臭氧氧化结合硫代硫酸钠溶液喷淋同时脱硫脱硝
臭氧液相氧化同时脱硫脱硝实验研究

臭氧液相氧化同时脱硫脱硝实验研究马双忱,苏敏,马京香,金鑫,孙云雪,赵毅(华北电力大学环境学院,保定 071003)摘要:在自制的鼓泡反应器上对臭氧(O 3)液相氧化分别脱硫脱硝技术进行了实验研究.结果表明,液相中O 3对NO 能够有效氧化,S O 2的存在对NO 的脱除具有一定的负面影响,而pH 值对NO 的脱除率影响较小.[O 3]Π[NO]=111时,NO 脱除率可达到8916%.pH 在3~11范围内,NO 脱除率达80%以上.温度在20~65℃范围内,NO 脱除率不发生明显变化.结合尾部洗涤装置后,可有效脱除S O 2和NO x ,脱硫效率几乎达到100%,在[O 3]Π[NO]=111时,可获得8412%的脱硝效率.关键词:脱硫脱硝;臭氧;液相氧化中图分类号:X701 文献标识码:A 文章编号:025023301(2009)1223461204收稿日期:2009201211;修订日期:2009203210基金项目:华北电力大学归国留学人员科研基金项目作者简介:马双忱(1968~),男,博士,副教授,主要研究方向为燃煤大气污染控制理论与技术,E 2mail :msc1225@1631comExperimental R esearch for Simultaneous R emoval of SO 2and NO x by Aqueous Oxidation of O 3MA Shuang 2chen ,S U Min ,MA Jing 2xiang ,J I N X in ,S UN Y un 2xue ,ZH AO Y i(School of Environment ,N orth China E lectric P ower University ,Baoding 071003,China )Abstract :The rem oval of S O 2and NO x by aqueous oxidation of O 3was studied by self 2designed bubbling reactor.The results show that NO can be oxidized efficiently by O 3in liquid phase ,while the existence of S O 2has a negative im pact on the rem oval of NO and pH value has a little im pact.The NO rem oval efficiency is 8916%at [O 3]Π[NO ]=1.1.When the rang of pH value is in 3211,NO rem oval efficiency can be achieved over 80%.At 20265℃,NO rem oval efficiency has no change.C ombining with wet scrubbing tower ,S O 2rem oval efficiency is nearly 100%and NO x rem oval efficiency is 8412%at [O 3]Π[NO ]=111.S O 2and NO x can be rem oved effectively by aqueous oxidation of O 3simultaneously.K ey w ords :desulfurization and denitrification ;ozone ;aqueous oxidation 我国的能源结构主要以煤炭为主,燃煤过程中产生大量的S O 2、NO x 等大气污染物,造成了严重的大气污染和经济损失.目前国内外广泛使用的脱硫脱硝技术是湿式石灰石石膏法烟气脱硫(FG D )和NH 3选择性催化还原脱硝技术(SCR )的组合.上述技术的脱硫脱硝效率虽然高,但投资和运行成本昂贵[1].其他的技术还包括等离子体法、催化法、吸附法等,但只有少数进入生产应用[2].目前燃煤电厂急需一种能同时控制烟气中多污染物的技术,以简化系统、降低能耗、节省空间等[3].赵毅等[4]利用自主开发的高活性吸收剂在烟气循环流化床上进行了同时脱硫脱硝实验,当Ca Π(S +N )为112,NaClO 2质量分数为116%,温度为60℃,湿度为4146%时,其脱硫和脱硝效率分别达到9317%和6515%.电子束技术[5,6]用于烟气同时脱硫脱硝时,其脱硫效率>90%,脱硝效率>70%,但由于能耗较高,限制了其发展.近年来国内外很多学者采用高级氧化技术,包括O 3氧化技术等应用于烟气脱硫脱硝.美国能源部[7]报告了一种新兴的NO x 控制技术,此工艺的原理基于将氧Π臭氧混合气注入烟道,将NO x 氧化成高价态且易溶于水的N 2O 3和N 2O 5,最终在洗涤塔内被碱性物质脱除.王智化[8,9]等对采用O 3氧化技术同时脱硫脱硝进行了试验研究,结果表明在典型烟气温度下,O 3对NO 的氧化效率可达84%以上,结合尾部湿法洗涤,脱硫率近100%,脱硝效率也在[O 3]Π[NO]摩尔比=019时达到86127%.在另一篇文章里,Wang 等[10]将O 3注入模拟烟气进行脱除S O 2、NO x 以及Hg 的研究,然后采用碱吸收塔对烟气进行洗涤,结果表明NO 和Hg 0的脱除率与O 3的注入量有关,当O 3加入量为200×10-6时,NO 的脱除效率可达到85%,此工艺对NO 和S O 2的脱除率最高可分别达到97%和100%.目前对臭氧氧化技术的研究主要是气相氧化结合尾部吸收,而对液相氧化的研究较少.本研究主要对O 3液相氧化分别脱硫脱硝进行基础的实验分析.第30卷第12期2009年12月环 境 科 学E NVIRONME NT A L SCIE NCEV ol.30,N o.12Dec.,20091 实验系统与方法采用自组装实验系统进行实验,实验系统如图1所示.O 3发生器为北京同林3S 2A5型空气源装置.液相反应器为自制的200m L 玻璃容器,容器内放O 3分布筛板和烟气分布筛板.两者均为玻璃砂芯漏斗,粒径为30~50μm.O 3分布筛板距反应器底部1cm ,烟气鼓泡分布筛板器距反应器底部2cm.为减小液体压强对气体压强的影响,反应吸收液配制为150m L.在液相反应器进气口和出气口连接旁路系统测定气体的初始浓度,以及反应结束后对气体浓度进行回测.反应后的烟气经碱液吸收后通过干燥瓶进入烟气分析仪.在线测量烟气分析仪为德国进口MRU VARI O 增强型烟气分析仪,可以测定烟气温度、O 2、NO x 和S O 2的初始浓度等以及反应完全后的尾气成分及浓度.实验过程如下:O 2、NO x 和S O 2等气体经流量计后进入混气瓶,然后送入鼓泡反应器内的模拟烟气分布筛板.空气经O 3发生器放电产生O 3,经流量计送入反应器内的O 3分布筛板,O 3浓度通过碘量法进行测定.实验中维持O 3以及模拟烟气总流量在1L Πmin.尾气成分由烟气分析仪在线测量,测量结果以5s Π次的采样频率在线记录储存于电脑中.图1 实验系统示意Fig.1 Schematic of experiment2 结果与讨论211 O 3量对NO 脱除率的影响[O 3]Π[NO]摩尔比是指烟气中加入O 3的摩尔数与烟气中NO 的摩尔数之比,反映了O 3加入量相对于NO 量的高低.调节O 3发生器产生不同的O 3浓度,使摩尔比O 3ΠNO 从0105变化到111.反应吸收液为去离子水.常温纯水条件下,O 3的分解速度较慢,可忽略不计.实验结果如图2所示.图2 [O 3]Π[N O]对N O 脱除率的影响Fig.2 E ffect of [O 3]Π[NO]for rem oval efficiency of NONO x 的液相氧化首先是气体在溶液中的溶解,该吸收符合亨利定律.由于NO 在水中的溶解度很低(25℃下亨利常数为1194×10-8m ol ΠL ・Pa ),并且很难通过常规方法显著提高溶解度.所以使NO 转化为容易吸收的形态是脱硝的关键[11].NO (g)NO (aq )(1) 液相脱硝过程主要包括:①NO 的吸收;②液相氧化NO 为高价态氮氧化物;③气相部分氧化NO 为易溶解的高价态氮氧化物[12].液相中O 3可与NO 发生如下5个主要反应[9]:O 3+NO =NO 2+O 2(2)O 3+NO 2=O 2+NO 3(3)NO 2+NO 3=N 2O 5(4)O 2+HO 2=NO 2+・OH (5)NO +HO 2=HNO 3(6) 这些反应的反应速率都很快,生成易溶于水的NO 2、NO 3等,并破坏了NO 的溶解平衡式(1),从而促进NO 的溶解和吸收氧化,即过程①和②.此外气相中O 3也和NO 发生反应,即过程③.所以图2显示出[O 3]Π[NO ]摩尔比对NO 氧化有明显影响,[O 3]Π[NO ]=015时,有7815%的NO 被氧化,而当[O 3]Π[NO]=111(理论化学计量比为1)时,脱除率接近90%.可见O 3同NO 的反应是快速不可逆反应.在O 3过量的情况下,NO 氧化率接近但不能达到100%,主要是因为O 3除氧化NO 外,还与其它NO x进行反应,有一定的消耗.212 pH 值对脱除NO 的影响保持[O 3]Π[NO]摩尔比约为0184,研究pH 值对2643环 境 科 学30卷脱除NO 的影响,结果见图3.pH 值对NO 脱除率的影响并不显著,只在一定范围内波动.这可能是因为NO 的溶解度随离子浓度的增大而减小,并且在一定的离子浓度下,NO 的溶解度在pH 值2~13范围内是常数.此外,虽然O 3在水中的分解速度随pH 的提高而加快,但是由于有不断的O 3补充,所以参与反应的O 3充足,不影响对NO 的氧化.常规WFG D 系统的pH 值范围一般控制在5~6之间,因此,实际应用时可控制pH 值在这一范围.pH 值应用钙基吸收剂(石灰石或氢氧化钙)调节,如附近有氨源,也可以采用氨水来调节.图3 pH 值对N O 脱除率的影响Fig.3 E ffect of pH for rem oval efficiency of NO图4 温度对N O 脱除率的影响Fig.4 E ffect of tem perature for rem oval efficiency of NO213 温度对脱除NO 的影响将吸收器置于恒温水浴槽中,调节水浴槽温度.保持[O 3]Π[NO]摩尔比约为0184,研究温度对NO 脱除率的影响,具体见图4.吸收液温度对脱硝的影响不是很明显,较高的温度并没有使脱硝率有明显下降.一般来说,NO 的溶解度随温度的上升而减小,但反应速度随温度升高而增大,这种相反的影响有可能相互抵消.而且虽然随着温度的升高,O 3会发生分解,但是由于O 3对NO 的氧化是快速不可逆的,该速度比O 3的分解速度快很多,所以温度对NO 的氧化效率影响甚微.目前典型湿式石灰石法烟气脱硫中,浆液温度为50℃左右,O 3可以运用于此温度环境中.214 [O 3]Π[S O 2]摩尔比对脱硫率的影响由于锅炉烟气中S O 2的含量较高,而S O 2也可以与O 3发生反应生成更易溶于水的S O 3.如果S O 2与O 3的反应程度较高,一方面会促进后期湿法洗涤的效率,但另一方面S O 2会与NO 产生竞争,使得O 3的消耗加速.所以从节省能耗的角度出发,希望S O 2与O 3的反应程度越低越好.模拟烟气中只采用S O 2来考察O 3对S O 2氧化的影响.采用的吸收液是去离子水,调节O 3发生器产生的O 3浓度,使[O 3]Π[S O 2]摩尔比从0~110.如图5所示,随着施加O 3量的增加,反应器出口S O 2的浓度降低.说明O 3对S O 2具有一定的氧化作用,促进了S O 2的吸收.图5 [O 3]Π[SO 2]摩尔比对脱硫率的影响Fig.5 E ffect of [O 3]Π[S O 2]for rem oval efficiency of NO215 结合尾部吸收同时脱除NO ΠS O 2在上述条件实验的基础上,进行了臭氧液相氧化尾部吸收同时脱除NO ΠS O 2实验.采用10%的Ca (OH )2作为吸收液,反应温度为35℃,NO 和S O 2的初始浓度均为950mg Πm 3.实验结果见图6,从中可见S O 2在洗涤后脱除效率达到100%,由于Ca (OH )2与S O 2可发生化学反应,且Ca (OH )2不是循环利用,所以S O 2的吸收比较彻底.NO 的脱除率随着O 3量的增加而上升,当[O 3]Π[NO ]=0184时,NO 的脱除效率可达到8115%,这主要是因为NO 不断地被氧化成为NO 2等更易溶于水的高价态NO x .相比图2,在同一摩尔比的情况下,图6的NO脱除效率比较低,这主要是因为S O 2会与一部分O 3364312期马双忱等:臭氧液相氧化同时脱硫脱硝实验研究反应,造成O 3消耗,引起NO 脱除率的略微下降,但总体上NO 的脱除效率仍然较高.NO 脱除率的微降说明S O 2的存在起到竞争氧化的作用,但由于O 3对NO 更加敏感,再加上二者同时存在时,O 3几乎是先氧化NO 后氧化S O 2,所以竞争氧化影响很小.常规WFG D 中,喷淋过程可显著降低S O 2的浓度,此外有研究表明NO 和NO 2也可氧化HS O -3和S O 2-3为S O 2-4,加速液相S O 2的吸收转化[13~16],使得它对O 3氧化NO 的影响更小,剩余的O 3将HS O -3、H NO 2及H NO 2和HS O-3反应生成的氮硫氧化物和羟胺磺酸盐化合物最终氧化为H NO 3和H 2S O 4,可见采用O 3结合尾部洗涤的方法可以同时高效脱除NO x 和S O 2,从而实现脱硫脱硝一体化.图6 结合尾部吸收后N O ΠSO 2的同时脱除效率(t =35℃)Fig.6 Rem oval efficiencies of NO and S O 2combinedend abs orbing unit3 结论(1)在室温条件下,O 3对NO 能够有效氧化,在[O 3]Π[NO]=111时,NO 脱除率可达到8916%.(2)pH 值和温度对NO 的脱除率影响较小,只有在pH 为2的情况下,NO 脱除率才有明显的下降.在20~65℃范围内,NO 脱除率不发生明显变化.(3)S O 2对NO 的脱除具有负面的影响,这主要是因为O 3对S O 2也有氧化作用,导致S O 2和NO 之间的竞争氧化.(4)结合尾部洗涤装置,采用O 3可同时对S O 2 和NO 进行高效脱除.脱硫效率几乎为100%,脱硝效率随着[O 3]Π[NO]的增加而上升,在[O 3]Π[NO ]=111时,可获得8412%的脱硝效率.参考文献:[1] 王旭伟,鄢晓忠,陈彦菲,等.国内外燃煤锅炉烟气同时脱硫脱硝技术的研究进展[J ].电站系统工程,2007,23(4):527.[2] 魏林生,周俊虎,王智化,等.臭氧氧化结合化学吸收同时脱硫脱硝的研究[J ].动力工程,2006,26(4):5632567.[3] 马双忱,马京香,赵毅.燃煤电厂烟气多污染物控制技术研究与模型分析[R].郑州:2007年火电厂环境保护综合治理技术研讨会,2007.2902296.[4] 赵毅,马宵颖,刘松涛,等.高活性吸收剂同时脱硫脱硝实验研究[J ].中国电力,2008,41(2):55259.[5] 毛本将,丁伯南.电子束烟气脱硫技术及工业应用[J ].环境保护,2004,(9):15218.[6] 王广建,马智,秦永宁,等.等离子体法在烟气脱硫中应用进展[J ].化学工业与工程,2007,24(3):2662271.[7] Emerging environmental technologies :an analysis of new treatmenttechnologies for the California energy comm ission [R ].EPRI ,Palo Alto ,CA ,California Energy C omm ission.Sacramento ,CA :2003.[8] 王智化,周俊虎,魏林生,等.用臭氧氧化技术同时脱除锅炉烟气中NO x 及S O 2的实验研究[J ].中国电机工程学报,2007,27(11):125.[9] 王智化,周俊虎,温正城,等.利用臭氧同时脱硫脱硝过程中NO 的氧化机理研究[J ].浙江大学学报:工学版,2007,41(5):7652769.[10] W ang Z H ,Zhou J H ,Zhu Y Q ,et al .S imultaneous rem oval ofNO x ,S O 2and Hg in nitrogen flow in a narrow reactor by oz one injection:Experimental results [J ].Fuel Processing T echnology ,2007,88(8):8172823.[11] 马双忱,赵毅,陈颖敏.液相催化氧化脱除烟气中S O 2和NO x的机理讨论[J ].华北电力大学学报,2001,28(4):75279.[12] 陆雅静,熊源泉.亚铁螯合剂液相脱除NO x 的研究进展[J ].洁净煤燃烧与发电技术,2006,(3):17219.[13] C ounce R M ,Craw ford D B.Performance m odels for NO x abs orbers Πstrippers[J ].Environ Prog ,1990,9(2):87292.[14] Littlejohn D ,W ang Y,Chang S G.Oxidation of Aqueous Sulfite I onby Nitrogen Dioxide [J ].Environment Science T echnology ,1993,27(10):216222167.[15] Littlejohn D ,Chang S G.Oxidative Decom position of Nitrogen 2SulfurOxides [J ].Industrial Engineering Chem istry Research ,1994,33(3):5152518.[16] 傅军,肖博文,涂晋林.NO x 、S O 2液相反应研究进展———一种同时脱硫脱氮的新思路[J ].化工进展,1999,(1):26228.4643环 境 科 学30卷。
脱硫脱硝技术介绍

脱硫脱硝技术介绍1.选择性低温氧化技术(LoTOx)+EDV(Electro-Dynamic Venturei)洗涤系统原理:臭氧同时脱硫脱硝主要是利用臭氧的强氧化性将 NO氧化为高价态氮氧化物,然后在洗涤塔内将氮氧化物和二氧化硫同时吸收转化为溶于水的物质,达到脱除的目的。
效果:在典型烟气温度下,臭氧对NO的氧化效率可达84%以上,结合尾部湿法洗涤,脱硫率近100%,脱硝效率也在O3/NO摩尔比为0.9时达到86.27%。
也有研究将臭氧通进烟气中对NO进行氧化,然后采用Na2S和NaOH溶液进行吸收,终极将NOx转化为N2,NOx的往除率高达 95%,SO2往除率约为100%。
但是吸收液消耗比较大。
影响因素:主要有摩尔比、反应温度、反应时间、吸收液性质等1)在 0.9≤O3/NO<1的情况下,脱硝率可达到85%以上,有的甚至几乎达到100%。
2)温度控制在150℃3)臭氧在烟气中的停留时间只要能够保证氧化反应的完成即可.关键反应的反应平衡在很短时间内即可达到,不需要较长的臭氧停留时间。
4)常见的吸收液有Ca(OH)2、NaOH等碱液,用水吸扫尾气时,NO和SO2的脱除效率分别达到86.27%和100%。
用Na2S和NaOH溶液作为吸收剂,NOx的往除率高达95%,SO2往除率约为100%,但存在吸收液消耗量大的问题。
优点:较高的NOX脱除率,典型的脱除范围为70%~90%,甚至可达到95%,并且可在不同的NOX浓度和NO、NO2的比例下保持高效率;由于未和NOX反应的O3会在洗涤器内被除往,所以不存在类似SCR中O3的泄漏题目;除以上优点外,该技术使用中 SO2和CO的存在不影响NOX的往除,而LoTOx也不影响其他污染物控制技术,它不存在堵塞、氨泄漏,运行费用低。
2.半干法烟气脱硫技术主要介绍旋转喷雾干燥法。
该法是美国和丹麦联合研制出的工艺。
该法和烟气脱硫工艺相比,具有设备简单,投资和运行费用低,占地面积小等特点,而且烟气脱硫率达75%—90%。
臭氧氧化结合化学吸收同时脱硫脱硝的研究_魏林生

第26卷第4期 2006年8月动 力 工 程Journal of Power EngineeringVol .26No .4 Aug .2006 文章编号:1000-6761(2006)04-563-05臭氧氧化结合化学吸收同时脱硫脱硝的研究魏林生, 周俊虎, 王智化, 岑可法(浙江大学能源清洁利用国家重点实验室,杭州310027)摘 要:为深入研究和开发臭氧氧化结合化学吸收同时脱除多种污染物技术,阐明了石灰石吸收脱除臭氧氧化产物(SO x 和NO x )的吸收反应机理,通过气液固平衡理论对石灰石浆液吸收SO x 和NO x 特性进行了分析研究。
理论分析表明:烟气中CO 2对SO x 和NO x 吸收的影响可以忽略,并给出浆液在吸收容量所能承受的最大气液比。
当[CaC O 3]=0.05mol l 时,临界点M =600~700;当[CaC O 3]=0.1mol l 时,临界点M =1200~1300;当[CaCO 3]=0.15mol l 时,临界点M =1900~2000。
图4表1参9关键词:环境工程学;脱硫脱硝;吸收特性;臭氧中图分类号:X511 文献标识码:ASimultaneous Desulfurization and Denitrification byCombined Ozone Oxidation and Chemical ScrubbingWEI Lin -sheng , ZH OU Jun -hu , W A NG Zhi -hua , CEN Ke -fa(MOE 's Key Lab of Clean Energy Utilization and Envir onmental Engineering ,Institute of Ther mal Engineering ,Zhejiang University ,Hangzhou 310027,China )Abstract :The reaction mechanisms of ozone with many pollutants are being elucidated ,and the dynamic pr ocesses ofozone ,oxidizing NO x and SO 2,simulated .According to thermodynamic principles ,the partial pressures of SO x and NO x ,after the flue gas wet state 's simultaneous desulfurization and denitration reactions r espectively with Ca (OH )2and Ca CO 3,have both attained equilibrium ,ar e then calculated .Calculation results show that as an absor bent ,Ca (OH )2is superior to CaCO 3,and both of them exhibit nearly a 100%removal efficiency .Figs 4,table 1and refs 9.Keywords :environmental engineering ;desulfurization and denitrification ;absorbing characteristic ;ozone收稿日期:2005-12-20 修订日期:2006-02-25基金项目:国家自然科学基金资助项目(50476059);国家重点基础研究973发展规划资助项目(2006CB200303);国家杰出青年科学基金资助项目(50525620)。
臭氧催化氧化脱硫脱硝一体化技术

剂与硝酸分离,分离后的硝酸与氨水结合,生成硝酸铵,结晶干燥后形成
副产物硝酸铵化肥,反应如下: 2NO+O3 → N2O3+H2)或 NO+H2O2 → NO2+H2O(加入H2O2) HNO2+LCO → LCO.HNO2 2LCO.HNO2+O2 → 2LCO+2HNO3 HNO3+NH4OH → NH4NO3+H2O
无二次污染,无固体废弃物无废水排放;副产品为化肥。
运行成本低。其运行成本为石灰石/石膏法40%;
CAO半干法1/3,氨法1/2;SCR法70%。
2016/3/26
3
2016/3/26
山美水美
4
1、催化氧化技术介绍——技术背景
一、催化氧化一体化技术存在的必然性: 目前国内脱硝市场的兴起和脱硫改造严格 技术优势及其他常规脱硫方法的局限性 国家排放标准的要求日益严格 SNCR,SCR的缺点及催化剂的局限性(产能,热稳定性和化学稳定 性面临考验,二次污染) 补充:国内外很多机构一直都在研究一体化技术 国外:BECLO,苏联罗斯门捷列夫 国内:浙大,华北电力等
6、有机催化剂物理性质: 状态:油状; 沸点:300℃; 颜色:深棕色; 燃点:241.5℃
闪点:142℃;
相对密度:0.942g/ml
饱和蒸汽压:0.7mmHG(60℃);
粘度:14.5cp(20.8℃)4.72cp(60℃)
2016/3/26
26
2、催化氧化技术介绍——系统组成
7、催化氧化技术系统组成
水结合,生成硫酸铵,结晶干燥后形成副产物硫酸铵化肥,反应如下:
H2SO3+LCO → LCO.H2SO3 2LCO.H2SO3+O2 → 2LCO+2H2SO4。
臭氧同时脱硫脱硝技术介绍

臭氧同时脱硫脱硝技术介绍摘要:对利用臭氧同时脱硫脱硝技术进行了综述,分析了臭氧对NOx的脱除机理。
臭氧同时脱硫脱硝技术具有明显的一体化脱除特性,但臭氧的发生费用却制约了它的应用。
介绍了目前国外在工程上应用的低温氧化技术(LoTOx),分析了其脱除效果及优缺点。
煤炭作为主要能源物,其燃烧过程排放的SO2、NOx等污染物的总量很大,会造成严重的大气污染,危害人类健康。
对SO2的控制,目前较为成熟的技术是石灰石—石膏法,脱除效率可达95%以上。
此外还有炉内喷钙脱硫、电子束法脱硫等技术。
对NOx的控制分为两类,一类是控制燃煤过程中NOx的生成,主要有低氧燃烧法、两段燃烧法和烟气再循环法等。
另一类是通过物理化学方法进行脱除,主要有催化、吸收、吸附、放电等。
其中广泛应用的是选择性催化还原法(SCR),脱除效率达90%以上。
随着国家对火电厂污染物排放的要求越来越严格,同时脱硫脱硝已成为烟气污染物控制技术的发展趋势。
目前国内外广泛使用的是湿式烟气脱硫和NH3选择催化还原技术脱硝的组合。
该技术的脱硫脱硝效率虽然高,但是投资和运行成本昂贵。
其他的脱硫脱硝技术还包括等离子体法、催化法、吸附法等,但只有少数进入生产应用。
烟气中NOx的主要组成是NO(占95%),NO难溶于水,而高价态的NO2、N2O5等可溶于水生成HNO2和HNO3,溶解能力大大提高,从而可与后期的SO2同时吸收,达到同时脱硫脱硝的目的。
臭氧作为一种清洁的强氧化剂,可以快速有效地将NO氧化到高价态。
电子束法和脉冲电晕法虽然能够产生强氧化剂物质,如·OH、·HO2等,但工作环境恶劣,自由基存活时间非常短,能耗较高。
O3的生存周期相对较长,将少量氧气或空气电离后产生O3,然后送入烟气中,可显著降低能耗。
目前利用臭氧进行脱硫脱硝在国外已有工程应用实例,在我国还处于探索阶段。
1 臭氧脱硝机理臭氧的氧化能力极强,从下表可知,臭氧的氧化还原电位仅次于氟,比过氧化氢、高锰酸钾等都高。
臭氧氧化结合硫代硫酸钠溶液喷淋同时脱硫脱硝

2015—10.12收到 初稿 ,2015—11-25收到修 改稿 。 联系 人 :朱燕 群 。第一作 者 :杨业 (1993一 ),男 ,硕 士研 究生 。 基金项 目: 国家 重 点基础 研 究发展 计划 项 目 (2O12cB2l49O6);国 家 杰 出青年 科学 基金 项 目 (51422605)。
Reeeived date:2015-10.12.
Corresponding author:ZHU Y ̄ qun ,yqzbu@zju.edu.cn
Foundation item:supported by the National Basic Research Program of China(2012CB214906)and t he National Science Fund for Distinguished You ng Scholars ofChina f51422605).
Abstract:Ozone oxidation and Na2S203 solution spray was combined to remove 802 and NOx simulta n eously. This coupling was studied experim entally.The results show that:502 a n d NOx can be eliminated simultaneously; at O3/NO m ole ratio 1.1— 1.2,the N0 rem oval efi ciency increases with increasing concentration of Na2S203; existence of 802 can facilitate removal ofNOx;the N rem oval ef i ciency reaches 70% with lOW emission of SO2 at Na2S203 concentration 2.0% an d at 502 gas concentration 1030 m g ·m- .Furthermore.the NOx rem oval efi ciency is enhanced with the pH of solution from 2.5 to 9.and reaches 75% at pH 9.The result of 3 hours running experiment indicates that N Ox a n d 802 can be removed ef i ciently and simultaneously and the stable and continuous operation iS possible.because sodium t hiosulfate Ca n facilitate rem oval of NOx and the NOx iS domina ntly convened into N0j.This process could be an eficient approach for eliminating 802 and NOx simulta n eously and could have potential industrial application.
臭氧氧化结合硫代硫酸钠溶液喷淋同时脱硫脱硝实验研究

臭氧氧化结合硫代硫酸钠溶液喷淋同时脱硫脱硝实验研究作者:张丽梅刘晓璐来源:《中国化工贸易·上旬刊》2017年第08期摘要:通过臭氧氧化结合硫代硫酸钠溶液模拟烟气同时脱硫脱硝的试验。
研究发现,通过采用臭氧氧化结合硫代硫酸钠溶液湿法喷淋能够同时脱除NOx与SO2;同时,控制臭氧与一氧化氮摩尔比在1.1-1.2时,增加硫代硫酸钠溶液浓度能够提高NOx的脱除率,同时达到SO2较高的脱除率,达到稳定的同时脱硫脱硝。
关键词:臭氧氧化;污染;同时脱硫脱硝;硫代硫酸钠在工业燃料燃烧过程中,经常会释放大量的危害物质,对人体与环境造成巨大的伤害,包括SO2、Hg、PM、NOx等,最常见的污染物就是二氧化硫和氧化氮类物质。
现阶段国家对大气污染物排放制定了严苛的标准,为了降低氧化氮类污染物质的排放,一般需要进行燃烧后的烟气脱硝,以此来降低排放物中的NOx浓度。
常用的脱硝技术有低氮燃烧、烟气脱硝,目前较多使用的烟气脱硝技术包括非催化还原法、选择性催化还原法等。
臭氧脱硝、臭氧脱硫技术作为一种新兴技术,能够促进烟气的同时脱硫脱硝,在喷淋塔浆液中加入添加剂能够进一步促进脱硝。
1 试验设计本实验设计包括了模拟烟气的配气系统、进行臭氧与一氧化氮氧化反应的反应系统、模拟喷淋塔进行污染物脱除的吸收系统、对烟气采样分析的分析系统。
其中模拟烟气的配气系统包含了N2、O2、CO2等气体,NO与SO2由浓度为5%的钢瓶气提供。
当氧气流经臭氧放生器时,产生相应浓度的臭氧,之后经过质量流量计进入反应系统。
主要模拟烟气成分如表1所示。
本实验分别选取三个浓度的SO2,即0.280mg·m-3、1030mg·m-3。
反应系统中,一氧化氮、氮气、二氧化硫与二氧化碳混合之后分别与臭氧进行气相氧化,气体的总流量为5L·min-1,反应温度为150℃。
实验表明,臭氧在200℃以下的环境里分解速度比较慢,这一温度下对臭氧氧化NO没有影响。
臭氧液相氧化同时脱硫脱硝实验研究

臭氧液相氧化同时脱硫脱硝实验研究【摘要】本文首先介绍了同时脱硫脱硝技术的优势,然后介绍了实验系统与方法,最后介绍了结果与讨论。
【关键词】臭氧液相氧化;同时脱硫脱硝;实验研究前言我国的能源结构主要以煤炭为主,燃煤过程中产生大量的SO2、NOx等大气污染物,造成了严重的大气污染和经济损失。
臭氧液相氧化同时脱硫脱硝技术能够有效的对污染物进行去除。
1 同时脱硫脱硝技术的优势同时脱硫脱硝技术能在同一套系统内实现脱硫与脱硝,具有以下特点:①设备精简,占地面积小。
②基建投资少,生产成本低。
③自动化程度高,管理方便。
2 实验系统与方法采用自组装实验系统进行实验,实验系统如图1所示.O3发生器为北京同林3S-A5型空气源装置.液相反应器为自制的200mL玻璃容器,容器内放O3分布筛板和烟气分布筛板.两者均为玻璃砂芯漏斗,粒径为30~50μm.O3分布筛板距反应器底部1cm,烟气鼓泡分布筛板器距反应器底部2cm.为减小液体压强对气体压强的影响,反应吸收液配制为150mL.在液相反应器进气口和出气口连接旁路系统测定气体的初始浓度,以及反应结束后对气体浓度进行回测.反应后的烟气经碱液吸收后通过干燥瓶进入烟气分析仪.在线测量烟气分析仪为德国进口MRUV ARIO增强型烟气分析仪,可以测定烟气温度、O2、NOx和SO2的初始浓度等以及反应完全后的尾气成分及浓度.实验过程如下:O2、NOx和SO2等气体经流量计后进入混气瓶,然后送入鼓泡反应器内的模拟烟气分布筛板.空气经O3发生器放电产生O3,经流量计送入反应器内的O3分布筛板,O3浓度通过碘量法进行测定.实验中维持O3以及模拟烟气总流量在1Lmin.尾气成分由烟气分析仪在线测量,测量结果以5s次的采样频率在线记录储存于电脑中.图1 实验系统示意图3 结果与讨论3.1 O3量对NO脱除率的影响[O3]/[NO]摩尔比是指烟气中加入O3的摩尔数与烟气中NO的摩尔数之比,反映了O3加入量相对于NO量的高低.调节O3发生器产生不同的O3浓度,使摩尔比O3/NO从0.05变化到1.1.反应吸收液为去离子水.常温纯水条件下,O3的分解速度较慢,可忽略不计.实验结果如图2所示图2 [O3]/[NO]对NO脱除率的影响NOx的液相氧化首先是气体在溶液中的溶解,该吸收符合亨利定律.由于NO 在水中的溶解度很低(25℃下亨利常数为1.94×10-8molL·Pa),并且很难通过常规方法显著提高溶解度.所以使NO转化为容易吸收的形态是脱硝的关键.液相脱硝过程主要包括:①NO的吸收;②液相氧化NO为高价态氮氧化物;③气相部分氧化NO为易溶解的高价态氮氧化物[12].液相中O3可与NO发生如下5个主要反应.这些反应的反应速率都很快,生成易溶于水的NO2、NO3等,并破坏了NO 的溶解平衡式(1),从而促进NO的溶解和吸收氧化,即过程①和②.此外气相中O3也和NO发生反应,即过程③.所以图2显示出[O3][NO]摩尔比对NO氧化有明显影响,[O3][NO]=0.5时,有78.5%的NO被氧化,而当[O3]/[NO]=1.1(理论化学计量比为1)时,脱除率接近90%.可见O3同NO的反应是快速不可逆反应.在O3过量的情况下,NO氧化率接近但不能达到100%,主要是因为O3除氧化NO外,还与其它NOx进行反应,有一定的消耗.3.2 pH值对脱除NO的影响保持[O3]/[NO]摩尔比约为0.84,研究pH值对脱除NO的影响,结果见图3.pH值对NO脱除率的影响并不显著,只在一定范围内波动.这可能是因为NO 的溶解度随离子浓度的增大而减小,并且在一定的离子浓度下,NO的溶解度在pH值2~13范围内是常数.此外,虽然O3在水中的分解速度随pH的提高而加快,但是由于有不断的O3补充,所以参与反应的O3充足,不影响对NO的氧化.常规WFGD系统的pH值范围一般控制在5~6之间,因此,实际应用时可控制pH值在这一范围.pH值应用钙基吸收剂(石灰石或氢氧化钙)调节,如附近有氨源,也可以采用氨水来调节.图3 pH值对NO脱除率的影响3.3 温度对脱除NO的影响将吸收器置于恒温水浴槽中,调节水浴槽温度.保持[O3]/[NO]摩尔比约为0.84,研究温度对NO脱除率的影响,具体见图4.吸收液温度对脱硝的影响不是很明显,较高的温度并没有使脱硝率有明显下降.一般来说,NO的溶解度随温度的上升而减小,但反应速度随温度升高而增大,这种相反的影响有可能相互抵消.而且虽然随着温度的升高,O3会发生分解,但是由于O3对NO的氧化是快速不可逆的,该速度比O3的分解速度快很多,所以温度对NO的氧化效率影响甚微.目前典型湿式石灰石法烟气脱硫中,浆液温度为50℃左右,O3可以运用于此温度环境中.图4 温度对NO脱除率的影响3.4 [O3]/[SO2]摩尔比对脱硫率的影响由于锅炉烟气中SO2的含量较高,而SO2也可以与O3发生反应生成更易溶于水的SO3.如果SO2与O3的反应程度较高,一方面会促进后期湿法洗涤的效率,但另一方面SO2会与NO产生竞争,使得O3的消耗加速.所以从节省能耗的角度出发,希望SO2与O3的反应程度越低越好.模拟烟气中只采用SO2来考察O3对SO2氧化的影响.采用的吸收液是去离子水,调节O3发生器产生的O3浓度,使[O3]/[SO2]摩尔比从0~1.0.如图5所示,随着施加O3量的增加,反应器出口SO2的浓度降低.说明O3对SO2具有一定的氧化作用,促进了SO2的吸收.图5 [O3]/[SO2]摩尔比对脱除率的影响3.5 结合尾部吸收同时脱除NOSO2在上述条件实验的基础上,进行了臭氧液相氧化尾部吸收同时脱除NOSO2实验.采用10%的Ca(OH)2作为吸收液,反应温度为35℃,NO和SO2的初始浓度均为950mgm3.实验结果见图6,从中可见SO2在洗涤后脱除效率达到100%,由于Ca(OH)2与SO2可发生化学反应,且Ca(OH)2不是循环利用,所以SO2的吸收比较彻底.NO的脱除率随着O3量的增加而上升,当[O3][NO]=0.84时,NO的脱除效率可达到81.5%,这主要是因为NO不断地被氧化成为NO2等更易溶于水的高价态NOx.相比图2,在同一摩尔比的情况下,图6的NO脱除效率比较低,这主要是因为SO2会与一部分O3反应,造成O3消耗,引起NO脱除率的略微下降,但总体上NO的脱除效率仍然较高.NO脱除率的微降说明SO2的存在起到竞争氧化的作用,但由于O3对NO更加敏感,再加上二者同时存在时,O3几乎是先氧化NO后氧化SO2,所以竞争氧化影响很小.常规WFGD中,喷淋过程可显著降低SO2的浓度,此外有研究表明NO和NO2也可氧化HSO-3和SO2-3为SO2-4,加速液相SO2的吸收转化,使得它对O3氧化NO的影响更小,剩余的O3将HSO-3、HNO2及HNO2和HSO-3反应生成的氮硫氧化物和羟胺磺酸盐化合物最终氧化为HNO3和H2SO4,可见采用O3结合尾部洗涤的方法可以同时高效脱除NOx和SO2,从而实现脱硫脱硝一体化.图6 结合尾部吸收后NO/SO2的同时脱除率(t=35℃)4 结束语我国深刻的国情必然导致了煤矿在燃烧过程中生成的大量有害气体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
臭氧氧化结合硫代硫酸钠溶液喷淋同时脱硫脱硝杨业;徐超群;朱燕群;林法伟;马强;王智化;岑可法【摘要】采用臭氧氧化结合湿法喷淋硫代硫酸钠溶液的方法开展模拟烟气同时脱硫脱硝实验研究.结果表明,采用臭氧氧化结合Na2S2O3-NaOH溶液湿法喷淋可以实现NOx和SO2协同脱除:在O3/NO摩尔比为1.1~1.2时,溶液中Na2S2O3浓度的增加会提高系统的NOx脱除效率,烟气中SO2的存在会促进NOx的脱除,当SO2浓度为1030 mg·m?3、2.0%Na2S2O3溶液作为喷淋液时可实现较高的SO2脱除效率,同时NOx脱除效率可达70%以上;喷淋液pH在2.5~9范围内变化时提高浆液pH有利于NOx的脱除,当pH=9时脱硝效率可达75%.180 min连续同时脱硫脱硝实验结果表明,硫代硫酸钠可有效促进NOx的脱除,并实现SO2较高的脱除效率,同时可实现系统同时脱硫脱硝连续稳定运行,喷淋吸收后烟气中NOx 的主要转化产物为2NO?,该方法作为一种有效的同时脱硫脱硝技术,具有一定的工业应用推广前景.%Ozone oxidation and Na2S2O3 solution spray was combined to remove SO2 and NOx simultaneously. This coupling was studied experimentally. The results show that: SO2 and NOxcan be eliminated simultaneously; at O3/NO mole ratio 1.1—1.2, the NOx removal efficiency increases with increasing concentration of Na2S2O3; existence of SO2 can facilitate removal of NOx; the NOx removal efficiency reaches 70% with low emission of SO2 at Na2S2O3concentration 2.0% and at SO2 gas concentration 1030 mg·m?3. Furthermore, the NOx removal efficie ncy is enhanced with the pH of solution from 2.5 to 9, and reaches 75% at pH 9. The result of 3 hours running experiment indicates that NOx and SO2 can be removed efficiently and simultaneously and the stable and continuousoperation is possible, because sodium thiosulfate can facilitate removal of NOx and the NOx is dominantly converted into2NO?. This process couldbe an efficient approach for eliminating SO2 and NOx simultaneously and could have potential industrial application.【期刊名称】《化工学报》【年(卷),期】2016(005)005【总页数】7页(P2041-2047)【关键词】臭氧氧化;污染;烟道气;同时脱硫脱硝;硫代硫酸钠;吸收【作者】杨业;徐超群;朱燕群;林法伟;马强;王智化;岑可法【作者单位】浙江大学能源清洁利用国家重点实验室,浙江杭州 310027;浙江大学能源清洁利用国家重点实验室,浙江杭州 310027;浙江大学能源清洁利用国家重点实验室,浙江杭州 310027;浙江大学能源清洁利用国家重点实验室,浙江杭州310027;浙江大学能源清洁利用国家重点实验室,浙江杭州 310027;浙江大学能源清洁利用国家重点实验室,浙江杭州 310027;浙江大学能源清洁利用国家重点实验室,浙江杭州 310027【正文语种】中文【中图分类】X511DOI:10.11949/j.issn.0438-1157.20151536燃料燃烧过程中释放出多种对人体与环境有害的污染物(SO2,NOx,Hg,VOC,PM等),其中SO2和NOx是最主要的污染物。
最新版的国家火电行业大气污染物排放标准(于2012年1月1日开始实施,GB 13223—2011[1])对SO2和NOx提出了更严格的排放标准:重点地区SO2为50 mg·m-3,NOx为100 mg·m-3。
并且标准中首次对汞元素的排放设定了排放限值。
对燃烧后烟气的净化是控制污染物排放的有效途径之一。
目前较为成熟的湿法脱硫技术(WFGD)能有效控制烟气中SO2的排放[2-3]。
传统锅炉脱硝技术主要包括低氮燃烧技术和燃烧后烟气脱硝技术,低氮燃烧技术主要有低氮燃烧器、燃尽风技术、再燃技术等[4-6]。
而为了满足日益严苛的NOx排放标准,通常需要再配合燃烧后烟气脱硝技术,以进一步降低NOx排放浓度。
现行的燃烧后脱硝技术有选择性非催化还原法(SNCR)和选择性催化还原法(SCR)。
SCR被认为是最有效的脱硝技术,配合WFGD可控制烟气中SO2和NOx在很低的排放水平,但其具有投资运行成本高、设备占地面积大、对原有烟道改动大、温度区间要求严格、氨逃逸、催化剂中毒等缺点,制约了其在工业锅炉尾气处理中的应用。
工业锅炉的尾部烟道温度较低(<200℃),不具备SCR和SCNR所需的温度区间。
目前新兴的臭氧氧化多种污染物协同脱除技术[7]可在低温下(<150℃)实现污染物的同时脱除,并且具有效率高、占地面积小、对烟道改造小等优点,近年来已成为烟气综合治理领域的研究热点[8-12]。
烟气中的氮氧化物95%以上以NO的形式存在[7],难溶于水。
臭氧多脱技术主要利用臭氧的强氧化性,将难溶于水的NO氧化为水溶性较好的NO2、NO3和N2O5[13],随后结合湿法脱硫设备在洗涤塔中与SO2同时脱除。
已有研究表明臭氧多脱技术可以同时氧化并脱除烟气中的Hg0[7,13]、VOC[14-15]等,使得臭氧多脱技术成为十分有潜力的多种污染物协同脱除技术。
传统的石灰石浆液对NO2的脱除效率较低,仅有20%~40%,而在喷淋塔浆液中适当加入添加剂可以促进NO2的有效、快速脱除。
已有学者对添加剂的使用效果进行研究。
Chien等[16]发现使用NaClO2作为添加剂时湿法喷淋对烟气中SO2和NOx有较好的协同脱除效率,然而研究同时也发现烟气中的SO2极大地消耗了喷淋液中的NaClO2,导致添加剂消耗过快,运行经济性欠佳;张相[17]以及Mok [18]分别对亚硫酸盐和Na2S作为添加剂进行湿法脱除研究,发现这些添加剂虽然有较好的SO2、NOx脱除效率,然而其活性成分与烟气中存在的氧气反应速率快,造成添加剂消耗量大,不容易维持长时间运行。
因此,有必要开发可实现SO2和NOx协同高效脱除且消耗速率慢、可保持较长时间稳定运行的添加剂。
本工作针对臭氧氧化结合湿法洗涤同时脱硫脱硝技术,采用NaOH溶液作为吸收液、硫代硫酸钠作为添加剂,结合盐酸调节pH,开展同时脱硫脱硝试验研究,重点对硫代硫酸钠溶液浓度、SO2初始浓度、喷淋液温度、喷淋液pH等参数对NOx脱除效率的影响进行研究。
实验在一实验室内搭建的小型试验台上进行,其系统示意图见图1,主要包括配气系统(用于模拟锅炉烟气)、反应系统(用于加热模拟烟气及臭氧与NO的氧化反应)、吸收系统(用于模拟喷淋塔对烟气中污染物进行脱除)、分析系统(用于对各测点烟气进行采样分析其成分)。
配气系统:实际烟气中NO占NOx的绝大部分,因此实验使用NO模拟实际烟气中的NOx。
本实验中模拟烟气的配气系统包含多种气体,其中N2、O2和CO2由纯度均为99.99%(杭州今工特种气体有限公司)的钢瓶气提供,NO和SO2由浓度为5%(N2为平衡气)(杭州今工特种气体有限公司)的钢瓶气提供。
钢瓶中的氧气流经臭氧放生器(青岛国林,CF-G-010g),产生一定浓度的臭氧,而后经质量流量计(Alicat Scientific Inc.)进入反应系统。
模拟烟气成分见表1。
实验中SO2取多个浓度,分别为0、280 mg·m-3、1030 mg·m-3。
反应系统:NO、N2、SO2、CO2经预混后与O3在石英制的圆柱体混气筒(Reactor:长650 mm,内径50 mm)中进行气相氧化,气体总流量为5 L·min-1,反应温度为150℃。
实际燃煤锅炉炉除尘器后的烟气温度一般在150℃左右或者以下。
前人研究[13]发现O3在200℃以下环境中分解较为缓慢,而且此温度区间下温度对臭氧氧化NO几乎无影响。
石英制的圆柱体混气筒置于卧式电加热程序控温管式炉(上海意丰,YFK60×600/10QK-G)中,由管式炉对反应容器进行温度控制,从而实现反应的目标温度控制。
吸收系统:由有机玻璃喷淋塔(内径70 mm,模拟烟气进气口中心与喷嘴高度差150 mm)和蠕动泵(保定格兰,YZ2515x)组成。
实验采用喷淋,使用一个喷雾角度为60°的精细雾化实心锥喷嘴,液滴雾化粒径约50 μm,单层喷淋的液气比为42 L·m-3,据此得出模拟烟气在喷淋塔中停留时间为6 s。
为保证液滴尽可能避免碰壁团聚,模拟喷淋塔的径高比按实际脱硫塔径高比设计。
实验采用NaOH溶液作为吸收液,以Na2S2O3为添加剂,所使用的Na2S2O3·5H2O、NaOH为分析纯(国药集团化学试剂有限公司)。
喷淋过程中由电控系统带动电机对塔底喷淋液进行搅拌(400 r·min-1),溶液pH由酸度计(雷磁,PHS-25)测量。
喷淋塔底部浆液罐上开有两口,一口作布置pH计探针进行在线监测pH、布置搅拌器用,并作密封处理,另一口作进料用,此口不使用时用橡胶塞塞紧。
实验中通过从进料口滴加NaOH溶液和盐酸调节pH。
分析系统:臭氧发生器产生的臭氧的浓度由臭氧分析仪(Ozone Analyzer BMT 964, BMT MESSTECHINIK)检测,氧化后的烟气成分和喷淋塔后的烟气成分均由傅立叶红外烟气分析仪(芬兰,Gasmet DX4000)测量,反应结束后喷淋溶液中的由离子色谱仪(883 Basic IC)检测。