看,C型硅钢片零件很少,通用性强,因此生产效率高,但是C型硅钢片加工工序较多,作较复杂,需用专用设备制造,因而目前成本还较高.我们主要使用的是EI型硅钢片.E型硅钢片又称壳型或日型硅钢片,它的主要优点是初、次级线圈共同一个线架,有较高的窗口占空系数(占空系数Km:铜线净截面积和窗口面积比);硅钢片对绕组形成保护外壳,使绕组不易受到机械伤损伤;同时硅钢片散热面积较大,变压器磁场发散较少.但是它的初次级漏感较大,外来磁场干扰也较大,此外,由于绕组平均周长较长,在同样圈数和铁芯截面积条件下,EI型铁芯的变压器所用的铜线较多.硅钢片的厚度常用的有0.35mm、0.5mm两种.硅钢片的组装方式有交迭法和对迭法两种.交迭法是将硅钢片的开口一对一交替地分布在两边,这种迭法比较麻烦,但硅钢片间隙小,磁阻小,有利于增大磁通,因此电源变压器都采用这种方法.对迭法常用于通有直流电流的场合,为避免直流电流引起饱和,硅钢片之间需要留有空隙,因此对迭法将E片与I片各放一边,两者之间的空隙可用纸片来调节我们厂常用的有硅钢片材质有Z-11、H-18、H-50、H-14等,其中以Z-11硅钢片性能最好.通常表示方法如图3.1:EI-28 Z11 0.35 A1.COIL类:分三种类型(如图3.2).A.TOROID环形铁芯:将O型迭片而成,或由硅钢片卷绕而成.此种铁芯对绕线来说非常不易.B.ROD CORE棒状铁芯.C.DRUM CORE:鼓形铁芯.三. TUBETUBE种类繁多,用途广泛,我们常用的有TEFLON(铁弗龙)、硅质套管、玻璃纤维硅胶套管、硅橡胶套管、硅胶玻璃纤维套管、腊套管、PE热缩套管、PVC热缩套管。

1.TEFLON铁弗龙为塑料中耐温最高(280℃~300℃)最耐强酸、强碱、最抗粘、最滑溜耐磨之工程塑料材料,而广泛用于机械,汽车,电子,化工阀门等零件.铁弗龙为讯号、仪控纲路及耐热之电线电缆的最佳绝缘材料,成功用于各类家电用品(微波炉、电烤箱、吹风机、电饭锅……),通讯设备/计算机、各类化学、机械及电气/电子工业领域.其中 Teflon Insulation Sleeving 由于耐高温、耐电压(300V)而广泛用于航天、汽车、医疗、电子变压器、通讯等科技工业.Teflon insulation sleeving是变压器进出线绝缘的最佳材料,其主要性质如下表:TEFLON之性质表比重 2.1~2.3gr/cm抗拉强度280~352kg/cm伸长率 200~400%抗拉弹性系数 0.4*10kg/cm压缩强度 120kg/cm硬度(rockwell) D50~55冲击张度(V) 16.4gm/1000回磨擦系数 0mg/1000回融点 317~327℃热变形温度(4.6kg/cm) 260℃绝缘破坏强度 4.5kv/mm诱电率10 HZ <2.1耐电弧性 >300sec吸水率24Hrs <0.01%太阳光线影响弱酸影响弱碱影响耐性非常强强酸影响强碱影响有机溶剂}影响Teflon Insulation tubing:L.T.S.Type‧L Type:Wall thickness:0.15mm~0.2mm Dielectric strength:3600V‧T Type:Wall thickness:0.3mm~0.35mm Dielectric strength:7200V‧S Type:Wall thickness:0.5mm~0.60mm Dielectric strength:12000V2. 硅质玻璃纤维套管 (Silicon Glass Fiber Sleeving Character)硅质玻璃纤维套管是以无碱性玻璃纤维纱编织成管,经特殊的一种树脂浸涂处理,再以适当之温度烘干而制成,它具有极佳之电气绝缘性,且耐燃耐温、耐电压、耐湿、在零下50℃低温时仍能保持柔软.在高温200~250℃亦不损电气之特性,另皮膜十分强韧,而曲折.适用H级马达、干式变压器、炭刷、冷冻机、冷气机、投射灯、卤素灯、吸顶灯、落地灯及发热体之导线、机械高温配线和保护所适用。

相关文档
最新文档