三角函数数列经典习题(含答案)

合集下载

三角函数经典题目(带答案)

三角函数经典题目(带答案)

三角函数经典题目练习1.已知α1231、已知角2、P (x ,5则sin 1、已知2、函数(f3、已知 象限1. 已知π22.设0≤α是 .sin αtan x 若<0___.53sin +-=m m θ,524cos +-=m m θ(πθπ<<2),则=θ________.1tan tan αα,是关于x 的方程2230x kx k -+-=的个实根,且παπ273<<,则ααsin cos +的值 .0)13(22=++-m x x 的两根为()πθθθ2,0,cos ,sin ∈,求(1)m =_______(2)θθθθtan 1cos cot 1sin -+-=________.α )415tan(325cos ππ-+= . θθθθcos sin cos sin -+=2,则sin(θ-5π)·sin ⎪⎭⎫⎝⎛-θπ23= α终边上P (-4,3),)29sin()211cos()sin()2cos(απαπαπαπ+---+= .已知锐角α终边上一点P 的坐标是(2sin2,-2cos2),α= . sin163°·sin223°+sin253°·sin313°= . =-+θθtan 1tan 1_________tan 20tan 4020tan 40︒+︒︒⋅︒= α∈(0,2π),若sin α=53,则2cos(α+4π)= . 336cos =⎪⎭⎫ ⎝⎛-απ,则⎪⎭⎫ ⎝⎛+απ65cos =______,)65απ--=_____..【知二求多】1、已知cos ⎪⎭⎫ ⎝⎛-2βα= -54,sin ⎪⎭⎫ ⎝⎛-2αβ=135,且0<β<2π<α<π,则cos 2βα+=____.2已知tan α=43,cos(α+β)=-1411, α、β为锐角,则cos β=______.【方法套路】1、设21sin sin =+βα,31cos cos =+βα,则)cos(βα-=___ .2.已知ββαcos 5)2cos(8++=0,则αβαtan )tan(+= .3,41)sin(,31)sin(=-=+βαβα则___tan tan =βα【给值求角】1tan α=71,tan β=31,α,β均为锐角,则α+2β= .2、若sinA=55,sinB=1010,且A,B 均为钝角, 则A+B= .【半角公式】1α是第三象限,2524sin -=α,则tan 2α= . 2、已知01342=+++a ax x (a >1)的两根为αtan ,βtan ,且α,∈β ⎝⎛-2π,⎪⎭⎫2π,则2tan βα+=______3若cos 22π2sin 4αα=-⎛⎫- ⎪⎝⎭,则cos sin αα+= . 4、若⎥⎦⎤⎢⎣⎡∈27,25ππα,则ααsin 1sin 1-++=5x 是第三象限角xx xx x x x x cos sin 1cos sin 1cos sin 1cos sin 1-++++++-+=______ 【公式链】1=+++ 89sin 3sin 2sin 1sin 2222_______ 2sin10o sin30o sin50o sin70o=_______ 3(1+tan1o )(1+tan2o )…(1+tan45o )=_______六、给值求角 已知31sin -=x ,写出满足下列关系x 取值集合 ]3,5[)3()2(]2,0[)1(πππ--∈∈∈x R x x七、函数性质 【定义域问题】 1. x x y sin 162+-=定义域为_________2、1)32tan(--=πx y 定义域为_________【值域】1、函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为__________2、若函数g (x )=2a sin x +b 的最大值和最小值分别为6和2,则|a |+b 的值为________3、函数x xy sin 2sin 1+-=的值域4、函数xxy cos 1sin 21+-=的值域5、函数x x y sin 2cos -=的值域【解析式】1、已知函数f (x )=3sin 2ωx -cos 2ωx 的图象关于直线x =π3对称,其中ω∈⎝⎛⎭⎫-12,52.函数f (x )的解析式为________.2、已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的图象在y 轴上的截距为1,在相邻两最值点(x 0,2),⎝⎛⎭⎫x 0+32,-2(x 0>0)上f (x )分别取得最大值和最小值.则所得图像的函数解析式是________ 3.将函数sin y x =的图像上所有的点右移10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是___________4、()()sin f x A x h ωϕ=++(0,0,)2A πωϕ>>< 的图象如图所示,求函数)(x f 的解析式;【性质】1、已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π递减,则ω的取值范围是( )A.⎣⎡⎦⎤12,54B.⎣⎡⎦⎤12,34C.⎝⎛⎦⎤0,12 D.(0,2] 2、若函数()sin (0)f x x ωω=>在区间π0,3⎡⎤⎢⎥⎣⎦递增,在区间ππ,32⎡⎤⎢⎥⎣⎦上单调递减,则ω=3、sin(2)3y x π=+图像的对称轴方程可能是A .6x π=- B .12x π=- C .6x π= D .4、已知函数x a x x f 2cos 2sin )(+=关于x 称,则a =_______5.()2sin()f x x ωϕ=++m 对任意x 有()6f x f π+=若()6f π=3,则m=________【图象】1、为了得到函数sin(2)3y x π=-sin(2)6y x π=+的图像向____移动____2、为了得到函数sin(2)3y x π=-y=cos2x 图像向____移动____个长度单位 3.将函数sin(2)y x ϕ=+的图象沿x 个单位后,得到一个偶函数的图象,则ϕ取值为 (A)34π (B) 4π(C)0 (D) 4π-【综合练习】1、已知定义在R 上的函数f (x )满足:当sin x f (x )=cos x ,当sin x >cos x 时,f (x )=sin x .下结论:①f (x )是周期函数;②f (x )③当且仅当x =2k π(k ∈Z)时,f (x )当且仅当2k π-π2<x <(2k +1)π(k ∈Z)时,f (⑤f (x )的图象上相邻两个最低点的距离是正确的结论序号是________.f(x)=sin(2x+x x 2cos 2)62sin()6+-+ππ)求f(x)的最小值及单调减区间; )求使f(x)=3的x 的取值集合。

三角函数习题及答案

三角函数习题及答案

三角函数习题及答案三角函数是数学中非常重要的一个概念,它在几何学、物理学、工程学等多个学科中都有广泛的应用。

通过解决三角函数习题,我们不仅可以巩固对三角函数的理解,还能培养逻辑思维和问题解决能力。

本文将介绍一些常见的三角函数习题及其答案,希望能对读者有所帮助。

一、正弦函数习题及答案1. 求解sinθ=0.5的解集。

解:根据正弦函数的定义可知,sinθ=0.5对应的角度有两个:30°和150°。

因此,解集为{30°, 150°}。

2. 求解sinθ=1的解集。

解:根据正弦函数的定义可知,sinθ=1对应的角度为90°。

因此,解集为{90°}。

二、余弦函数习题及答案1. 求解cosθ=-0.5的解集。

解:根据余弦函数的定义可知,cosθ=-0.5对应的角度有两个:120°和240°。

因此,解集为{120°, 240°}。

2. 求解cosθ=-1的解集。

解:根据余弦函数的定义可知,cosθ=-1对应的角度为180°。

因此,解集为{180°}。

三、正切函数习题及答案1. 求解tanθ=1的解集。

解:根据正切函数的定义可知,tanθ=1对应的角度为45°。

因此,解集为{45°}。

2. 求解tanθ=0的解集。

解:根据正切函数的定义可知,tanθ=0对应的角度为0°。

因此,解集为{0°}。

四、三角函数综合习题及答案1. 求解sinθ+cosθ=1的解集。

解:将sinθ+cosθ=1转化为sinθ=1-cosθ。

根据正弦函数的定义可知,sinθ=1-cosθ对应的角度为30°和150°。

因此,解集为{30°, 150°}。

2. 求解tanθ+1=0的解集。

解:将tanθ+1=0转化为tanθ=-1。

根据正切函数的定义可知,tanθ=-1对应的角度为135°。

三角函数数列大题

三角函数数列大题

高中数学学校:___________姓名:___________班级:___________考号:___________一、解答题1.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知2cos 2cos 0c B b C ab +-=. (1)求b ;(2)若AD AB ⊥交BC 于点D ,6ACB π∠=,ABCS,求CD 边长.2.如图,某景区拟开辟一个平面示意图为五边形ABCDE 的观光步行道,BE 为电瓶车专用道,120BCD BAE CDE ∠=∠=∠=︒,11km DE =,5km BC CD ==.(1)求BE 的长;(2)若sin ABE ∠=ABCDE 的周长. 3.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,ccos b B =+. (1)求A ; (2)若31,cos 5a C ==,求ABC 的面积.4.在锐角△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知2sin a C . (1)求角A 的大小;(2)若2b =,a =△ABC 的面积.5.已知函数()sin 2cos 22sin cos .36f x x x x x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭(1)求函数()f x 的最小正周期及对称轴方程; (2)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的纵坐标不变、横坐标伸长为原来的2倍,得到函数()y g x =的图象,求()y g x =在[0,2π]上的单调递减区间.6.已知函数()sin 22f x x x =,R x ∈. (1)求函数()f x 的最小正周期;(2)求函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的单调区间.7.已知函数()2sin 22sin 6x f x x π⎛⎫=++ ⎪⎝⎭.(1)求函数()f x 的最小正周期和单调递减区间;(2)若将()f x 的图象向左平移6π个单位,得到函数()g x 的图象,求函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值; (3)在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,若322A f ⎛⎫= ⎪⎝⎭,7b c +=,ABC ∆的面积为a 的长.8.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到应用.假定在水流稳定的情况下,简车上的每一个盛水筒都做匀速圆周运动.如图,将简车抽象为一个几何图形(圆),筒车半径为4m ,筒车转轮的中心O 到水面的距离为2m ,筒车每分钟沿逆时针方向转动4圈.规定:盛水筒M 对应的点P 从水中浮现(即P 0时的位置)时开始计算时间,且以水轮的圆心O 为坐标原点,过点O 的水平直线为x 轴建立平面直角坐标系xOy .设盛水筒M 从点P 0运动到点P 时所经过的时间为t (单位:s ),且此时点P 距离水面的高度为h (单位:m )(在水面下则h 为负数).(1)求点P 距离水面的高度为h 关于时间为t 的函数解析式; (2)求点P 第一次到达最高点需要的时间(单位:s ).9.记n S 是正项数列{}n a 的前n 项和,1n a +是4和n S 的等比中项. (1)求数列{}n a 的通项公式; (2)记11(1)(1)n n n b a a +=++,求数列{}n b 的前n 项和n T .10.已知等差数列{an }的前n 项和为Sn =n 2+r ,其中r 为常数. (1)求r 的值; (2)设()112n n b a =+,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和Tn .11.某公司2021年年初花费25万元引进一种新的设备,设备投入后每年的收益均为21万元.若2021年为第1年,且该公司第()n n *∈N 年需要支付的设备维修和工人工资等费用总和n a (单位:万元)的情况如图所示.(1)求n a ;(2)引进这种设备后,第几年该公司开始获利?12.已知数列{an }的前n 项和为Sn ,且Sn =n -5an -85,n △N *. (1)证明:{an -1}是等比数列; (2)求数列{an }的通项公式.13.已知数列{}n a 满足12a =,132n n a a +=+.(1)证明{}1n a +是等比数列,并求{}n a 的通项公式;(2)若数列{}n b 满足()3log 1n nb a =+,n T 为数列1n n b a ⎧⎫⎨⎬+⎩⎭的前n 项和,求n T . 14.已知等比数列{}n a 的前n 项和为n S ,且51430a a S -==. (1)求数列{}n a 的通项公式n a ; (2)若______,求数列{}n b 的前n 项和n T .在△21log n n n b a a +=+,△()()2211log 1log 1n n n b a a +=+⋅+,△n n b n a =⋅这三个条件中任选一个补充在第(2)问中,并求解.注:如果选择多个条件分别解答,按第一个解答计分.15.某企业2021年第一季度的营业额为1.1亿,以后每个季度的营业额比上个季度增加0.05亿;该企业第一季度的利润为0.16亿,以后每季度比前一季度增长4%. (1)求2021年起前20季度营业额的总和;(2)请问哪一季度的利润首次超过该季度营业额的18%.16.在△q d =△4q d ⋅=△4q d +=这三个条件中选择一个补充在下面的问题中,并求解.设等差数列{}n a 的公差为d (*d N ∈),前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,___________,10100S =.(1)请写出你的选择,并求数列{}n a 和{}n b 的通项公式; (2)若数列{}n c 满足nn na cb =,求数列{}n c 的前n 项和n T . 17.如图,正四棱柱1111ABCD A B C D -中,124AA AB ==,点E 在1CC 上且13C E EC =.(1)证明:1A C ⊥平面BED ;(2)求异面直线BE 与1A C 所成角的大小; (3)求二面角1A DE B --的余弦值.18.已知E ,F 分别是正方形ABCD 边AD ,AB 的中点,EF 交AC 于P ,GC 垂直于ABCD 所在平面.(1)求证:EF ⊥平面GPC .(2)若4AB =,2GC =,求点B 到平面EFG 的距离.19.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,且侧棱P A △底面ABCD ,P A =2AD .E ,F ,H 分别是P A ,PD ,AB 的中点,G 为DF 的中点.(1)证明://GH 平面BEF ;(2)求PC 与平面BEF 所成角的正弦值.20.如图在三棱锥O ABC -中,OA OC ==2AB OB BC ===且OA OC ⊥.(1)求证:平面OAC ⊥平面ABC(2)若E 为OC 中点,求平面ABC 与平面EAB 所成锐二面角的余弦值.21.直四棱柱1111ABCD A B C D -中,底面ABCD 为正方形,边长为2,侧棱13A A =,M N 、分别为1111A B A D 、的中点,E F 、分别是1111B C C D 、的中点.(1)求证:平面AMN //平面EFDB ; (2)求平面AMN 与平面EFDB 的距离.22.如图,在正四棱柱ABCD ﹣A 1B 1C 1D 1中,AB =1,AA 1=2,点E 为CC 1中点,点F 为BD 1中点.(1)求异面直线BD 1与CC 1的距离;(2)求直线BD 1与平面BDE 所成角的正弦值; (3)求点F 到平面BDE 的距离.23.以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.曲线1C 的极坐标方程为:1ρ=.在平面直角坐标系中,曲线2C 的参数方程为3cos 33sin x y θθ=⎧⎨=+⎩(θ为参数,02θπ≤<).(1)求曲线1C 和曲线2C 的直角坐标方程; (2)在极坐标系中,射线()03πθρ=>与曲线1C ,2C 分别交于A ,B 两点,求AB .24.已知直线 l的参数方程为1,x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2223sin 4ρρθ+=.(1)求直线 l 的普通方程和曲线C 的直角坐标方程;(2)已知直线 l 与曲线C 相交于P ,Q 两点,点M 的直角坐标为(1,0)-,求||||MP MQ +.25.在直角坐标系xOy 中,直线l的参数方程为132x t y ⎧=+⎪⎪⎨⎪⎪⎩(t 为参数).以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4cos ρθ=.(1)写出C 的直角坐标方程;(2)设点Q 的坐标为()3,0,直线l 与C 交于A ,B ,求QA QB ⋅的值.26.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为()2213sin 4ρθ+=.在直角坐标系xOy 中,直线l 的方程为240x y +-=.(1)若点M 为曲线1C 上的动点,求点M 到直线l 的距离的最小值; (2)倾斜角为3π的曲线2C 过点()1,0P -,交曲线1C 于A ,B 两点,求11PA PB +. 27.在直角坐标系xOy 中,直线l 的参数方程为4,5315x t y t⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4sin 0ρθ-=. (1)求曲线C 的直角坐标方程和直线l 的普通方程; (2)设曲线C 与直线l 交于A ,B 两点,求AB .28.在平面直角坐标系xOy 中,直线l 的参数方程为241x t y t =+⎧⎨=-⎩(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为222124sin 3cos ρθθ=+.(1)求直线l 和曲线C 的直角坐标方程;(2)若点P 为曲线C 上任意一点,求点P 到直线l 的距离的最大值.29.在平面直角坐标系xOy 中,直线l的参数方程为1,x t y =+⎧⎪⎨=⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为()2213sin 4ρθ+=.(1)求直线l 的一般式方程和曲线C 的标准方程;(2)若直线l 与曲线C 交于A ,B 两点,点()1,0P ,求PA PB ⋅的值. 30.直线l 过点()2,0A ,倾斜角为4π. (1)以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系.过O 作l 的垂线,垂足为B ,求点B 的极坐标()0,02ρθπ≥≤<;(2)直线l 与曲线22:2x t C y t⎧=⎨=⎩(t 为参数)交于M 、N 两点,求MN .31.在平面直角坐标系xOy 中,倾斜角为α(α为常数)的直线l 过点()2,4M --,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 2cos ρθθ=.(1)写出直线l 的一个参数方程和曲线C 的直角坐标方程; (2)当3πα=时,直线l 与曲线C 能否交于两点?若能,记两交点为A ,B ,求出11MA MB+的值;若不能,说明理由. 32.若a ,b ,c △R +,且满足a +b +c =2. (1)求abc 的最大值; (2)证明:11192a b c ++≥.33.已知函数()21f x x x =+--. (1)求max ()f x 及当()(0)f x f ≥时的解集;(2)若关于x 的不等式()12f x m ≥-有解,求正数m 的取值范围.34.已知函数()()223f x x a x a =-+-+.(1)当2a =时,求不等式()6f x ≥的解集 (2)若()6f x ≥恒成立,求实数a 的取值范围.35.已知0m >,函数()2f x x x m =++-的最小值为3,()25g x x m =+. (1)求m 的值;(2)求不等式()()f x g x ≤的解集. 36.已知函数()112f x x x =-+-的值域为M . (1)求M ;(2)证明:当,a b M ∈时,214a b ab -≤-. 37.已知,,a b c 均为正数,且满足 1.abc =证明: (1)3ab bc ca ++;(2)333a b c ab bc ac ++++.38.设a ,b ,c 均为正数,且a b +=1. (1)求12a b+的最小值;(2)≤39.已知函数()||2||(0,0)f x x a x b a b =+-->>. (1)当1a b ==时,解不等式()0f x >;(2)若函数()()||g x f x x b =+-的最大值为2,求14a b+的最小值.40.如图,在四棱锥P-ABCD 中,平面PAD ⊥ 平面ABCD ,PA ⊥PD ,PA=PD,AB ⊥,(I )求证:PD ⊥平面PAB;(II )求直线PB 与平面PCD 所成角的正弦值;(II I )在棱PA 上是否存在点M ,使得BMll 平面PCD?若存在,求AMAP的值;若不存在,说明理由。

三角函数计算题100道

三角函数计算题100道

三角函数计算题100道为了简洁起见,我将为您提供100道三角函数计算题的答案,并附上简要的解释。

1. sin(0) = 0正弦函数在角度为0度时的值等于0。

2. cos(0) = 1余弦函数在角度为0度时的值等于13. tan(45) = 1正切函数在角度为45度时的值等于14. csc(30) = 2余切函数在角度为30度时的值等于25. sec(60) = 2正割函数在角度为60度时的值等于26. cot(60) = 1/√3余割函数在角度为60度时的值等于1/√3,其中√3表示根号下37. sin(90) = 1正弦函数在角度为90度时的值等于18. cos(90) = 0余弦函数在角度为90度时的值等于0。

9. tan(0) = 0正切函数在角度为0度时的值等于0。

10. csc(0) = 未定义余切函数在角度为0度时的值未定义。

11. sec(30) = 2/√3正割函数在角度为30度时的值等于2/√3 12. cot(45) = 1余割函数在角度为45度时的值等于1 13. sin(60) = √3/2正弦函数在角度为60度时的值等于√3/2 14. cos(45) = √2/2余弦函数在角度为45度时的值等于√2/2 15. tan(30) = √3/3正切函数在角度为30度时的值等于√3/3 16. csc(45) = √2余切函数在角度为45度时的值等于√2 17. sec(60) = 2正割函数在角度为60度时的值等于2 18. cot(90) = 0余割函数在角度为90度时的值等于0。

19. sin(180) = 0正弦函数在角度为180度时的值等于0。

20. cos(180) = -1余弦函数在角度为180度时的值等于-1 21. tan(120) = √3正切函数在角度为120度时的值等于√3 22. csc(150) = -2余切函数在角度为150度时的值等于-2 23. sec(240) = -2正割函数在角度为240度时的值等于-2 24. cot(270) = 0余割函数在角度为270度时的值等于0。

三角函数与数列(高考题)

三角函数与数列(高考题)

三角函数与数列(高考题)1.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=. (1)证明:sin A sin B=sin C;(2)若b2+c2-a2=bc,求tan B.2.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c. (1)求C; (2)若c=,△ABC的面积为,求△ABC的周长.3.在△ABC中,a2+c2=b2+ac.(1)求∠B的大小; (2)求cos A+cos C的最大值.4.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin 2B=b sin A. (1)求B; (2)若cos A=,求sin C的值.5.设f(x)=2sin(π-x)sin x-(sin x-cos x)2.(1)求f(x)的单调递增区间;(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g的值.6.设f(x)=sin x cos x-cos2.(1)求f(x)的单调区间;(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c.若f=0,a=1,求△ABC面积的最大值.7.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.8.已知向量=,=(sinx,cos2x),x∈R,设函数f(x)=·.(1) 求f(x)的最小正周期. (2) 求f(x) 在上的最大值和最小值.9.已知ΔABC的角A,B,C所对的边分别是a,b,c,设向量,,.(1)若//,求证:ΔABC为等腰三角形;(2)若⊥,边长c= 2,角C=,求ΔABC的面积.10.已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(1)求数列{b n}的通项公式;(2)令c n=.求数列{c n}的前n项和T n.11.设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*.(1)求通项公式a n;(2)求数列{|a n-n-2|}的前n项和.12.已知数列的前项和为,且对一切正整数都成立。

三角函数练习题含答案

三角函数练习题含答案

三角函数练习题含答案一、填空题1.已知函数()sin()(0,)R f x x ωϕωϕ=+>∈在区间75,126ππ⎛⎫⎪⎝⎭上单调,且满足73124f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.有下列结论: ①203f π⎛⎫= ⎪⎝⎭; ②若5112f π⎛⎫= ⎪⎝⎭,则函数()f x 的最小正周期为π; ③ω的取值范围为(]0,4;④函数()f x 在区间[)0,2π上最多有6个零点. 其中所有正确结论的编号为________.2.已知函数()sin 2sin 23f x x x a π⎛⎫=+++ ⎪⎝⎭同时满足下述性质:①若对于任意的()()()123123,0,,4,x x x f x f x f x π⎡⎤∈+⎢⎥⎣⎦恒成立;②236f a π⎛⎫- ⎪⎝⎭,则a 的值为_________.3.若函数()41sin 2cos 33f x x x a x =-+在(),-∞+∞内单调递增,则实数a 的取值范围是___________.4.在ABC 中,设a ,b ,c 分别为角A ,B ,C 对应的边,记ABC 的面积为S ,且sin 2sin 4sin b B c C a A +=,则2Sa 的最大值为________. 5.已知函数()2sin 16f x x πω⎛⎫=-- ⎪⎝⎭,其中0>ω,若()f x 在区间(4π,23π)上恰有2个零点,则ω的取值范围是____________.6.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.将函数()y f x =的图象向右平移4π个单位,得到()y g x =的图象,则下列有关()f x 与()g x 的描述正确的有___________(填序号).①()2sin 23g x x π⎛⎫=- ⎪⎝⎭;②方程()()360,2f x g x x π⎛⎫⎛⎫+=∈ ⎪ ⎪⎝⎭⎝⎭所有根的和为712π;③函数()y f x =与函数()y g x =图象关于724x π=对称. 7.如图,在边长为2的正方形ABCD 中,M ,N 分别为边BC ,CD 上的动点,以MN 为边作等边PMN ,使得点A ,P 位于直线MN 的两侧,则PN PB ⋅的最小值为______.8.已知空间单位向量1e ,2e ,3e ,4e ,1234123421+=+=+++=e e e e e e e e ,则13⋅e e 的最大值是___________.9.已知平面四边形ABCD 的面积为364AB =,3AD =,5BC =,6CD =,则cos()A C +=___________.10.在平面直角坐标系xOy 中,已知直线2y x =+与x 轴,y 轴分别交于M ,N 两点,点P 在圆22()2x a y -+=上运动.若MPN ∠恒为锐角,则实数a 的取值范围是________.二、单选题11.已知函数()|sin |(0)f x x ωω=>在区间,53ππ⎡⎤⎢⎥⎣⎦上单调递减,则实数ω的取值范围为( ) A .5,32⎡⎤⎢⎥⎣⎦B .30,2⎛⎤ ⎥⎝⎦C .8,33⎡⎤⎢⎥⎣⎦D .50,4⎛⎤ ⎥⎝⎦12.已知无穷项实数列{}n a 满足: 1a t =, 且 14111n n n a a a +=--, 则( ) A .存在1t >, 使得20111a a = B .存在0t <, 使得20211a a =C .若2211a a =, 则21a a =D .至少有2021个不同的t , 使得20211a a =13.已知点P 是曲线e 3xy =+α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A .0,6π⎛⎤ ⎥⎝⎦B .,62ππ⎡⎫⎪⎢⎣⎭C .,63ππ⎡⎤⎢⎥⎣⎦D .0,3π⎛⎤ ⎥⎝⎦14.已知点1F ,2F 分别为椭圆()2222:10x y C a b a b+=>>的左、右焦点,点M 在直线:l x a =-上运动,若12F MF ∠的最大值为60︒,则椭圆C 的离心率是( )A .13B .12CD15.已知函数()sin sin()f x x x π=+,现给出如下结论:①()f x 是奇函数;②()f x 是周期函数;③()f x 在区间(0,)π上有三个零点;④()f x 的最大值为2.其中所有正确结论的编号为( ) A .①③B .②③C .②④D .①④16.在三棱锥S ABC -中,侧棱SA ,SB ,SC 两两垂直,且2SA SB SC +==.设SA x =,该三棱锥的表面积为函数()y f x =,以下判断正确的是( ) A .()f x 为常数 B .()f x 有极小值 C .()f x 有极大值D .()f x 是单调函数17.已知函数()3sin()(0,||)f x x ωϕωϕπ=+><,(4)(2)6f f =-,且()f x 在[2,4]上单调.设函数()()1g x f x =-,且()g x 的定义域为[5,8]-,则()g x 的所有零点之和等于( ) A .0B .4C .12D .16 18.已知函数()sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭,66f x f x ππ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭,22f x f x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,下列四个结论: ①4πϕ=②93()2k k N ω=+∈ ③02f π⎛⎫-= ⎪⎝⎭④直线3x π=-是()f x 图象的一条对称轴其中所有正确结论的编号是( ) A .①②B .①③C .②④D .③④19.已知1F 、2F 是椭椭圆和双曲线共有焦点,P 为两曲线的一个公共点,且126F PF π∠=,记椭圆和双曲线的离心率分别1e ,2e ,则1212e e e e +⋅的最大值为 A .4B .2C .83D .16320.在锐角ABC 中,三内角,,A B C 的对边分别为,,a b c ,且2sin a b C =,则tan tan tan A B C ++的最小值为( )A .2B .4C .6D .8三、解答题21.已知向量(1,0)a =,(sin 2,1)b x =--,(2sin ,1)c x =+,(1,)d k =(,)x k R ∈.(1)若[,]x ππ∈-,且()//a b c +,求x 的值; (2)对于()11,m x y =,()22,n x y =,定义12211(,)2S m n x y x y =-.解不等式1(,)2S b c >; (3)若存在x ∈R ,使得()()a b c d +⊥+,求k 的取值范围.22.如图,甲、乙两个企业的用电负荷量y 关于投产持续时间t (单位:小时)的关系()y f t =均近似地满足函数()sin()(0,0,0)f t A t b A ωϕωϕπ=++>><<.(1)根据图象,求函数()f t 的解析式;(2)为使任意时刻两企业用电负荷量之和不超过9,现采用错峰用电的方式,让企业乙比企业甲推迟(0)m m >小时投产,求m 的最小值. 23.已知函数2211()cos sin cos sin 22f x x x x x =+-.(1)求()f x 的单调递增区间;(2)求()f x 在区间,82ππ⎡⎤-⎢⎥⎣⎦的最大值和最小值.24.设函数()f x a b =⋅,其中向量(2cos ,1)a x =,(cos 32)=+b x x m ; 求:(1)函数的最小正周期和单调递增区间;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求实数m 的值,使函数()f x 的值域恰为17,22⎡⎤⎢⎥⎣⎦.25.已知函数()()22sin cos 2sin f x x x x =+- (1)求()f x 的最小正周期; (2)求()f x 的单调增区间; (3)若0,2x π⎡⎤∈⎢⎥⎣⎦求函数的值域.26.已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足sin()n n b a =,集合*{|,}n S x x b n ==∈N .(1)若10a =,23d π=,求集合S ; (2)若12a π=,求d 使得集合S 恰有两个元素;(3)若集合S 恰有三个元素,n T n b b +=,T 是不超过5的正整数,求T 的所有可能值,并写出与之相应的一个等差数列{}n a 的通项公式及集合S .27.已知函数()()()24sin sin cos sin cos sin 142x f x x x x x x π⎛⎫=+++-- ⎪⎝⎭.(1)求函数()f x 的最小正周期;(2)若函数()()()12122g x f x af x af x a π⎡⎤⎛⎫=+---- ⎪⎢⎥⎝⎭⎣⎦在,42ππ⎡⎤-⎢⎥⎣⎦的最大值为2,求实数a 的值.28.已知在ABC ∆中,,,a b c 分别为角A,B,C 的对应边,点D 为BC 边的中点,ABC ∆的面积为23sin AD B. (1)求sin sin BAD BDA ∠⋅∠的值;(2)若6,BC AB AD ==b .29.已知函数2()2cos cos f x x x x =+. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若()f x 在区间,6m π⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,求m 的取值范围.30.函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图象相邻两条对称轴之间的距离为2π, (1)求函数()f x 的解析式;(2)设π(0,)2α∈,则()22f α=,求α的值【参考答案】一、填空题1.①②④ 2.03.[45.742ω<<或91322ω<≤.6.①③7.14-8 9.710##0.710.1a 或4a二、单选题 11.A 12.D 13.A 14.C 15.A 16.A 17.C 18.B 19.A 20.D 三、解答题21.(1)6π-或56π-(2)5,,66x k k k Z ππππ⎛⎫∈++∈ ⎪⎝⎭(3)[]5,1k ∈--【解析】 【分析】(1)由题()sin 1,1a b x +=--,由()//a b c +可得()sin 12sin x x -=-+,进而求解即可; (2)由题意得到()()()1,sin 22sin sin 2S b c x x x =-++=,进而求解即可; (3)由()()a b c d +⊥+可得()()0a b c d +⋅+=,整理可得k 关于x 的函数,进而求解即可 【详解】(1)由题,()sin 1,1a b x +=--,因为()//a b c +,所以()sin 12sin x x -=-+,则1sin 2x =-,因为[,]x ππ∈-,所以6x π=-或65x π=-(2)由题,()()()1,sin 22sin sin 2S b c x x x =-++=, 因为1(,)2S b c >,所以1sin 2x >, 当[]0,x π∈时,566x ππ<<, 因为sin y x =是以π为最小正周期的周期函数, 所以5,,66x k k k Z ππππ⎛⎫∈++∈ ⎪⎝⎭(3)由(1)()sin 1,1a b x +=--,由题,()3sin ,1c d x k +=++, 若()()a b c d +⊥+,则()()()()()sin 13sin 10a b c d x x k +⋅+=-+-+=, 则()22sin 2sin 4sin 15k x x x =+-=+-, 因为[]sin 1,1x ∈-,所以[]5,1k ∈-- 【点睛】本题考查共线向量的坐标表示,考查垂直向量的坐标表示,考查解三角函数的不等式22.(1)()sin 462f t t ππ⎛⎫=++ ⎪⎝⎭;(2)4【解析】 【分析】 (1)由212T πω==,得ω,由53A b b A +=⎧⎨-=⎩,得A ,b ,代入(0,5),求得ϕ,从而即可得到本题答案;(2)由题,得()()cos ()cos 8966f t m f t t m t ππ⎡⎤⎛⎫++=+++≤ ⎪⎢⎥⎣⎦⎝⎭恒成立,等价于cos ()cos 166t m t ππ⎡⎤⎛⎫++≤ ⎪⎢⎥⎣⎦⎝⎭恒成立,然后利用和差公式展开,结合辅助角公式,逐步转化,即可得到本题答案. 【详解】(1)解:由图知212T πω==,6πω∴=又53A b b A +=⎧⎨-=⎩,可得41b A =⎧⎨=⎩ ()sin 46f t t πϕ⎛⎫∴=++ ⎪⎝⎭,代入(0,5),得22k πϕπ=+,又0ϕπ<<,2πϕ∴=所求为()sin 462f t t ππ⎛⎫=++ ⎪⎝⎭(2)设乙投产持续时间为t 小时,则甲的投产持续时间为()t m +小时,由诱导公式,企业乙用电负荷量随持续时间t 变化的关系式为:()sin 4cos 4626f t t t πππ⎛⎫=++=+ ⎪⎝⎭同理,企业甲用电负荷量变化关系式为:()cos ()46f t m t m π⎡⎤+=++⎢⎥⎣⎦两企业用电负荷量之和()()cos ()cos 866f t m f t t m t ππ⎡⎤⎛⎫++=+++ ⎪⎢⎥⎣⎦⎝⎭,0t ≥依题意,有()()cos ()cos 8966f t m f t t m t ππ⎡⎤⎛⎫++=+++≤ ⎪⎢⎥⎣⎦⎝⎭恒成立即cos ()cos 166t m t ππ⎡⎤⎛⎫++≤⎪⎢⎥⎣⎦⎝⎭恒成立 展开有cos 1cos sin sin 16666m t m t ππππ⎡⎤⎛⎫⎛⎫⎛⎫+-≤ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦恒成立cos 1cos sin sin cos 66666m t m t A t πππππϕ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+-=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦其中,A =cos 16cos m Aπϕ⎛⎫+ ⎪⎝⎭=,sin 6sin m A πϕ=1A ∴=≤整理得:1cos 62m π⎛⎫≤- ⎪⎝⎭解得2422363k m k πππππ⎛⎫+≤≤+ ⎪⎝⎭即124128k m +≤≤+ 取0k =得:48m ≤≤ m ∴的最小值为4. 【点睛】本题主要考查根据三角函数的图象求出其解析式,以及三角函数的实际应用,主要考查学生的分析问题和解决问题的能力,以及计算能力,难度较大.23.(1)3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,()k Z ∈;(2)()max f x =,()min 12f x =- 【解析】 【分析】(1)直接利用三角函数的恒等变换,把三角函数变形成正弦型函数.进一步求出函数的单调区间.(2)直接利用三角函数的定义域求出函数的最值. 【详解】 解:(1)2211()cos sin cos sin 22f x x x x x =+-11()cos 2sin 222f x x x ∴=+ ()24f x x π⎛⎫∴=+ ⎪⎝⎭令222242k x k πππππ-+≤+≤+,()k Z ∈解得388k x k ππππ-+≤≤+,()k Z ∈ 即函数的单调递增区间为3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,()k Z ∈(2)由(1)知n ()24f x x π⎛⎫=+ ⎪⎝⎭ ,82x ππ⎡⎤∈-⎢⎥⎣⎦ 520,44x ππ⎡⎤∴+∈⎢⎥⎣⎦所以当242x ππ+=,即8x π=时,()max f x =当5244x ππ+=,即2x π=时,()min 12f x =- 【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的单调性的应用,利用函数的定义域求三角函数的值域.属于基础型.24.(1)T π=,,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k z ∈;(2)12.【解析】 【分析】(1)由数量积的坐标运算可得2()2cos 2f x x x m =+,然后将其化为基本型,即可求出周期和单调递增区间 (2)由02x π≤≤,可得()3m f x m ≤≤+,和题目条件对应即可求出m【详解】(1)∵2()2cos 2f x a b x x m =⋅=+1cos22x x m =++2sin 216x m π⎛⎫=+++ ⎪⎝⎭,∴函数()f x 的最小正周期T π=, 可知,当222262k x k πππππ-≤+≤+,k Z ∈时,函数单调递增,解得:36k x k ππππ-≤≤+,故函数的单调递增区间为,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k z ∈.(2)∵02x π≤≤,∴72666x πππ≤+≤, ∴1sin 2126x π⎛⎫-≤+≤ ⎪⎝⎭,∴()3m f x m ≤≤+, 又17()22f x ≤≤, 故12m =. 【点睛】本题考查的是三角函数的图象及其性质,解决这类问题时首先应把函数化成三角函数基本型.25.(1)π;(2)3[],88k k k Z ππππ-+∈,;(3)[-.【解析】 【分析】(1)先化简函数f(x)的解析式,再求函数的最小正周期;(2)解不等式222,242k x k k Z πππππ-≤+≤+∈,即得函数的增区间;(3)根据三角函数的性质求函数的值域. 【详解】(1)由题得1cos2()1sin 22sin 2cos2)24x f x x x x x π-=+-⋅=++, 所以函数的最小正周期为2=2ππ. (2)令222,242k x k k Z πππππ-≤+≤+∈,所以3,88k x k k Z ππππ-≤≤+∈,所以函数的单调增区间为3[],88k k k Z ππππ-+∈,.(3)50,02,2,2444x x x πππππ≤≤∴≤≤∴≤+≤sin(2)1,1)44x x ππ≤+≤∴-≤+≤所以函数的值域为[-. 【点睛】本题主要考查三角恒等变换,考查三角函数的图像和性质,考查三角函数的值域,意在考查学生对这些知识的理解掌握水平,属于基础题.26.(1)⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭;(2)23π或π;(3)3T =或4,3T =时,23n a n π=,33,,022S ⎧⎫⎪⎪=-⎨⎬⎪⎪⎩⎭;4T =时,2n a n π=,{}0,1,1S =-【解析】 【分析】(1)根据等差数列的通项公式写出n a ,进而求出n b ,再根据周期性求解;(2)由集合S 的元素个数,分析数列{}n b 的周期,进而可求得答案;(3)分别令1T =,2,3,4,5进行验证,判断T 的可能取值,并写出与之相应的一个等差数列{}n a 的通项公式及集合S 【详解】(1)等差数列{}n a 的公差(0d ∈,]π,数列{}n b 满足sin()n n b a =, 集合{}*|,n S x x b n N ==∈. ∴当120,3a d π==, 所以集合3{2S =-,0,3}2. (2)12a π=,数列{}n b 满足sin()n n b a =,集合{}*|,n S x x b n N ==∈恰好有两个元素,如图:根据三角函数线,①等差数列{}n a 的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d π=, ②1a 终边落在OA 上,要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,如图OB ,OC ,此时23d π=, 综上,23d π=或者d π=.(3)①当3T =时,3n n b b +=,集合1{S b =,2b ,3}b ,符合题意. 与之相应的一个等差数列{}n a 的通项公式为23n a n π=,此时33S ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭. ②当4T =时,4n n b b +=,sin(4)sin n n a d a +=,42n n a d a k π+=+,或者42n n a d k a π+=-,等差数列{}n a 的公差(0d ∈,]π,故42n n a d a k π+=+,2k d π=,又1k ∴=,2 当1k =时满足条件,此时{0S =,1,1}-. 与之相应的一个等差数列{}n a 的通项公式为2n a n π=,此时{}0,1,1S =-【点睛】本题考查等差数列的通项公式、集合元素的性质以及三角函数的周期性,是一道综合题. 27.(1) 2T π=;(2)2a =-或6a = 【解析】 【分析】(1)根据二倍角公式进行整理化简可得()2sin f x x =,从而可得最小正周期;(2)将()g x 通过换元的方式变为21112y t at a =-+--,21t ≤;讨论对称轴的具体位置,分别求解最大值,从而建立方程求得a 的值. 【详解】(1)()2221cos sin cos sin 12f x x x x x π⎡⎤⎛⎫=-++-- ⎪⎢⎥⎝⎭⎣⎦()222sin sin 12sin 12sin x x x x =++--= ∴最小正周期2T π=(2)()1sin2sin cos 12g x a x a x x a =+---令sin cos x x t -=,则()22sin 21sin cos 1x x x t =--=-22221111122242a a y t at a t at a t a ⎛⎫∴=-+--=-+-=--+- ⎪⎝⎭sin cos 24t x x x π⎛⎫=-=- ⎪⎝⎭由42x ππ-≤≤得244x πππ-≤-≤21t ≤①当22a<22a <- 当2t =max 1222y a ⎫=--⎪⎭由1222a ⎫--=⎪⎭,解得()817a ==->-)②当12a≤,即2a -≤时 当2a t =时,2max 142a y a =- 由21242a a -=得2280a a --=,解得2a =-或4a =(舍去) ③当12a>,即2a >时 当1t =时,max 12a y =-,由122a-=,解得6a = 综上,2a =-或6a = 【点睛】本题考查正弦型函数最小正周期的求解、利用二次函数性质求解与三角函数有关的值域问题,解题关键是通过换元的方式将所求函数转化为二次函数的形式,再利用对称轴的位置进行讨论;易错点是忽略了换元后自变量的取值范围.28.(1)13; (2【解析】 【分析】(1)先由ABC ∆的面积为23sin AD B 且D 为BC 的中点,得到ABD ∆的面积;再由三角形的面积公式和正弦定理即可求出结果;(2)根据(1)的结果和6BC AB =,可求出sin BDA ∠和sin BAD ∠;再由余弦定理,即可求出结果. 【详解】(1)由ABC ∆的面积为23sin AD B 且D 为BC 的中点可知:ABD ∆的面积为26sin AD B , 由三角形的面积公式可知:21sin 26sin AD AB BD B B ⋅⋅=, 由正弦定理可得:3sin sin 1BAD BDA ∠⋅∠=, 所以1sin sin 3BAD BDA ∠⋅∠=,(2)6BC AB = ,又因为D 为中点,所以BC 2BD 6AB ==,即BD 3AB =, 在ABD ∆中由正弦定理可得sin sin BD ABBAD BDA=∠∠,所以sin 3sin BAD BDA ∠=∠由(1)可知1sin sin 3BAD BDA ∠⋅∠=所以1sin ,sin 13BDA BAD ∠=∠=,()0,BAD π∠∈ ∴ ,2BAD π∠=在直角ABD ∆中13AD BDA =∠=,所以1,3AB BD ==.BC 2BD =,BC 6∴=在ABC ∆中用余弦定理,可得22212cos 13621633,3b ac ac B b =+-=+-⨯⨯⨯=∴=【点睛】本题主要考查解三角形,熟记正弦定理和余弦定理以及面积公式,即可求解,属于常考题型.29.(Ⅰ) (),,36ππππ⎡⎤-+∈⎢⎥⎣⎦k k k Z (Ⅱ) 62ππ≤≤m【解析】 【分析】(Ⅰ)利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数()f x 化为π2sin 216x ⎛⎫++ ⎪⎝⎭,利用正弦函数的单调性解不等式,可得到函数()f x 的递增区间;(Ⅱ) 要使得()f x 在π,6m ⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,即πsin 26x ⎛⎫+ ⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的值域为112⎡⎤-⎢⎥⎣⎦,,可得7 2266m πππ≤+≤,从而可得结果.【详解】(Ⅰ)()22f x cos x =+πcos212sin 216x x x ⎛⎫=+=++ ⎪⎝⎭,由()222,262k x k k Z πππππ-≤+≤+∈得(),36k x k k Z ππππ-≤≤+∈所以,()f x 的单调递增区间是(),,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(Ⅱ)由(Ⅰ)知()π2sin 216f x x ⎛⎫=++ ⎪⎝⎭.因为π,6x m ⎡⎤∈-⎢⎥⎣⎦,所以π2,2666x m ππ⎡⎤+∈-+⎢⎥⎣⎦.要使得()f x 在π,6m ⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,即πsin 26x ⎛⎫+ ⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的值域为112⎡⎤-⎢⎥⎣⎦,. 所以72266m πππ≤+≤,即62m ππ≤≤. 【点睛】本题主要考查二倍角公式、辅助角公式的应用以及三角函数的单调性、三角函数的值域,属于中档题. 函数sin()y A x ωϕ=+的单调区间的求法:若0,0A ω>>,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间,2222k x k πππωϕπ-+≤+≤+求得增区间.30.(1)()2sin(2) 1.6f x x π=-+;(2)3π.【解析】 【详解】(1)由三角函数性质得,最大值为A+1=3,∴A=2, 周期2222πππωω⨯==⇒=,∴f (x )=2sin (2x-6π)+1 (2)π(0,)2α∈,f (2α)=2∴2sin (22α⨯-6π)+1=2,得sin (α-6π)=12,α=3π。

数列和三角函数经典例题(有答案)

数列和三角函数经典例题(有答案)

1.(2016·山东,17)(本小题满分12分)设f (x )=23sin(π-x )sin x -(sin x -cos x )2.(1)求f (x )的单调递增区间;(2)把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位,得到函数y =g (x )的图象,求g ⎝⎛⎭⎫π6的值.2.(2016·全国Ⅲ,,17)(本小题满分12分)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3;(2)求{a n }的通项公式.3.(2016·全国Ⅲ,17)(本小题满分12分)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0.(1)证明{a n }是等比数列,并求其通项公式;(2)若S 5=3132,求λ.4.(2016·全国卷Ⅱ文,17)(本小题满分12分)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.5.(2016·全国Ⅱ理,17)(本题满分12分)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.(1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.6.(2016·全国Ⅰ,17)(本小题满分12分)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a n b n +1+b n +1=nb n . (1)求{a n }的通项公式;(2)求{b n }的前n 项和.7.(2016·全国Ⅰ理,17)(本小题满分12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长.8.(2016·北京,15)(本小题13分)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4.(1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.9.(2016·北京,16)(本小题13分)已知函数f (x )=2sin ωx cos ωx +cos 2ωx (ω>0)的最小正周期为π.(1)求ω的值;(2)求f (x )的单调递增区间.10.(2016·北京,15)(本小题满分13分)在△ABC 中,a 2+c 2=b 2+2ac .(1)求∠B 的大小;(2)求2cos A +cos C 的最大值.11.(本题满分14分)在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知tan(A)24π+=. (1)求2sin 2sin 2cos A A A +的值; (2)若B ,34a π==,求ABC ∆的面积.12.(本题满分15分)已知数列{}n a 和{}n b 满足,*1112,1,2(n N ),n n a b a a +===∈*12311111(n N )23n n b b b b b n+++++=-∈. (1)求n a 与n b ; (2)记数列{}n n a b 的前n 项和为n T ,求n T .13在三角形ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知A=4π,22b a -=122c .(1)求t a nC 的值;(2)若ABC 的面积为7,求b 的值。

(完整版)三角函数公式练习(答案)

(完整版)三角函数公式练习(答案)

三角函数公式练习题(答案)1.1.( )29sin6π=A .B .C .D 12-12【答案】【解析】C试题分析:由题可知,;2165sin )654sin(629sin ==+=ππππ考点:任意角的三角函数2.已知,,( )10274(sin =-πα257cos2=α=αsin A .B .C .D .5454-53-53【答案】D 【解析】试题分析:由①,7sin()sin cos 45πααα-=⇒-= 2277cos2cos sin 2525ααα=⇒-=所以②,由①②可得 ③,()()7cos sin cos sin 25αααα-+=1cos sin 5αα+=-由①③得, ,故选D3sin 5α=考点:本题考查两角和与差的三角函数,二倍角公式点评:解决本题的关键是熟练掌握两角和与差的三角函数,二倍角公式3.( )cos 690= A .B .C .D .2121-2323-【答案】C 【解析】试题分析:由,故选C ()()cos 690cos 236030cos 30cos30=⨯-=-==考点:本题考查三角函数的诱导公式点评:解决本题的关键是熟练掌握三角函数的诱导公式以及特殊角的三角函数值4.的值为π316tanA. B. C. D.33-3333-【答案】 C 【解析】试题分析tanπ=tan(6π﹣)=﹣tan=.考点:三角函数的求值,诱导公式.点评:本题考查诱导公式的应用,三角函数的化简求值.5.若,,202παβπ<<<<-1cos()43πα+=cos()42πβ-=cos()2βα+=A .B .C .D .3333-93596-【答案】C.【解析】试题分析:因为,,所以,且202παβπ<<<<-1cos()43πα+=4344παππ<+<;又因为,所以322)4sin(=+απcos(42πβ-=02<<-βπ,且.又因为,所以2244πβππ<-<3624sin(=-βπ24()4(2βπαπβα--+=+)24sin()4sin(24cos()4cos()]24()4cos[(2cos(βπαπβπαπβπαπβα-++-+=--+=+.故应选C .935363223331=⨯+⨯=考点:1、同角三角函数的基本关系;2、两角差的余弦公式.6.若角α的终边在第二象限且经过点(P -,则等于sin αA ..12- D .12【答案】A 【解析】试题分析:由已知,故选A .23sin 2,3,1==⇒=∴=-=r y r y x α考点:三角函数的概念.7.sin70Cos370- sin830Cos530的值为( )A . B . C . D .21-212323-【答案】A 【解析】试题分析:sin70Cos370- sin830Cos530()()3790sin 790cos 37cos 7sin ---=()()2130sin 377sin 37sin 7cos 37cos 7sin -=-=-=-= 考点:三角恒等变换及诱导公式;8.已知,那么=( )53)4cos(=-x πsin 2x (A ) (B ) (C ) (D )25182524±257-257【答案】C 【解析】试题分析:sin2x =cos (-2x )=2cos 2(-x )-1=2×2π4π237(1525-=-考点:二倍角公式,三角函数恒等变形9.已知,那么 ( ) 51sin()25πα+=cos α=A . B . C . D .25-15-1525【答案】C 【解析】试题分析:由=,所以选C .51sin()25πα+=sin()cos 2a a π+=考点:三角函数诱导公式的应用10.已知,则的值为( )31)2sin(=+a πa 2cos A . B . C . D .3131-9797-【答案】D 【解析】试题分析:由已知得,从而,故选D.31cos =α971921cos 22cos 2-=-=-=αα考点:诱导公式及余弦倍角公式.11.已知点()在第三象限,则角在 ( ) P ααcos ,tan αA .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】B 【解析】试题分析:由已知得,,故角在第二象限.tan 0,cos 0αα<⎧⎨<⎩α考点:三角函数的符号.12.已知是第四象限角,,则( )α125tan -=α=αsin A . B . C . D .5151-135135-【答案】D 【解析】试题分析:利用切化弦以及求解即可.,1cos sin 22=+αα125cos sin tan -==ααα又是第四象限角,,故,16925sin 1cos sin 222=∴=+αααα135sin ,0sin -=<αα选:D.考点:任意角的三角函数的定义 ωπω2sin ==T x y .13.化简得到( )2cos (4πα--2sin ()4πα-A .α2sin B .α2sin - C .α2cos D .α2cos -【答案】A 【解析】试题分析:απαπαπαπααππα2sin )22cos()4(2cos 4(sin )4(cos )4(sin )4(cos 2222=-=-=---=---考点:三角函数的诱导公式和倍角公式.14.已知,则3cos ,05ααπ=<<tan 4πα⎛⎫+= ⎪⎝⎭A.B. C. D.15171-7-【答案】D 【解析】试题分析:由可知,因此,053cos ,0>=<<απα20πα<<54sin =α,由和角公式可知,故答案34tan =α713411344tan tan 14tantan )4tan(-=⨯-+=⋅-+=+παπαπα为D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试卷2(总分:201 考试时间:197分钟)学校___________________ 班级____________ 姓名___________ 得分___________一、选择题 ( 本大题共 12 题, 共计 60 分)1、(5分) 设等比数列的公比,前n项和为,则()A. 2B. 4C.D.2、(5分) 记等差数列{a n}的前n项和为S n.若S2=4,S4=20,则该数列的公差d等于( )A.2B.3C.6D.73、(5分) 已知等差数列满足,,则它的前10项的和()A.138 B.135 C.95 D.23 4、(5分) 古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )A.289B.1 024C.1225 D.1 3785、(5分) 等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列{a n}的前10项之和是( )A.90B.100 C .145 D.1906、(5分) 已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20等于( )A.-1B.1C.3D.77、(5分) 设等比数列{a n }的前n 项和为S n ,若,则等于( )A.2B.C.D.38、(5分) 设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 6=11,则S 7等于( )A.13B.35C.49D.639、(5分) {a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d 等于( )A.-2 B. C.D.210、(5分) 已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n≥3),则当n≥1时,log 2a 1+log 2a 3+…+log 2a 2n-1=( )A.n(2n-1)B.(n+1)2C.n 2D.(n-1)211、(5分) 函数=()cosx 的最小正周期为( )A.2πB.C.πD.12、(5分) 函数y =2cos 2()-1是( )A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数二、填空题 ( 本大题 共 4 题, 共计 20 分)1、(5分) 已知函数f(x)=2x ,等差数列{a n }的公差为2.若f(a 2+a 4+a 6+a 8+a 10)=4,则log2[f(a 1)·f(a 2)·f(a 3)·…·f(a 10)]= .2、(5分) 设等差数列{a n }的前n 项和为S n .若S 9=72,则a 2+a 4+a 9=___________.3、(5分)等差数列{a n }的前n 项和为S n ,且6S 5-5S 3=5,则a 4=__________.4、(5分) 设等比数列{a n }的前n 项和为S n .若a 1=1,S 6=4S 3,则a 4=__________.三、解答题 ( 本大题 共 10 题, 共计 121 分)1、(12分) 已知等差数列{a n }的公差d 不为0,设S n =a 1+a 2q+…+a n q n -1,T n =a 1-a 2q+…+(-1)n -1a n q n-1,q≠0,n∈N *.(1)若q =1,a 1=1,S 3=15,求数列{a n }的通项公式; (2)若a 1=d 且S 1,S 2,S 3成等比数列,求q 的值;(3)若q≠±1,证明(1-q)S 2n -(1+q)T 2n ,n∈N *.2、(10分) 已知等差数列{a n}中,a3a7=-16,a4+a6=0,求{a n}的前n项和S n.3、(12分) 已知数列{a n}满足a1=1,a2=2,,n∈N*.(1)令bn =an+1-an,证明{bn}是等比数列;(2)求{an}的通项公式.4、(12分) 已知数列{a n}的前n项和S n=2n2+2n,数列{b n}的前n项和T n=2-b n.(1)求数列{an }与{bn}的通项公式;(2)设cn =an2·bn,证明当且仅当n≥3时,cn+1<cn.5、(14分) 已知等差数列{a n }的公差为d(d≠0),等比数列{b n }的公比为q(q >1).设S n =a 1b 1+a 2b 2+…+a n b n ,T n =a 1b 1-a 2b 2+…+(-1)n -1a n b n ,n∈N *. (1)若a 1=b 1=1,d =2,q =3,求S 3的值;(2)若b 1=1,证明,n∈N *;(3)若正整数n 满足2≤n≤q,设k 1,k 2,…,k n 和l 1,l 2,…,l n 是1,2,…,n 的两个不同的排列,,,证明c 1≠c 2.6、(12分) 在△ABC 中, ,.(1)求sinA 的值; (2)设,求△ABC 的面积.7、(12分) 已知向量a=(cosα,sinα),b=(cosβ,sinβ),c=(-1,0).(1)求向量b+c的长度的最大值;(2)设,且a⊥(b+c),求cosβ的值.8、(12分) 在△ABC中,sin(C-A)=1,.(1)求sinA的值;(2)设,求△ABC的面积.9、(13分) 在△ABC中,角A,B,C的对边分别为a,b,c,,,. (Ⅰ)求sinC的值;(Ⅱ)求△ABC的面积.10、(12分) 在△ABC中,,AC =3,sinC =2sinA.(1)求AB 的值;(2)求sin()的值.试卷2(总分:201 考试时间:197分钟)学校___________________ 班级____________ 姓名___________ 得分___________一、选择题 ( 本大题 共 12 题, 共计 60 分)1、(5分)C 解法一:由等比数列定义,S 4=a 1+a 2+a 3+a 4=+a 2+a 2q+a 2q 2,得解法二:S 4=,a 2=a 1q,∴.2、(5分)答案:B 由条件a 1+a 2=4,a 1+a 2+a 3+a 4=20, ∴a 3+a 4=16. ∴a 1+2d+a 2+2d=16. ∴4d=12.∴d=3.3、(5分)C 解析:∵a 2+a 4=4=2a 3,∴a 3=2.又∵a3+a5=10=2a4,∴a4=5.∴公差d=a4-a3=3,a1=-4.∴S10=10×(-4)+×3=95.4、(5分)C解析:正方形数即为n2(n∈N*).又三角形数满足:a1=1,a2=3,an-an-1=n,故可得,经验证可得, 5、(5分)B解析:设等差数列{an }的公差为d(d≠0),由题意可建立方程a22=a1a5,即(a1+d)2=a1(a1+4d),由a 1=1可以解出d=2,∴数列{an}的前10项之和.6、(5分)B解析:设其公差为d,∵a1+a3+a5=105,∴3a3=105.∴a3=35.同理,由a2+a4+a6=99得a4=33,∴d=a4-a3=-2.a 20=a4+16d=33+16×(-2)=1.7、(5分)B解析:设其公比为q.由已知可得, ∴q3=2..另解:可知S3,S6-S3,S9-S6成等比数列,则可设S6=3,S3=1,则(S6-S3)2=S3×(S9-S6),解得S9=7,故.8、(5分)C解析:.9、(5分)B解析:本题考查等差数列的通项公式,a7-2a4=a3+4d-2a3-2d=a3+2d=-1,所以.10、(5分) C解析:由{an }为等比数列,则a5·a2n-5=a1·a2n-1=,则(a1·a3·a5·…·a2n-1)2=(22n)n a1·a3·…·a2n-1=,故log2a1+log2a3+…+log2a2n-1=log2(a1·a3·…·a2n-1)=n2.11、(5分)A解析:=()cosx==2sin(),∴T=2π,选A.12、(5分)A解析:y=2cos2()-1=cos()=sin2x.∴f(x)的最小正周期为π,且为奇函数.二、填空题 ( 本大题共 4 题, 共计 20 分)1、(5分)-6 解析:∵f(x)=2x,∴log2[f(a1)f(a2)…f(a10)]=log2=a1+a2+…+a10.∵a2+a4+a6+a8+a10=2,∵{an}为d=2的等差数列,∴a1+a3+a5+a7+a9=-8.∴a1+a2+…+a10=-6.2、(5分)24解析:∵ ,∴a1+a9=16.∵a1+a9=2a5,∴a5=8.3、(5分)解析:设等差数列的首项为a1,公差为d,则由6S5-5S3=5,6×(5a1+10d)-5(3a1+3d)=5,得6(a1+3d)=2,∴a4=.4、(5分) 3解析:S6=4S3.∴a4=a1·q3=1×3=3.三、解答题 ( 本大题共 10 题, 共计 121 分)1、(12分)本小题主要考查等差数列的通项公式、等比数列的通项公式与前n项和公式等基础知识,考查运算能力和推理论证能力.满分12分.(1)解:由题设知,S3=a1+(a1+d)q+(a1+2d)q2.将q=1,a1=1,S3=15代入上式,解得d=4.所以,an=4n-3,n∈N*.(2)解:当a1=d时,S1=d,S2=d+2dq,S3=d+2dq+3dq2.因为S1,S2,S3成等比数列,所以S22=S1S3,即(d+2dq)2=d(d+2dq+3dq2). 注意到d≠0,整理得q2+2q=0. 因为q≠0,解得q=-2.(3)证明:由题设知,S 2n =a1+a2q+a3q2+a4q3+…+a2nq2n-1,①T 2n =a1-a2q+a3q2-a4q3+…-a2nq2n-1.②①式减去②式,得S 2n -T2n=2(a2q+a4q3+…+a2nq2n-1).①式加上②式,得S 2n +T2n=2(a1+a3q2+…+a2n-1q上标2n-2).③③式两边同乘q,得q(S2n +T2n)=2(a1q+a3q3+…+a2n-1q2n-1).所以,(1-q)S2n -(1+q)T2n=(S2n-T2n)-q(S2n+T2n)=2d(q+q3+…+q2n-1),n∈N*.2、(10分)分析:考查等差数列的基本性质及求和公式.解:设{an}的公差为d,则即解得或因此,Sn =-8n+n(n-1)=n(n-9),或Sn=8n-n(n-1)=-n(n-9).3、(12分)分析:第(1)问利用等比数列的定义(q≠0).第(2)问利用迭加法求通项a n =(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1.解:(1)证明:b1=a2-a1=1,当n≥2时,b n =a n+1-a n =,∴{b n }是以1为首项,为公比的等比数列.(2)由(1)知b n =a n+1-a n =()n-1,当n≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)=1+1+()+…+()n-2===,当n=1时,,∴(n∈N *).4、(12分)本小题主要考查等差数列,等比数列,不等式等有关知识,考查数列的通项与其前n 项和之间的关系,考查抽象概括和运算求解能力. 解:(1)a 1=S 1=4.对于n≥2,有a n =S n -S n-1=2n(n+1)-2(n-1)n =4n.综上,{a n }的通项公式a n =4n.将n =1代入T n =2-b n ,得b 1=2-b 1,故T 1=b 1=1. (求b n 方法一)对于n≥2,由T n-1=2-b n-1,T n =2-b n ,得b n =T n -T n-1=-(b n -b n-1), ,b n =21-n .(求b n 方法二)对于n≥2,由T n =2-b n 得T n =2-(T n -T n-1),2T n =2+T n-1, ,T n -2=21-n (T 1-2)=-21-n ,T n =2-21-n ,b n =T n -T n-1=(2-21-n )-(2-22-n )=21-n . 综上,{b n }的通项公式b n =21-n .(2)方法一:由c n =a n 2·b n =n 225-n ,得.当且仅当n≥3时,,即c n+1<c n .方法二:由c n =a n 2·b n =n 225-n ,得c n+1-c n =24-n [(n+1)2-2n 2]=24-n [-(n-1)2+2]. 当且仅当n≥3时,c n+1-c n <0,即c n+1<c n .5、(14分)分析:本小题主要考查等差数列的通项公式、等比数列的通项公式与前n 项和公式等基础知识,考查运算能力、推理论证能力及综合分析和解决问题的能力. (1)解:由题设,可得a n =2n -1,b n =3n -1,n∈N *. 所以,S 3=a 1b 1+a 2b 2+a 3b 3=1×1+3×3+5×9=55. (2)证明:由题设,可得b n =q n -1,则 S 2n =a 1+a 2q+a 3q 2+a 4q 3+…+a 2n q 2n -1,① T 2n =a 1-a 2q+a 3q 2-a 4q 3+…-a 2n q 2n -1.②①式减去②式,得S 2n -T 2n =2(a 2q+a 4q 3+…+a 2n q 2n -1). ①式加上②式,得S 2n +T 2n =2(a 1+a 3q 2+…+a 2n -1q 2n -2).③ ③式两边同乘q,得q(S 2n +T 2n )=2(a 1q+a 3q 3+…+a 2n -1q 2n -1). 所以,(1-q)S 2n -(1+q)T 2n =(S 2n -T 2n )-q(S 2n +T 2n ) =2d(q+q 3+…+q 2n -1),n∈N *.(3)证明:=(k 1-l 1)db 1+(k 2-l 2)db 1q+…+(k n -l n )db 1q n -1. 因为d≠0,b 1≠0,所以.①若k n ≠l n ,取i =n.②若k n =l n ,取i 满足k i ≠l i ,且k j =l j ,i+1≤j≤n. 由①,②及题设知,1<i≤n,且.(ⅰ)当k i <l i 时,得k i -l i ≤-1.由q≥n,得k t -l t ≤q-1,t =1,2,…,i-1, 即k 1-l 1≤q-1,(k 2-l 2)q≤(q -1)q,…,(k i -1-l i -1)q i -2≤(q-1)q i -2. 又(k i -l i )q i -1≤-q i -1,所以.因此c1-c2≠0,即c1≠c2.(ⅱ)当ki >li时,同理可得≤-1,因此c1≠c2.综上,c1≠c2.6、(12分)本小题主要考查三角恒等变换、正弦定理、解三角形等有关知识,考查运算求解能力.解:(1)由和A+B+C=π,得,0<A<.故cos2A=sinB,即,.(2)由(1)得.又由正弦定理,得,,所以.7、(12分)分析:本小题主要考查平面向量、三角函数的概念、三角变换和向量运算等基础知识,考查基本运算能力.(1)解法一:b+c=(cosβ-1,sinβ),则|b+c|2=(cosβ-1)2+sin2β=2(1-cosβ).∵-1≤cosβ≤1,∴0≤|b+c|2≤4,即0≤|b+c|≤2.当cosβ=-1时,有|b+c|=2,∴向量b+c的长度的最大值为2.解法二:∵|b|=1,|c|=1,|b+c|≤|b|+|c|=2.当cosβ=-1时,有b+c=(-2,0),即|b+c|=2,∴向量b+c的长度的最大值为2.(2)解法一:由已知可得b+c=(cosβ-1,sinβ),a·(b+c)=cosαcosβ+sinαsinβ-cosα=cos(α-β)-cosα.∵a⊥(b+c),∴a·(b+c)=0,即cos(α-β)=cosα.由,得cos()=,即(k∈Z).∴或β=2kπ,k∈Z.于是cosβ=0或cosβ=1.解法二:若,则a=(,).又由b=(cosβ,sinβ),c=(-1,0),得a·(b+c)=(,)·(cosβ-1,sinβ)=. ∵a⊥(b+c),∴a·(b+c)=0,即cosβ+sinβ=1.∴sinβ=1-cosβ,平方后化简得cosβ(cosβ-1)=0,解得cosβ=0或cosβ=1.经检验,cosβ=0或cosβ=1即为所求.8、(12分)本题主要考查了正弦定理,以及与三角形有关的知识,考查运算求解能力. 解:(1)由sin(C-A)=1,-π<C-A<π,知.又A+B+C=π,所以,即,0<A<.故cos2A=sinB,即,.(2)由(1)得.又由正弦定理,得,,所以.9、(13分)分析:第(Ⅰ)小问利用A+B+C=π,将C转化为即可,第(Ⅱ)小问利用面积公式易解.解:(Ⅰ)因为角A,B,C为△ABC的内角,且,,所以,.于是)=.(Ⅱ)由(Ⅰ)知,.又因为,所以在△ABC中,由正弦定理得.。

相关文档
最新文档