臭氧脱硝技术方案

合集下载

臭氧法脱硝技术方案

臭氧法脱硝技术方案

臭氧法脱硝技术方案1000字臭氧法脱硝技术是一种将臭氧作为氧化剂进行脱硝的技术。

其原理是将臭氧气体通过反应器中的催化剂床层,使硝化物(主要为NOx)被氧化为氮气(N2)和水(H2O)等中性物质,从而达到减少空气中氮氧化物含量的目的。

以下是臭氧法脱硝技术方案的详细介绍:技术流程:臭氧法脱硝技术的基本流程包括臭氧制备系统、脱硝反应器和尾气处理系统三部分。

其流程如下:1.臭氧制备系统将气体中的氧(常用纯氧气体)与空气按照一定比例混合,通过臭氧发生器产生臭氧气体。

2.脱硝反应器将发生的臭氧气体与带有硝化物的尾气进行反应。

3.反应结束后,剩余的臭氧气体通过尾气处理系统进一步处理,以达到环保标准的排放要求。

主要技术要点:1.臭氧制备系统:臭氧制备系统一般采用等离子体离子化技术,将氧分子分解成臭氧分子。

该体系中臭氧的制备速率与臭氧分布均匀性是比较重要的技术指标。

制备臭氧的浓度一般为3~4%。

2.反应过程:反应器中的催化剂活性组分必须具有高的选择性和活性,以保证硝化物和臭氧之间的反应速率足够快和极大化。

合适的催化剂活性组分应该满足以下特征:具有高的活性和选择性;能够承受反应条件的严峻;耐高温,耐强腐蚀,以及酸碱中性等。

催化剂的载体一般采用介孔氧化硅或氯化铝,以及氧化铝一类的中性无机物。

对于粒径的选择,尺寸约为1.0 mm左右时机械强度较好。

3.尾气处理系统:尾气处理系统主要是用来处理剩余的臭氧气体,以满足环保标准的排放要求。

ICR(Inside of control room)是国内常用的尾气处理装置之一。

它采用多级过滤技术,经过筛网过滤和喷淋等处理过程,使气体中的有害成分被彻底清除,从而达到环保要求。

技术优势:1. 高效:臭氧法脱硝技术能够在较短的反应时间内,将NOx快速转化为N2和H2O等中性物质。

臭氧在反应过程中不溶于水,不生成二氧化硫等腐蚀性气体,因此反应器的设备要求较低,且具有较高的脱硝效率。

2. 稳定:臭氧法脱硝技术能够在宽范围的氧气比例下正常运行,且对供应气体的稳定性要求不高,因此运行稳定性较高。

某钢厂脱硝方案臭氧法

某钢厂脱硝方案臭氧法

*钢厂臭氧脱硝方案技术方案------公司2012年4月10日目录1总论21.1工程概述21.2工程概况22脱硝方案32.1设计参数32.2系统烟气流程32.3设计方案33设备材料报价84供货周期85简易工艺流程96效劳与承诺91总论1.1工程概述*钢厂现有烟气温度在换热器后降低至150℃以下,烟气中含有的氮氧化物超标,需要建立脱硝装置去除烟气中的氮氧化物,1.2工程概况1.2.1机组情况主体机组参数如下:2脱硝方案2.1设计参数脱硝装置的设计参数。

表21脱硝装置的设计参数2.2系统烟气流程见流程图2.3设计方案本工程采用臭氧氧化加碱液吸收法。

烟气首先在换热器后排出烟道与臭氧接触,利用臭氧的强氧化特性,将NO氧化成高价态的氮氧化物,再用碱液喷淋吸收,以到达脱硝目的,喷淋塔同时能够洗涤除去大局部二氧化硫及烟尘,可以彻底解决尾气发黄现象。

2.3.1反响原理1〕、臭氧的氧化特性臭氧的氧化能力极强,从下表可知,臭氧的氧化复原电位仅次于氟,比过氧化氢、高锰酸钾等都高。

此外,臭氧的反响产物是氧气,所以它是一种高效清洁的强氧化剂。

臭氧脱硝的原理在于臭氧可以将难溶于水的NO氧化成易溶于水的NO2、N2O3、N2O5等高价态氮氧化物。

2〕、臭氧的化学反响机理臭氧的详细化学反响机理比拟复杂。

在实际运用中,可根据低温条件下臭氧与NO的关键反响进展调试。

低温条件下,O3与NO之间的关键反响如下:NO+O3→NO2+O2〔1〕NO2+O3→NO3+O2〔2〕NO3+NO2→N2O5〔3〕NO+O+M→NO2+M 〔4〕NO2+O→NO3〔5〕3〕、吸收剂化学反响机理常用碱液吸收剂有 NaOH、 Ca(OH) 2、NH4OH等。

用NaOH吸收尾气中氮氧化物的反响如下:2NO2+2NaOH=NaNO2+NaNO3+H2O 〔1〕NO+NO2+2NaOH=2NaNO2+H2O 〔2〕本工程后续建立有双碱法脱硫工程,可利用现有脱硫塔作为脱硝的吸收塔,主要吸收介质为NaOH。

臭氧脱硝方案

臭氧脱硝方案

臭氧脱硝方案随着工业化的不断发展,环境污染成为当今社会所面临的一大挑战。

其中,大气污染是最为突出的问题之一。

臭氧脱硝技术作为一种当前被广泛关注和研究的环境治理方案,为减少大气污染提供了新的希望。

一、臭氧脱硝的原理与依据臭氧脱硝即通过利用臭氧分解大气中的氮氧化物(NOx),达到减少大气中有害气体浓度的目的。

其基本的化学反应方程如下:2NOx + O3 -> N2 + 2O2 + O2通过此反应,臭氧氧化分解了氮氧化物,并最终产生氮气和氧气。

这个过程中,臭氧充当的是氧化剂的角色,而氮氧化物则是被还原的对象。

而反应生成物的氮气和氧气对环境没有任何有害影响,因此这种臭氧脱硝技术被广泛用于环境治理领域。

二、臭氧脱硝技术的应用场景臭氧脱硝技术在不同场景中的应用具有广泛性和灵活性。

以下分别从工厂、交通运输和家庭生活三个方面进行探讨。

1. 工厂排放治理工厂作为重要的源头排放环境污染物,其大气排放一直备受关注。

臭氧脱硝技术可以针对工厂排放的氮氧化物进行治理,使排放气体达到符合环保要求的标准。

工厂常用的臭氧脱硝设备主要包括臭氧发生器和脱硝装置。

臭氧发生器通过电离和瞬时放电的方式产生臭氧,脱硝装置则将臭氧引入氮氧化物排放源,实现氮氧化物的催化分解。

2. 交通运输尾气治理交通运输是城市大气污染的主要源之一。

在交通拥堵的道路上,尾气中的氮氧化物排放量往往较高。

这时,采用臭氧脱硝技术对尾气进行治理,可以有效减少大气中有害气体的浓度。

一种常见的应用方式是在车辆的排气管中设置臭氧发生器,将产生的臭氧与尾气中的氮氧化物进行反应,达到脱硝的目的。

3. 家庭生活空气净化除了工厂和交通运输,家庭生活中也存在着一定的大气污染问题。

例如,燃煤取暖和烹饪产生的氮氧化物排放,对家庭成员身体健康造成潜在威胁。

因此,臭氧脱硝技术也可以应用于家庭生活空气净化中。

通过在室内设置臭氧发生器,对空气中的氮氧化物进行处理,可以改善室内空气质量,减少有害气体对居民的影响。

臭氧+双氧水组合脱硝脱硫一体化工艺方案

臭氧+双氧水组合脱硝脱硫一体化工艺方案

臭氧+双氧水组合脱硝脱硫一体化工艺方案脱硝技术路线的确定2.1NOx生成机理一般燃烧设备燃烧过程中生成的氮氧化物包括NO、NO2、N2O 等,其中 NO占90%以上,NO2占 5-10%,N2O只占 1%左右,因此燃烧过程中产生的NOx主要是指NO和NO2。

在含氮物质的氧化和还原反应过程中,按照 NOx生成的主要途径和来源可以分为热力型NOx、快速型 NOx和燃料型 NOx(见图 1)。

图3-1 NOX生成和脱除的反应途径(1)热力型 NOx热力型 NOx主要是指在燃烧过程中参与燃烧的空气中的氮气被氧化生成的NOx,其中的生产过程是一个不分支连锁反应。

热力型NOx的生成机理是前苏联科学家捷里多维奇(Zeldovich)于1946年提出的。

总反应式如下:N2?+ O2 ? 2NO (1)NO +?1/2O2 ? NO2 (2)(2) 快速型NOx根据碳氢燃料预混火焰轴向NO分布的实验结果,指出碳氢自由基(CHi)在燃烧过程中撞击空气中的N2分子生成HCN、NH、CN 和 N等中间产物,这些中间产物再进一步氧化生成NOx,称为快速型NOx。

快速型NOx中的氮虽然也是来自空气中的氮气,但是同热力型 NOx的生成机理却不相同,其主要生成路径入下图所示。

快速型 NOx的生成对温度的依赖性很低,然而过量空气系数对快速型 NOx的影响较大。

燃烧过程中快速型 NOx的生成量很少,一般不作为 NOx控制的主要考虑对象。

(3)燃料型NOx燃料型 NOx是指燃料中的氮化合物在燃烧过程中热分解后又氧化而的NOx。

其主要生成路径如下图所示。

由于N-H键和N-C键的远比N≡N键要小得多,燃料型 NOx的生成要比热力型NOx容易得多,是生成NOx的最主要来源。

2.2现有主要脱硝技术比较分析现有主要脱硝技术经济性比较见下表技术名称SCR SNCR 臭氧氧化法还原剂NH3为主氨水或尿素溶液O3反应温度300~400℃850~1100℃50-200℃反应器需要建设不需要不需要脱硝效率80-95% 15-50% 70~95%催化剂需要,且定期更换,价格贵不需要不需要还原剂喷射位置多选择于省煤器与空气预热器之间炉膛或炉膛出口不需要SO2/SO3转化有无无NH3逃逸3~5ppm 10~15ppm 无对燃烧设备影响NH3与 SO3易形成 NH4HSO4,造成堵塞或腐几乎没有影响没有影响蚀系统压损1000pa左右无无是否需要吹灰是否否燃料影响高灰分会磨耗催化剂,碱金属氧化物会钝化催化剂(催化剂中毒)无无燃烧设备效率影响降低热效率无无煤焦油影响煤焦油导致催化剂堵塞,并覆盖催化剂表面活性成分,造成催化剂失效无无占地面积大小小投资高低中等运行费用高低中等2.3 本项目脱硝技术方案的确定组合氧化法是非常适合本项目的脱硝方案。

臭氧脱硝的介绍

臭氧脱硝的介绍

臭氧脱硝的介绍臭氧脱硝是一种重要的氮氧化物治理技术,它可以高效地减少工业排放所带来的氮氧化物对环境的污染。

本文将介绍臭氧脱硝的基本原理、工作机理、工艺流程、优缺点及适用范围等方面的内容。

一、臭氧脱硝的基本原理臭氧脱硝利用臭氧氧化一氧化氮(NO)或氨(NH3),生成亚硝酸和亚硝酸盐或硝酸盐,然后通过一系列反应使其还原为气态氮(N2)和水(H2O)释放出来。

臭氧氧化一氧化氮或氨的反应方程式如下:NO + O3 = NO2 + O2 + ONH3 + O3 = NO + H2O + 2O2亚硝酸/盐和硝酸盐的反应方程式如下:3NO2 + O2 = 2NO + 2NO22NO2 + 2OH- = NO2- + NO3- +H2ONO2- + 2OH- = NO3- + H2ON2 + 2O2 = 2NO22NO + 2OH- = NO2- + H2O2NO2 + 4OH- = 2NO3- + 2H2O这样,臭氧脱硝可以将一氧化氮和氨等氮氧化物转化为更易处理的亚硝酸/盐和硝酸盐,进而进行还原反应,形成氮和水。

该过程所需要的臭氧可以通过电解氧化水产生,也可以通过空气中氧气电离而产生。

二、臭氧脱硝的工作机理臭氧脱硝的工作机理主要分为三个步骤:1. 氮氧化物氧化阶段:臭氧与一氧化氮或氨等氮氧化物接触,臭氧通过氧化作用使其转化为亚硝酸/盐和硝酸盐。

2. 氮氧化物还原阶段:亚硝酸/盐和硝酸盐经过还原反应转化为氮和水,减少氮氧化物对环境的污染。

3. 臭氧再生阶段:通过对使用过的臭氧进行再生,确保臭氧脱硝系统的稳定性和持续作用。

三、臭氧脱硝的工艺流程臭氧脱硝是一种先进的氮氧化物治理技术,其工艺流程主要包括前处理、臭氧反应器、后处理等三个部分。

前处理:通过对氮氧化物的预处理,使各种氮氧化物处于最佳的反应状态。

臭氧反应器:该反应器正常运行条件下获得良好的催化效果,可以将一氧化氮或氨转化为亚硝酸盐和硝酸盐,这些化合物随后通过后处理系统进一步处理,使其发生还原反应,最终转化成无害的氮和水。

臭氧脱硝技术方案

臭氧脱硝技术方案

臭氧脱硝技术方案引言臭氧脱硝技术是一种常用的空气污染物控制技术,可有效去除烟气中的硫酸盐和硝酸盐,减少大气环境中的酸雨和光化学烟雾的生成。

本文将介绍臭氧脱硝技术的原理、工艺流程和应用场景。

技术原理臭氧脱硝技术是一种化学反应法,通过将臭氧注入烟气中,使其与烟气中的二氧化硫和氮氧化物发生反应,生成稳定的硫酸盐和亚硝酸盐。

这些生成物会随烟气一起排出烟囱,并通过烟囱排放到大气中。

臭氧脱硝技术的主要反应方程式如下:2SO2 + O3 → 2SO32NO + O3 → 2NO2技术工艺流程臭氧脱硝技术的主要工艺流程包括臭氧产生、混合反应和尾气处理三个步骤。

1. 臭氧产生臭氧可以通过给氧源加电或者光照等方式产生。

其中常用的方法是通过电解水产生臭氧,其反应方程式如下:2H2O → 4H+ + O2 + 4e^-2H2O + 4e^- → 4OH-2OH- → O2 + 2H2O + 4e^-2. 混合反应在烟气进入脱硝设备之前,臭氧需要与烟气中的二氧化硫和氮氧化物充分混合。

混合的方式可以采用喷射或循环往复流的形式,以确保臭氧与废气充分接触,提高反应效率。

3. 尾气处理脱硝反应完成后,产生的硫酸盐和亚硝酸盐会随烟气一同进入尾气处理系统。

尾气处理系统通常包括除尘装置和吸收塔。

除尘装置用于去除烟气中的固体颗粒物,吸收塔则用于将硫酸盐和亚硝酸盐捕集并形成稳定的产品。

应用场景臭氧脱硝技术适用于燃煤和燃油等工业锅炉、电厂和工业炉窑等不同场景的烟气治理。

臭氧脱硝技术具有高效、节能、环保等优点,有效地减少了大气环境中的酸雨和光化学烟雾的生成,提高了环境空气质量。

结论臭氧脱硝技术是一种常用的空气污染物控制技术,通过化学反应将烟气中的硫酸盐和亚硝酸盐转变为稳定的产品,并通过尾气处理系统进行排放。

该技术适用于不同场景的烟气治理,具有高效、节能、环保等优点。

氨水——臭氧组合高效脱硫脱硝技术方案

氨水——臭氧组合高效脱硫脱硝技术方案

一、45t/h锅炉烟气现场调查1、燃煤质量状况标识符号指标名称单位实际指标备注R 燃煤发热量大卡4500A 煤中灰分%25S燃煤全硫分%3。

8C 燃煤中碳含量% 80O 燃煤中氧含量% 6H 燃煤中氢含量% 4W 燃煤中水分% 102、锅炉烟气排放现状3、锅炉烟气中污染物排放现状4、锅炉烟气脱除效率难点分析5、建议与商权●《关于重点工业企业实施降氮脱硝工作的通告》穂府(2009)26号中规定:“60t/h以下的锅炉实施降氮脱硝不低于40%”.根据这一规定,本项目的最终排放指标可否定为不低于260mg/Nm3.(应按广东省标准不高于200mg/Nm3)二、烟气脱硫脱硝技术方案选择1、业主的要求该公司地处广州增城市沙埔镇,是一家纺织、皮革的企业,是经国家相关部门批准注册的企业。

该公司自备电厂的45t/h燃煤锅炉属于(穂府(2009)26号)《通告》第三条第三款所要求的实施降氮脱硝的整改范畴。

该锅炉建于2007年8月,属于为高倍循环流化床锅炉,锅炉出力为45蒸吨/时。

备用锅炉为低倍循环流化床锅炉,锅炉出力为25蒸吨/时,两台锅炉在空气预热器后都配备了静电除尘设备.三年多来,设备运转良好。

有效地保证了企业对电力负荷的需求。

为了确保公司生产经营正常进行,业主提出了如下要求:①在实施锅炉烟气降氮脱硝脱硫技改工程时不得影响锅炉的正常运转;②建造脱硫脱硝设施应设立在引风机以下区段,确保原有锅炉系统不受腐蚀;③建成的脱硫脱硝系统的运行效果必须达到环保局提出的所有控制要求。

2、我们选择脱硫脱硝技术方案的原则思考●由于现代先进的脱硫脱硝技术都不可能对烟气中的氮和硫实施100%的脱除,所以经净化后的烟气中仍然还会残留微量的氮和硫,与水化合后形成酸性液,对后续管道和设备造成腐蚀.因此,新配置的脱硫脱硝设备应是一个相对独立的运行体系,我们计划采用压入式将烟气送进脱硫脱硝系统,烟气被净化后直接送入烟囱。

●不在静电除尘器以上的烟道中附加任何脱硝设施.据武汉化工学院高凤教授介绍:因脱硝产生的水蒸汽会与硫化气体结合。

臭氧脱硝方案

臭氧脱硝方案

臭氧脱硝方案引言在大气污染治理中,脱硝技术是一项重要的措施。

臭氧脱硝方案是一个高效且环保的技术,可以有效地降低氮氧化物(NOx)的排放。

本文将介绍臭氧脱硝的原理、应用和优势。

原理臭氧脱硝采用臭氧气体(O3)作为氧化剂,通过将NOx氧化为氮酸根离子(NO3-)而进行脱硝。

臭氧在反应过程中具有较强的氧化能力,可以迅速将NOx氧化为稳定的氮酸根离子,从而降低大气中的污染物浓度。

臭氧脱硝主要通过以下两个反应来完成:1.2NO + O3 → 2NO2 + O2 :臭氧和氮氧化物之间的反应。

2.NO2 + O3 → NO3- + O2 :氮酸根离子生成反应。

臭氧和氮氧化物的反应是一个自由基链式反应,因此在反应中需要一个合适的条件来控制臭氧的生成和使用,以促进脱硝效果的最大化。

应用臭氧脱硝技术广泛应用于燃煤电厂、工业锅炉、石化厂等高温燃烧过程中的烟气脱硝处理。

其适用于大气中NOx浓度较高的场所,可以显著降低氮氧化物的排放,改善空气质量。

脱硝的关键是在氧化反应中控制好气体的混合比例。

要保证脱硝效果,通常需要通过优化臭氧气体的供给和混合方式,以达到最佳的混合效果。

此外,脱硝设备的选型和设计也是关键因素之一。

优势臭氧脱硝方案相比传统的脱硝技术有以下优势:1.高效环保:臭氧具有较强的氧化能力,可以将NOx迅速氧化成稳定的氮酸根离子,有效降低大气中的污染物浓度。

2.适应性强:臭氧脱硝技术适用于高温燃烧过程中的烟气脱硝处理,适用于不同类型的燃煤电厂、工业锅炉和石化厂。

3.技术成熟:臭氧脱硝技术在实践中得到了广泛应用,已经形成了较为成熟的工程实施经验。

4.无二次污染:臭氧脱硝的主要产物是稳定的氮酸根离子,不会产生二次污染。

结论臭氧脱硝方案是一种高效且环保的技术,可以有效减少大气中的氮氧化物排放。

其原理简单清晰,应用广泛,而且具有高效环保、适应性强、技术成熟和无二次污染等优势。

在大气污染治理中,臭氧脱硝方案将发挥重要的作用,并对改善空气质量起到积极的推动作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

臭氧脱硝工艺方案
一、工艺说明
1. 工艺原理
利用臭氧发生器制备臭氧,通过布气装置把臭氧气体均布到烟气管道截面,在管道中设置烟气混合器,使臭氧与含NO
X
的烟气在烟气管道中充分混合并发生
氧化反应。

将烟气中的NO
X 氧化为容易吸收的NO
2
和N
2
O
5。

再利用氨法脱硫洗涤塔,
对NO
2和N
2
O
5
进行吸收反应,生成硝酸氨与亚硝酸氨。

最后再与硫酸盐一起富集、
浓缩、干燥后,作为氮肥加以利用。

其主要反应式为:
NO+O3=NO2+O2
2NO2+O3=N2O5+O2
2NO2+2NH3+H2O=NH4NO2+NH4NO3
N2O5+2NH3+H2O =2NH4NO3
2. 工艺流程图
3. 主要工艺参数
每小时需要处理的NO
X 的量为:60000×(800-100)×10
-6
=42kg/h
二、主要设备说明
1. 臭氧发生器
根据烟气中NO
X
的含量,计算所需要的臭氧设备约为2台25kg/h的臭氧发生器,两用一备,配置气源控制系统,冷却水系统及配套齐全的自动控制(PLC)、检测仪器等。

至于采用何种气源(空气或氧气)的臭氧发生器系统,根据项目现场情况经与业主协商后确定。

1.1 臭氧制备工艺及流程(氧气源工艺)
业主提供的氧气管道气通过设置的一级减压稳压装置处理后,经过氧气过滤器进行过滤,并通过露点仪检测进气露点,通过流量计计量进气量,并与PLC 站联动。

每套系统的进气管路上设置安全阀用于泄压保护系统。

在臭氧发生室内的高频高压电场内,部分氧气转换成臭氧,产品气体为臭氧化气体,经温度、压力监测后、经出气调节阀后由臭氧出气口排出。

臭氧发生室出气管路上设有臭氧取气口,并装有电磁阀,每个设备的取气管分别通过各自的
发生臭氧浓度仪检测臭氧出气浓度。

臭氧发生器设置1套封闭循环冷却水系统,通过板式换热器换热,为臭氧发生器提供冷却水。

并配置一台冷却循环水泵,冷却循环水泵受PLC自动控制系统监控。

冷却水进水管路设置压力传感器,用于检测并反馈到PLC自动控制系统,冷却水出水有温度变送器、流量开关等,当冷却水温度超过设定值或者流量低于设定值时报警。

本系统设计按外循环冷却水入口温度 33℃,如水温超过33℃时,系统能连续稳定工作,但产能有所降低,可通过调整运行条件达到要求的臭氧产量。

内循环水建议采用蒸馏水。

臭氧发生器设置检修时剩余臭氧的吹扫系统和冷却水低点排空。

臭氧出气管路上设计取样口,并设置臭氧浓度在线检测仪。

臭氧设备放置点设计安装氧气泄漏报警仪(具备现场声光报警),周围环境中检测到氧气浓度超标检测仪将报警。

臭氧设备放置点设置臭氧泄漏报警仪(具备现场声光报警),用于检测臭氧设备放置点是否有臭氧泄漏,当检测到臭氧浓度超标时报警。

如果确定了是其它气源的臭氧系统,再提供流程。

1.2 臭氧发生器技术参数
1.2.1 臭氧产量及浓度
1.2.2电气性能
1.2.3氧气用量
1.2.4公共工程
2. 臭氧布气装置与烟气混合器
为了使臭氧与烟气中的NO
X
充分混合,从臭氧发生器出来的臭氧气体通过环
形烟气布气装置,均匀的通入需治理的烟气风管截面中,然后再通过烟气混合器
使烟气产生揣流,保证臭氧与烟气中的NO
X
能够充分接触而发生反应。

由于臭氧
与NO
X 的反应非常快速,基本不会受到SO
2
的影响,因此不需要额外增加设备,
只需要在烟气管道中进行即可。

布气装置与烟气混合器的总压损不超过300Pa。

3.洗涤装置
采用碱液洗涤塔对生成的NO
2
进行吸收治理,如果与烟气脱硫同时进行,可
以利用湿法脱硫塔,同时进行NO
X 和SO
2
的吸收治理。

建议碱液采用氨水,最终
生成产物为NH
4NO
2
和NH
4
NO
3。

三、工艺特点
⑴反应时间短,速度快。

臭氧与NO
X
反应速度极快,只需要很短的时间,
即可将NO
X 氧化成高价态的NO
2
和N
2
O
5。

因此不需要特别的反应设备,只需要在烟
气管道中混合,即可进行。

⑵吸收完全,净化效率高。

由于NO
2与N
2
O
5
都是易溶于水的物质,在碱性环
境下,只需要很小的喷淋量,即可彻底吸收烟气中的NO
X
,转化为硝酸盐和亚硝
酸盐,因此烟气净化效率高。

⑶不产生二次污染。

由于臭氧与NO
X 反应的生成物是O
2
,在烟道中不影响
排放。

而且还可以提高SO
2
的转化效率。

⑷可以直接利用脱硫洗涤塔进行洗涤。

由于NO
x 的含量相对SO
2
来说很小,
基本不需要增加脱硫洗涤塔的负荷。

⑸自动化程度高。

整套设备全部通过PLC自动控制,不需要专人值守,只要定期巡查即可。

相关文档
最新文档