高考数学复习专题14计数原理与概率统计古典概型考点剖析
高考数学概率与统计题型解析与答题技巧

高考数学概率与统计题型解析与答题技巧在高考数学中,概率与统计是一个重要的板块,它不仅考查学生的数学知识和技能,还培养学生的数据分析和推理能力。
对于很多同学来说,这部分内容既有一定的挑战性,又充满了得分的机会。
下面我们就来详细解析高考数学中概率与统计的常见题型以及相应的答题技巧。
一、概率题型1、古典概型古典概型是概率中最基础的题型之一。
它的特点是试验结果有限且等可能。
例如,从装有若干个红球和白球的袋子中摸球,计算摸到某种颜色球的概率。
答题技巧:首先,确定总的基本事件数和所求事件包含的基本事件数。
然后,利用古典概型的概率公式 P(A)=所求事件包含的基本事件数÷总的基本事件数进行计算。
2、几何概型几何概型与古典概型不同,它的试验结果是无限的。
常见的有长度型、面积型、体积型几何概型。
比如,在一个区间内随机取一个数,求满足某个条件的概率。
答题技巧:对于几何概型,关键是要正确确定几何度量。
例如,长度型就计算长度,面积型就计算面积,体积型就计算体积。
然后,按照几何概型的概率公式 P(A)=构成事件 A 的区域长度(面积或体积)÷试验的全部结果所构成的区域长度(面积或体积)进行求解。
3、条件概率条件概率是指在事件 B 发生的条件下,事件 A 发生的概率。
题目中通常会给出一些条件,让我们计算在这些条件下的概率。
答题技巧:利用条件概率公式 P(A|B)= P(AB)÷P(B),先求出 P(AB)和 P(B),再计算条件概率。
4、相互独立事件与互斥事件相互独立事件是指一个事件的发生与否对另一个事件的发生概率没有影响;互斥事件则是指两个事件不能同时发生。
答题技巧:对于相互独立事件,它们同时发生的概率用乘法计算,即 P(AB)= P(A)×P(B);对于互斥事件,它们至少有一个发生的概率用加法计算,即 P(A∪B)= P(A)+ P(B)。
二、统计题型1、抽样方法包括简单随机抽样、分层抽样和系统抽样。
高考数学复习专题14计数原理与概率统计古典概型备考策略

古典概型备考策略主标题:古典概型备考策略 副标题:通过考点分析高考命题方向,把握高考规律,为学生备考复习打通快速通道。
关键词:古典概型,古典概型公式,备考策略难度:2重要程度:4考点一 简单古典概型的概率【例1】 现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.解 从6道题中任取2道有n =C 26=15(种)取法.(1)记“所取的2道题都是甲类题”为事件A ,则A 发生共有m =C 24=6种结果. ∴所求事件概率P (A )=m n =615=25. (2)记“所取的2道题不是同一类题”事件为B ,事件B 包含的基本事件有C 14C 12=8(种),则事件B 的概率为P (B )=815. 【备考策略】 有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.考点二 复杂的古典概型的概率【例2】 将一颗骰子先后抛掷2次,观察向上的点数,求:(1)两数中至少有一个奇数的概率;(2)以第一次向上点数为横坐标x ,第二次向上的点数为纵坐标y 的点(x ,y )在圆x 2+y 2=15的外部或圆上的概率.解 由题意,先后掷2次,向上的点数(x ,y )共有n =6×6=36种等可能结果,为古典概型.(1)记“两数中至少有一个奇数”为事件B ,则事件B 与“两数均为偶数”为对立事件,记为B .∵事件B 包含的基本事件数m =C 13C 13=9.∴P (B )=936=14,则P (B )=1-P (B )=34,因此,两数中至少有一个奇数的概率为34. (2)点(x ,y )在圆x 2+y 2=15的内部记为事件C ,则C 表示“点(x ,y )在圆x 2+y 2=15上或圆的外部”.又事件C 包含基本事件:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)共有8个.∴P (C )=836=29,从而P (C )=1-P (C )=1-29=79.∴点(x ,y )在圆x 2+y 2=15上或圆外部的概率为79.【备考策略】 (1)一是本题易把(2,4)和(4,2),(1,2)和(2,1)看成同一个基本事件,造成计算错误.二是当所求事件情况较复杂时,一般要分类计算,即用互斥事件的概率加法公式或考虑用对立事件求解.(2)当所求事件含有“至少”“至多”或分类情况较多时,通常考虑用对立事件的概率公式P (A )=1-P (A )求解.考点三 古典概型与统计的综合问题【例3】 某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.审题路线 (1)阅读茎叶图得出样本数据,利用平均数公式计算出样本均值.(2)根据样本算出优秀工人的比例,再估计12人中优秀工人的个数.(3)用组合数公式求出所有可能的组合的个数和符合条件的组合的个数,利用古典概型概率公式计算.解 (1)由茎叶图可知:样本数据为17,19,20,21,25,30.则x =16(17+19+20+21+25+30)=22,故样本均值为22.(2)日加工零件个数大于样本均值的工人有2名,故优秀工人的频率为26=13.该车间12名工人中优秀工人大约有12×13=4(名),故该车间约有4名优秀工人.(3)记“恰有1名优秀工人”为事件A ,其包含的基本事件总数为C 14C 18=32,所有基本事件的总数为C 212=66.由古典概型概率公式,得P (A )=3266=1633. 所以恰有1名优秀工人的概率为1633. 【备考策略】 (1)本题求解的关键在于从茎叶图准确提炼数据信息,进行统计与概率的正确计算.(2)一是题目考查茎叶图、样本均值、古典概型等基础知识,考查样本估计总体的思想方法,以及数据处理能力.二是求解时要设出所求事件,进行必要的说明,规范表达,这 都是得分的重点.。
高考数学压轴专题最新备战高考《计数原理与概率统计》知识点

【高中数学】《计数原理与概率统计》知识点一、选择题1.已知()929012913x a a x a x a x -=++++L ,则019a a a +++…等于( ) A .92 B .94 C .93 D .1【答案】B 【解析】 【分析】求出二项式()913x -展开式的通项为()193rrr T C x +=⋅-,可知当r 为奇数时,0r a <,当r 为偶数时,0r a >,然后代入1x =-即可得出019a a a ++⋯+的值.【详解】二项式()913x -展开式的通项()193rr r T C x +=⋅-,当r 为奇数时,0r a <,当r 为偶数时,0r a >,因此,()990191314a a a ⎡⎤++⋯+=-⨯-=⎣⎦.故选:B. 【点睛】本题考查利用赋值法求各项系数绝对值之和,要结合二项式定理判断各项系数的符号,考查推理能力与计算能力,属于中等题.2.“纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为5的正方形将其包含在内,并向该正方形内随机投掷1000个点,己知恰有400个点落在阴影部分,据此可估计阴影部分的面积是A .2B .3C .10D .15【答案】C 【解析】 【分析】根据古典概型概率公式以及几何概型概率公式分别计算概率,解方程可得结果. 【详解】设阴影部分的面积是s ,由题意得,选C.【点睛】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.3.甲、乙两类水果的质量(单位:kg )分别服从正态分布()()221122,,,N N μδμδ,其正态分布的密度曲线如图所示,则下列说法错误的是( )A .甲类水果的平均质量10.4kg μ=B .甲类水果的质量比乙类水果的质量更集中于平均值左右C .甲类水果的平均质量比乙类水果的平均质量小D .乙类水果的质量服从正态分布的参数2 1.99δ= 【答案】D 【解析】由图象可知,甲类水果的平均质量μ1=0.4kg ,乙类水果的平均质量μ2=0.8kg ,故A ,B ,C ,正确;乙类水果的质量服从的正态分布的参数σ2 1.99,故D 不正确.故选D .4.将一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为m ,第二次出现的点数为n ,向量p u v =(m ,n),q v =(3,6).则向量p u v 与q v共线的概率为( ) A .13B .14C .16D .112【答案】D 【解析】 【分析】由将一枚骰子抛掷两次共有36种结果,再列举出向量p u r 与q r共线的基本事件的个数,利用古典概型及其概率的计算公式,即可求解。
高考数学热点问题专题练习——古典概型知识归纳及例题讲解

古典概型一、基础知识:1、基本事件:一次试验中可能出现的每一个不可再分的结果称为一个基本事件。
例如:在扔骰子的试验中,向上的点数1点,2点,……,6点分别构成一个基本事件2、基本事件空间:一次试验,将所有基本事件组成一个集合,称这个集合为该试验的基本事件空间,用Ω表示。
3、基本事件特点:设一次试验中的基本事件为12,,,n A A A(1)基本事件两两互斥(2)此项试验所产生的事件必由基本事件构成,例如在扔骰子的试验中,设i A 为“出现i 点”,事件A 为“点数大于3”,则事件456A A A A =(3)所有基本事件的并事件为必然事件 由加法公式可得:()()()()()1212n n P P A A A P A P A P A Ω==+++因为()1P Ω=,所以()()()121n P A P A P A +++=4、等可能事件:如果一项试验由n 个基本事件组成,而且每个基本事件出现的可能性都是相等的,那么每一个基本事件互为等可能事件。
5、等可能事件的概率:如果一项试验由n 个基本事件组成,且基本事件为等可证明:设基本事件为12,,,n A A A ,可知()()()12n P A P A P A ===()()()121n P A P A P A +++= 6、古典概型的适用条件:(1)试验的所有可能出现的基本事件只有有限多个 (2)每个基本事件出现的可能性相等当满足这两个条件时,事件A 发生的概率就可以用事件A 所包含的基本事件个7、运用古典概型解题的步骤:① 确定基本事件,一般要选择试验中不可再分的结果作为基本事件,一般来说,试验中的具体结果可作为基本事件,例如扔骰子,就以每个具体点数作为基本事件;在排队时就以每种排队情况作为基本事件等,以保证基本事件为等可能事件 ② ()(),n A n Ω可通过计数原理(排列,组合)进行计算③ 要保证A 中所含的基本事件,均在Ω之中,即A 事件应在Ω所包含的基本事件中选择符合条件的 二、典型例题:例1:从16-这6个自然数中随机取三个数,则其中一个数是另外两个数的和的概率为________思路:事件Ω为“6个自然数中取三个”,所以()3620n C Ω==,事件A 为“一个数是另外两个数的和”,不妨设a b c =+,则可根据a 的取值进行分类讨论,列举出可能的情况:{}{}{}{}{}{}3,2,1,4,3,1,5,4,1,5,3,2,6,5,1,6,4,2,所以()6n A =。
古典概型知识点总结

古典概型知识点总结关键信息项:1、古典概型的定义2、古典概型的特点3、古典概型的概率计算公式4、基本事件的概念5、基本事件的特点6、古典概型的常见例题7、古典概型与其他概率类型的区别11 古典概型的定义古典概型是一种概率模型,它具有以下两个特点:试验中所有可能出现的基本结果是有限的。
每个基本结果出现的可能性相等。
111 有限性意味着试验的结果是可以一一列举出来的,不是无穷无尽的。
112 等可能性表明每个基本结果发生的概率相同,不存在某些结果更容易发生的情况。
12 古典概型的特点确定性:试验的条件和结果都是明确的。
互斥性:不同的基本事件之间是相互排斥的,不会同时发生。
121 可重复性相同的条件下,重复进行试验,结果具有稳定性。
122 规范性符合概率的基本定义和性质,能够通过计算得出准确的概率值。
13 古典概型的概率计算公式假设试验的基本事件总数为 n,事件 A 包含的基本事件数为 m,则事件 A 发生的概率 P(A) = m / n 。
131 计算步骤确定基本事件的总数 n 。
确定事件 A 包含的基本事件数 m 。
代入公式计算 P(A) 。
132 注意事项计算要准确,避免遗漏或重复计算基本事件。
确保对基本事件的界定清晰无误。
14 基本事件的概念基本事件是试验中不能再分的最简单的随机事件,其他事件可以由基本事件组合而成。
141 基本事件的性质独立性:每个基本事件的发生与否互不影响。
完整性:所有基本事件的集合构成了试验的全部可能结果。
15 基本事件的特点最小性:不能再分解为更小的随机事件。
明确性:能够清晰地定义和区分。
151 基本事件的表示通常用简单的符号或数字来表示。
152 基本事件的数量确定根据试验的具体情况,通过分析得出。
16 古典概型的常见例题掷骰子问题:计算掷出特定点数的概率。
抽奖问题:在有限数量的抽奖券中计算中奖的概率。
摸球问题:从装有不同颜色球的容器中摸出特定颜色球的概率。
161 例题分析详细阐述如何确定基本事件和所求事件包含的基本事件数。
高考数学冲刺古典概型考点全面解析

高考数学冲刺古典概型考点全面解析高考对于每一位学子来说,都是人生中的一次重要挑战。
而数学作为其中的关键学科,更是备受关注。
在数学的众多考点中,古典概型是一个不容忽视的重要部分。
在高考冲刺阶段,对古典概型进行全面且深入的复习,对于提高数学成绩具有重要意义。
一、古典概型的基本概念古典概型是一种概率模型,具有两个重要特征:有限性和等可能性。
有限性指的是试验中所有可能出现的基本事件只有有限个;等可能性则表示每个基本事件出现的可能性相等。
例如,掷一枚质地均匀的骰子,出现的点数就是一个古典概型问题。
因为骰子的点数只有 1、2、3、4、5、6 这六种可能,且每种点数出现的可能性相同。
二、古典概型的概率计算公式在古典概型中,事件 A 的概率可以通过以下公式计算:P(A) =事件 A 包含的基本事件个数/试验中所有可能的基本事件个数例如,从装有 3 个红球和 2 个白球的口袋中随机取出一个球,求取出红球的概率。
这里试验中所有可能的基本事件个数为 5(3 个红球和2 个白球),取出红球的基本事件个数为 3,所以取出红球的概率为3/5。
三、古典概型的常见题型1、摸球问题这是古典概型中常见的一类问题。
例如,一个袋子里装有 5 个红球和 3 个白球,从中随机摸出 2 个球,求摸出一红一白的概率。
解决这类问题时,首先要确定总的基本事件个数,即从 8 个球中选2 个的组合数。
然后计算摸出一红一白的基本事件个数,可以分两步考虑,先选一个红球,再选一个白球,两者相乘即为摸出一红一白的基本事件个数。
2、掷骰子问题掷骰子问题常常会与其他条件相结合。
比如,同时掷两枚质地均匀的骰子,求点数之和大于 8 的概率。
对于这种问题,需要列出所有可能的基本事件,然后找出点数之和大于 8 的基本事件个数,最后计算概率。
3、抽样问题抽样问题可以分为有放回抽样和无放回抽样。
例如,从 10 件产品中抽取 3 件,有放回抽样和无放回抽样时,抽到特定产品的概率是不同的。
高考数学复习专题14计数原理与概率统计几何概型考点剖析
几何概型
主标题:几何概型
副标题:为学生详细的分析几何概型的高考考点、命题方向以及规律总结。
关键词:几何概型,几何概型公式
难度:2
重要程度:4
考点剖析:
1.了解随机数的意义,能运用模拟方法估计概率.
2.了解几何概型的意义.
命题方向:
以选择题或填空题形式考查几何概型,可与二元一次不等式组所表示的平面区域、定积分、向量等知识交汇考查基本概念,基本运算、难度中等.
规律总结:
1.对于几何概型的概率公式中的“测度”要有正确的认识,它只与大小有关,而与形状和位置无关,在解题时,要掌握“测度”为长度、面积、体积、角度等常见的几何概型的求解方法.
2.转化思想的应用
对一个具体问题,可以将其几何化,如建立坐标系将试验结果和点对应,然后利用几何概型概率公式.
知识梳理
几何概型
(1)定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.
(2)特点:①无限性:在一次试验中,可能出现的结果有无限多个;
②等可能性:每个结果的发生具有等可能性.
(3)公式:
P(A)=
构成事件A的区域长度面积或体积
试验的全部结果所构成的区域长度面积或体积
.。
高考数学复习专题14计数原理与概率统计几何概型易错点
1 几何概型易错点
主标题:几何概型易错点 副标题:从考点分析几何概型易错点,为学生备考提供简洁有效的备考策略。
关键词:几何概型,几何概型公式,易错点
难度:2 重要程度:4
内容:
【易错点】
1.对几何概型的理解
(1)(教材习题改编)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.(√)
(2)在几何概型定义中的区域可以是线段、平面图形、立体图形.(√)
(3)与面积有关的几何概型的概率与几何图形的形状有关.(×)
2.几何概型的计算
(4)从区间[1,10]内任取一个数,取到1的概率是P =19
.(×) (5)利用计算机产生0~1之间的均匀随机数a ,则事件“3a -1<0”发生的概率为13
.(√) [剖析]
1.一个区别 “几何概型”与“古典概型”的区别:基本事件的个数前者是无限的,后者是有限的.
2.一点提醒 几何概型的试验中,事件A 的概率P (A )只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关,如(3).。
高考数学压轴专题人教版备战高考《计数原理与概率统计》知识点总复习含答案解析
【高中数学】数学《计数原理与概率统计》期末复习知识要点一、选择题1.设1021001210)x a a x a x a x =++++L ,那么()(220210139)a a a a a a +++-+++L L 的值为( )A .0B .1-C .1D .101)【答案】C 【解析】 【分析】令1x =和1x =-得到012310a a a a a ++++L ,012310a a a a a -+-++L ,再整体代入可得; 【详解】解:因为)102101210xa a x a x a x =++++L ,令1x =得)10123101a a a a a =++++L ,令1x =-得)10123101a a a a a =-+-++L ,所以()(220210139)a a a a a a +++-+++L L()()012310012310a a a a a a a a a a =++++-+-++L L))101011=⋅))1011⋅⎡⎤⎣⎦=1011== 故选:C 【点睛】本题考查利用待定系数法求二项式系数和的问题,属于中档题.2.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知()3E X =,则()(D X = ) A .85B .65C .45D .25【答案】B 【解析】 【分析】由题意知,3~(5,)3X B m +,由3533EX m =⨯=+,知3~(5,)5X B ,由此能求出()D X .【详解】由题意知,3~(5,)3X B m +, 3533EX m ∴=⨯=+,解得2m =, 3~(5,)5X B ∴,336()5(1)555D X ∴=⨯⨯-=.故选:B . 【点睛】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用.3.已知点P ,Q 为圆C :x 2+y 2=25上的任意两点,且|PQ|<6,若PQ 中点组成的区域为M ,在圆C 内任取一点,则该点落在区域M 上的概率为( ) A .35 B .925 C .1625D .25【答案】B 【解析】PQ 中点组成的区域M 如图阴影部分所示,那么在C 内部任取一点落在M 内的概率为25π-16π925π25=,故选B.4.三位同学参加数学、物理、化学知识竞赛,若每人都选择其中两个科目,则有且仅有两人选择的科目完全相同的概率是( ) A .14B .13C .12D .23【答案】D 【解析】 【分析】先求出三位同学参加数学、物理、化学知识竞赛,每人都选择其中两个科目的基本事件总数,再求出有且仅有两人选择的科目完全相同所包含的基本事件个数,利用古典概型的概率计算公式即可得到答案. 【详解】三位同学参加数学、物理、化学知识竞赛,每人都选择其中两个科目共有233()27C =种不同结果,有且仅有两人选择的科目完全相同共有22133218C C C ⋅⋅=种,故由古典概型的概率计算公式可得所求概率为182273=.故选:D 【点睛】不同考查古典概型的概率计算问题,涉及到组合的基本应用,考查学生的逻辑推理与数学运算能力,是一道中档题.5.在区间[]0,1内随机取两个数m 、n ,则关于x 的方程20x nx m -+=有实数根的概率为( ) A .18B .17C .16D .15【答案】A 【解析】 【分析】根据方程有实根可得到约束条件,根据不等式组表示的平面区域和几何概型概率公式可求得结果. 【详解】若方程20x nx m -+=有实数根,则40n m ∆=-≥.如图,400101n m m n -≥⎧⎪≤≤⎨⎪≤≤⎩表示的平面区域与正方形0101m n ≤≤⎧⎨≤≤⎩的面积之比即为所求的概率,即111124118S P S ⨯⨯===⨯阴影正方形.故选:A . 【点睛】本题考查几何概型中面积型概率问题的求解,涉及到线性规划表示的平面区域面积的求解,关键是能够根据方程有实根确定约束条件.6.如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为三角形ABC 的BC ,AB 和AC .若10BC =,8AB =,6AC =,ABC V 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅱ的概率为( )A .92524ππ+B .162524π+C .252425ππ+D .484825π+【答案】D 【解析】 【分析】根据题意,分别求出Ⅰ,Ⅱ,Ⅲ所对应的面积,即可得到结论.【详解】由题意,如图:Ⅰ所对应的面积为1186242S =⨯⨯=, Ⅱ所对应的面积29252482422S πππ=++-=, 整个图形所对应的面积9252482422S πππ=++=+, 所以,此点取自Ⅱ的概率为484825P π=+.故选:D. 【点睛】本题考查了几何概型的概率问题,关键是求出对应的面积,属于基础题.7.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( ) 表1 成绩性别 不及格 及格 总计 男 6 14 20 女102232表2表3表4A.成绩B.视力C.智商D.阅读量【答案】D【解析】【分析】根据公式()()()()()22n ad bcKa b c d a c b d-=++++分别计算得观察值,比较大小即可得结果.【详解】根据公式()()()()()22n ad bc K a b c d a c b d -=++++分别计算得:A.2252(6221014):0.00916363220A K ⨯-⨯=≈⨯⨯⨯;2252(4201216): 1.76916363220B K ⨯-⨯=≈⨯⨯⨯;2252(824812): 1.316363220C K ⨯-⨯=≈⨯⨯⨯;2252(143062):23.4816363220D K ⨯-⨯=≈⨯⨯⨯选项D 的值最大,所以与性别有关联的可能性最大,故选D. 【点睛】本题主要考查独立性检验的应用,意在考查灵活应用所学知识解决实际问题的能力,属于中档题.8.将三枚质地均匀的骰子各掷一次,设事件A =“三个点数之和等于15”,B =“至少出现一个5点”,则概率()|P A B 等于( ) A .5108B .113C .17D .710【答案】B 【解析】 【分析】根据条件概率的计算公式即可得出答案. 【详解】3311166617()216A P AB C C C +==Q ,11155561116691()1216C C C P B C C C =-=()()()72161|2169113P AB P A B P B ∴==⨯= 故选:B 【点睛】本题主要考查了利用条件概率计算公式计算概率,属于中档题.9.“纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为5的正方形将其包含在内,并向该正方形内随机投掷1000个点,己知恰有400个点落在阴影部分,据此可估计阴影部分的面积是A.2 B.3 C.10 D.15【答案】C【解析】【分析】根据古典概型概率公式以及几何概型概率公式分别计算概率,解方程可得结果.【详解】设阴影部分的面积是s,由题意得,选C.【点睛】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.10.把15个相同的小球放到三个编号为123,,的盒子中,且每个盒子内的小球数要多于盒子的编号数,则共有多少种放法()A.18B.28C.38D.42【答案】B【解析】【分析】根据题意,先在1号盒子里放1个球,在2号盒子里放2个球,在3号盒子里放3. 个球,则原问题可以转化为将剩下的9个小球,放入3个盒子,每个盒子至少放1个的问题,由挡板法分析可得答案.【详解】根据题意,15个相同的小球放到三个编号为123,,的盒子中,且每个盒子内的小球数要多于盒子的编号数,先在1号盒子里放1个球,在2号盒子里放2个球,在3号盒子里放3个球,则原问题可以转化为将剩下的9个小球,放入3个盒子,每个盒子至少放1个的问题,将剩下的9个球排成一排,有8个空位,在8个空位中任选2个,插入挡板,有2 88728 2C⨯==种不同的放法,即有28个不同的符合题意的放法;故选B.【点睛】本题考查排列、组合的应用,关键是将原问题转化为将3个球放入3个盒子的问题,属于基础题.11.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( ) A .12种 B .18种C .24种D .36种【答案】D 【解析】4项工作分成3组,可得:24C=6, 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成, 可得:36363A ⨯=种. 故选D.12.某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程ˆˆˆybx a =+中的ˆb 约等于9,据此模型预报广告费用为6 万元时,销售额为( ) A .54万元 B .55万元C .56万元D .57万元【答案】D 【解析】试题分析:由表格可算出1(1245)34x =+++=,1(10263549)304y =+++=,根据点(),x y 在回归直线ˆˆˆy bx a =+上,ˆ9b=,代入算出ˆ3a =,所以ˆ93y x =+,当6x =时,ˆ57y =,故选D.考点:回归直线恒过样本点的中心(),x y .13.设01p <<,随机变量ξ的分布列是则当p 在(0,1)内增大时,“()E ξ减小”是“()D ξ增加”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】D 【解析】 【分析】首先求()E ξ和()D ξ,然后换元()t E ξ=,()221331321222228D t t t ξ⎛⎫=-++=--+ ⎪⎝⎭,利用函数的单调性,判断充分必要条件.【详解】由题意可知:()()221210p p p p -+-+= , 且()2011p <-<,()0211p p <-<,201p <<解得:01p <<,()()()2211121341E p p p p p ξ=-⨯-+⨯-+⨯=-,()()()()()()22222141114121341D p p p p p p p ξ=----+--⨯-+--⨯⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦288p p =-+,设()411,3E p t ξ=-=∈-,221113884422t t D t t ξ++⎛⎫=-⨯+⨯=-++ ⎪⎝⎭ ()21122t =--+, 当()1,1t ∈-时,D ξ增大,当()1,2t ∈时,D ξ减小, 所以当E ξ减小时,不能推出D ξ增加; 设()2880,2D p p t ξ=-+=∈,21822p t ⎛⎫--+= ⎪⎝⎭,21228t p -⎛⎫-= ⎪⎝⎭,当102p <<时,12p =,此时1412E ξ⎛=- ⎝,当D t ξ=增加时,E ξ也增加,当112p ≤<时,12p =+1412E ξ⎛=+- ⎝,当D t ξ=增加时,E ξ减小,所以当D ξ增加,不能推出E ξ减小.综上可知:“E ξ减小”是“D ξ增加”的既不充分也不必要条件. 故选:D 【点睛】本题考查充分必要条件,离散型随机变量的期望和方程,重点考查换元,二次函数的单调性,属于中档题型.14.有编号为1,2,3的三个盒子和编号分别为1,2,3的三个小球,每个盒子放入一个小球,则小球的编号与盒子编号全不相同的概率为( ) A .827B .56C .23D .13【答案】D 【解析】 【分析】列举出所有的基本事件,并确定出事件“小球的编号与盒子编号全不相同”所包含的基本事件,利用古典概型的概率公式可计算出所求事件的概率. 【详解】以()1,2,3表示编号为1、2、3的盒子分别放编号为1、2、3的小球,则所有的基本事件有:()1,2,3、()1,3,2、()2,1,3、()2,3,1、()3,1,2、()3,2,1,共6种,其中,事件“小球的编号与盒子编号全不相同”所包含的基本事件有:()2,3,1、()3,1,2,共2个,因此,小球的编号与盒子编号全不相同的概率为2163=. 故选:D. 【点睛】本题考查利用古典概型的概率公式计算事件的概率,解题的关键就是列举出所有的基本事件,遵循不重不漏的原则,考查计算能力,属于中等题.15.已知P 是△ABC 所在平面内﹣点,20PB PC PA ++=u u u r u u u r u u u r r,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是( )A.23B.12C.13D.14【答案】B【解析】【分析】推导出点P到BC的距离等于A到BC的距离的12.从而S△PBC=12S△ABC.由此能求出将一粒黄豆随机撒在△ABC内,黄豆落在△PBC内的概率.【详解】以PB、PC为邻边作平行四边形PBDC,则PB PC+u u u r u u u r=PDu u u r,∵20PB PC PA++=u u u r u u u r u u u r r,∴2PB PC PA+=-u u u r u u u r u u u r,∴2PD PA=-u u u r u u u r,∴P是△ABC边BC上的中线AO的中点,∴点P到BC的距离等于A到BC的距离的12.∴S△PBC=12S△ABC.∴将一粒黄豆随机撒在△ABC内,黄豆落在△PBC内的概率为:P=PBCABCSSVV=12.故选B.【点睛】本题考查概率的求法,考查几何概型等基础知识,考运算求解能力,考查化归与转化思想、函数与方程思想,考查创新意识、应用意识,是中档题.16.在二项式26()2axx+的展开式中,其常数项是15.如下图所示,阴影部分是由曲线2y x=和圆22x y a+=及x轴围成的封闭图形,则封闭图形的面积为()A.146π+B.146π-C.4πD.16【答案】B【解析】【分析】用二项式定理得到中间项系数,解得a,然后利用定积分求阴影部分的面积.【详解】(x2+a2x)6展开式中,由通项公式可得122r162rr rraT C x x--+⎛⎫= ⎪⎝⎭,令12﹣3r=0,可得r=4,即常数项为4462aC⎛⎫⎪⎝⎭,可得4462aC⎛⎫⎪⎝⎭=15,解得a=2.曲线y=x2和圆x2+y2=2的在第一象限的交点为(1,1)所以阴影部分的面积为()12231111-x-x|442346dx x xπππ⎛⎫=--=-⎪⎝⎭⎰.故选:B【点睛】本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.17.古代人常常会研究“最大限度”问题,下图是一个正三角形内最大限度地可以放入三个同样大小的圆,若将一个质点随机投入如图所示的正三角形ABC中(阴影部分是三个半径相同的圆,三个圆彼此互相外切,且三个圆与正三角形ABC的三边分别相切),则质点落在阴影部分内部的概率是()A.2334-B.(233)4π-C.2332-D.(233)2π-【答案】D【解析】【分析】设圆的半径为r,表示出三角形的边长,分别求出圆的面积和三角形面积,根据几何概型求解概率.【详解】设“质点落在阴影部分内部”为事件M.如右图所示:设圆的半径为r ,正三角形ABC 的边长为a .因为130PBO ∠=︒,所以3tan 30r BP =︒=,解得3BP r =.同理,3CQ r =. 又因为122PQ O O r ==,所以332(232)BP CQ PQ r r r r BC a ++=++=+==,所以由几何概型得,点落在阴影部分内部的概率是2222(233)()2133(232)4P M a a r π-===⨯+. 故选:D.【点睛】此题考查求几何概型,关键在于准确求出圆的面积和三角形的面积,找出其中的等量关系即可得解.18.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在“杨辉三角”中,第n 行的所有数字之和为12n -,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,…,则此数列的前15项和为( )A .110B .114C .124D .125【答案】B【解析】【分析】 利用二项式系数对应的杨辉上三角形的第1n +行,令1x =,得到二项展开式的二项式系数的和,再结合等差、等比数列的求和公式,即可求解.【详解】由题意,n 次二项式系数对应的杨辉三角形的第1n +行,令1x =,可得二项展开式的二项式系数的和2n ,其中第1行为02,第2行为12,第3行为22,L L 以此类推,即每一行的数字之和构成首项为1,公比为2的对边数列,则杨辉三角形中前n 行的数字之和为122112n n n S -==--, 若除去所有为1的项,则剩下的每一行的数字的个数为1,2,3,4,L可以看成构成一个首项为1,公差为2的等差数列,则(1)2n n n T +=,令(1)152n n +=,解得5n =, 所以前15项的和表示前7行的数列之和,减去所有的1,即()72113114--=, 即前15项的数字之和为114,故选B.【点睛】本题主要考查了借助杨辉三角形的系数与二项式系数的关系考查等差、等比数列的前n 项和公式的应用,其中解答中认真审题,结合二项式系数,利用等差等比数列的求和公式,准确运算是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.19.某人连续投篮6次,其中3次命中,3次未命中,则他第1次、第2次两次均未命中的概率是( )A .12B .310C .14D .15【答案】D【解析】【分析】先求出基本事件总数,再求出第1次、第2次两次均未命中包含的基本事件个数,计算即可求出第1次、第2次两次均未命中的概率.【详解】由题可得基本事件总数336320n C C == ,第1次、第2次两次均未命中包含的基本事件个数2132434m C C C ==所以他第1次、第2次两次均未命中的概率是41205m P n === 故选D.【点睛】 本题考查计数原理及排列组合的应用,解题的关键是正确求出基本事件个数.20.若随机变量X 的分布列为( )且()1E X =,则随机变量X 的方差()D X 等于( )A .13B .0C .1D .23【答案】D【解析】分析:先根据已知求出a,b 的值,再利用方差公式求随机变量X 的方差()D X . 详解:由题得1113,,130213a b a b a b ⎧++=⎪⎪∴==⎨⎪⨯++=⎪⎩ 所以2221112()(01)(11)(21).3333D X =-⋅+-⋅+-⋅= 故答案为D.点睛:(1)本题主要考查分布列的性质和方差的计算,意在考查学生对这些知识的掌握水平.(2) 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…,且取这些值的概率分别是1p ,2p ,…,n p ,那么D ξ=211()x E p ξ-⋅+222()x E p ξ-⋅+…+2()n n x E p ξ-⋅,称为随机变量ξ的均方差,简称为方差,式中的E ξ是随机变量ξ的期望.。
古典概型知识点总结
例 2 盒中有 6 只灯泡,其中 2 只次品, 4 只正品,有放回地从中任取 2 次,每次只取 1 只,试求下列事件的概率: (1)取到的 2 只都是次品; (2)取到的 2 只中正品、次品各 1 只;(3)取到的 2 只中至少有 1 只正品.
2
同取法.
;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;vnsr威尼斯城官网 https:// vnsr威尼斯城官网; ;vnsr威尼斯城官网 https:// vnsr威尼斯城官网; ;vnsr威尼斯城官网 https:// vnsr威尼斯城官网; ;vnsr威尼斯城官网 https:// vnsr威尼斯城官网; ;vnsr威尼斯城官网 https:// vnsr威尼斯城官网; ;vnsr威尼斯城官网 https:// vnsr威尼斯城官网; ;vnsr威尼斯城官网 https:// vnsr威尼斯城官网; ;澳门威斯尼 https:// 澳门威斯尼; ;威尼斯网站网址 https:// 威尼斯网站网址; ;威尼斯人 https:// 威尼斯人; ;vnsr威尼斯人官网 https:// vnsr威尼斯人官网; ;澳门威斯尼app https:// 澳门威斯尼app; ;澳门威斯尼 https:// 澳门威斯尼;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学复习专题14计数原理与概率统计古典概型考点剖析
古典概型
主标题:古典概型
副标题:为学生详细的分析古典概型的高考考点、命题方向以及规律总结。
关键词:古典概型,古典概型公式
难度:2
重要程度:4
考点剖析:
1.理解古典概型及其概率计算公式.
2.会计算一些随机事件所包含的基本事件数及事件发生的概率.
命题方向:
1.古典概型与统计的综合应用,是高考命题的热点,多以解答题的形式呈现,试题难度不大,多为容易题或中档题.
2.高考对古典概型与统计的综合应用的考查主要有以下几个命题角度:
(1)由频率来估计概率;
(2)由频率估计部分事件发生的概率;
(3)求方差(或均值)等.
规律总结:
4种方法——基本事件个数的确定方法
(1)列举法:(见本节考点一[方法规律]);
(2)列表法:(见本节考点一[方法规律]);
(3)树状图法:树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件个数的探求;
(4)计数原理法:如果基本事件的个数较多,列举有一定困难时,可借助于两个计数原理及排列组合知识直接计算出m,n,再运用公式求概率.
2个技巧——求解古典概型问题概率的技巧
(1)较为简单问题可直接使用古典概型的概率公式计算;
(2)较为复杂的概率问题的处理方法:一是转化为几个互斥事件的和,利用互斥事件的加法公式进行求解;二是采用间接法,先求事件A的对立事件A的概率,再由P(A)=1-P(A)求事件A的概率.1个构建——构建不同的概率模型解决问题
(1)原则:建立概率模型的一般原则是“结果越少越好”,这就要求选择恰当的观察角
度,把问题转化为易解决的古典概型问题;
(2)作用:一方面,对于同一个实际问题,我们有时可以通过建立不同“模型”来解决,即“一题多解”,在这“多解”的方法中,再寻求较为“简捷”的解法;另一方面,我们又可以用同一种“模型”去解决很多“不同”的问题,即“多题一解”.
知识梳理
1.古典概型的两个特征
(1)试验的所有可能结果只有有限个.每次试验只出现其中的一个结果;(2)每一个试验结果出现的可能性都相同.2.古典概型的概率公式
对于古典概型,通常试验中的某一事件A 是由几个基本事件组成,如果试验的所有可能结果(基本事件)数为n ,随机事件A 包含的基本事件数为m ,那么事件A 的概率规定为
P (A )=事件A 包含的可能结果数试验的所有可能结果数=m n
. 3.建立古典概率模型时对基本事件的要求
(1)每次试验有且只有一个基本事件出现;
(2)基本事件的个数是有限的,并且它们的发生是等可能的.。