一元一次方程典型应用题汇编精选题型含答案)
一元一次方程典型应用题汇编(精选题型含答案解析)

一元一次方程的应用1、列方程解应用题的基本步骤和方法:注意:(1)初中列方程解应用题时,怎么列简单就怎么列(即所列的每一个方程都直接的表示题意),不用担心未知数过多,简化审题和列方程的步骤,把难度转移到解方程的步骤上.(2)解方程的步骤不用写出,直接写结果即可.(3)设未知数时,要标明单位,在列方程时,如果题中数据的单位不统一,必须把单位换算成统一单位,尤其是行程问题里需要注意这个问题.2、设未知数的方法:设未知数的方法一般来讲,有以下几种:(1)“直接设元”:题目里要求的未知量是什么,就把它设为未知数,多适用于要求的未知数只有一个的情况;(2)“间接设元”:有些应用题,若直接设未知数很难列出方程,或者所列的方程比较复杂,可以选择间接设未知数,而解得的间接未知数对确定所求的量起中介作用.(3)“辅助设元”:有些应用题不仅要直接设未知数,而且要增加辅助未知数,但这些辅助未知数本身并不需要求出,它们的作用只是为了帮助列方程,同时为了求出真正的未知量,可以在解题时消去.(4)“部分设元”与“整体设元”转换:当整体设元有困难时,可以考虑设其一部分为未知数,反之亦然,如:数字问题.模块一:数字问题(1)多位数字的表示方法:一个两位数的十位数字、个位数字分别为a 、b ,(其中a 、b 均为整数,19a ≤≤,09b ≤≤)则这个两位数可以表示为10a b +.一个三位数的百位数字为a ,十位数字为b ,个位数字为c ,(其中均为整数,且19a ≤≤,09b ≤≤,09c ≤≤)则这个三位数表示为:10010a b c ++.(2)奇数与偶数的表示方法:偶数可表示为2k ,奇数可表示为21k +(其中k 表示整数).(3)三个相邻的整数的表示方法:可设中间一个整数为a ,则这三个相邻的整数可表示为1,,1a a a -+.【例1】 一次数学测验中,小明认为自己可以得满分,不料卷子发下来一看得了96分,原来是由于粗心把一个题目的答案十位与个位数字写颠倒了,结果自己的答案比正确答案大了36,而正确答案的个位数字是十位数字的2倍.正确答案是多少【解析】此题中数据96与列方程无关.与列方程有关的量就是小明粗心后所涉及的量.设正确答案的十位数字为x ,则个位数字为2x , 依题意,得(102)(102)36x x x x ⨯+-+=,解之得4x =. 于是28x =.所以正确答案应为48.【答案】48【例2】 某年份的号码是一个四位数,它的千位数字是2,如果把2移到个位上去,那么所得的新四位数比原四位数的2倍少6,求这个年份.【解析】设这个年份的百位数字、十位数字、个位数字组成的三位数为x ,则这个四位数字可以表示为21000x ⨯+,根据题意可列方程:()1022210006x x +=⨯+-,解得499x =【答案】2499年【例3】 有一个四位数,它的个位数字是8,如果将个位数字8调到千位上,则这个数就增加117,求这个四位数.【解析】设由原数中的千位数字、百位数字和十位数字组成的三位数为x ,则这个四位数可以表示为108x +,则调换后的新数可以表示为8000x +,根据题意可列方程1088000117x x +=+-,解得875x =,所以这个四位数为8758【答案】8758【例4】 五一放假,小明的爸爸开车带着小明和妈妈去郊游,他们在公路上匀速行驶,下表是小明每隔1小时看到的路边里程碑上数的信息.你能确定小明在7:00时看到的里程碑上的数是多少吗【解析】设小明在7:00时看到的两位数的十位数字是x ,则个位数字是7x -,根据题意可列方程:()()()()10071071071007x x x x x x x x +---+=-+-+-⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦,解得1x =,所以76x -=.【答案】小明在7:00时看到的两位数是16.模块二:日历问题(1)、在日历问题中,横行相邻两数相差1,竖列相邻两数相差7.(2)、日历中一个竖列上相邻3个数的和的最小值时24,最大值时72,且这个和一定是3的倍数. (3)、一年中,每月的天数是有规律的,一、三、五、七、八、十、十二这七个月每月都是31天,四、六、九、十一这四个月每月都是30天,二月平年28天,闰年29天,所以,日历表中日期的取值是有范围的.【例5】 下表是2011年12月的日历表,请解答问题:在表中用形如下图的平行四边形框框出4个数, 【例6】 (1)若框出的4个数的和为74,请你通过列方程的办法,求出它分别是哪4天 【例7】 (2)框出的4个数的和可能是26吗为什么【解析】(1)设第一个数是x ,则根据平行四边形框框出4个数得其他3天可分别表示为1x +,6x +,7x +.根据题意可列方程:()()()16774x x x x ++++++=,解得15x =; 所以它分别是:15,16,21,22;(2)设第一个数为x ,则41426x +=,3x =,本月3号是周六,由平行四边形框框出4个数, 得出结论:无法构成平行四边形.【答案】(1)15,16,21,22;(2)无法构成平行四边形.【例8】 如图,框内的四个数字的和为28,请通过平移长方形框的方法,使框内的数字之和为68,这样的长方形的位置有几个能否使框内的四个数字之和为49若能,请找出这样的位置;若不能,请说明理由.【解析】(1)设四个数字是a ,1a +,7a +,8a +,根据题意可列方程:17868a a a a ++++++=,解得13a =.则平移后的四个数是13、14、20、21.(2)设四个数字是x ,1x +,7x +,8x +,则41649x +=,334x =.不合题意,舍去. 【答案】平移后的四个数是13、14、20、21,这样的长方形的位置只有1个;不存在能使四个数字的和为49的长方形.【例9】 把2012个正整数1,2,3,4,…,2012按如图方式排列成一个表.【例10】 (1)用如图方式框住表中任意4个数,记左上角的一个数为x ,则另三个数用含x 的式子表示出来,从小到大依次是________________.(2)由(1)中能否框住这样的4个数,它们的和会等于244吗若能,则求出x 的值;若不能,则说明理由.【解析】(1)∵记左上角的一个数为x ,∴另三个数用含x 的式子表示为:8x +,16x +,24x +.(2)不能.假设能够框住这样的4个数,则:()()()81624244x x x x ++++++=,解得49x =. ∵49是第七行最后一个数,∴不可以用如图方式框住.【答案】(1)8x +,16x +,24x +;(2)不能.模块三:和差倍分问题和、差、倍问题关键要分清是几倍多几和几倍少几.(1)当较大量是较小量的几倍多几时,=⨯较大量较小量倍数+多余量; (2)当较大量是较小量的几倍少几时,=⨯较大量较小量倍数-所少量. 【例11】 一部拖拉机耕一片地,第一天耕了这片地的23;第二天耕了剩下部分的13,还剩下42公顷没耕完,则这片地共有多少公顷【解析】设这片地共有x 公顷,第一天耕了这片地的23,则耕地23x 公顷,第二天耕了剩下部分的13,则第二天耕地1211339x x ⎛⎫⨯-= ⎪⎝⎭(公顷),根据题意可列方程:214239x x x --=,解得189x =.【答案】189.【例12】 牧羊人赶着一群羊寻找一个草长得茂盛的地方,一个过路人牵着一只肥羊从后面跟了上来,他对牧羊人说:“你赶的这群羊大概有100只吧!”牧羊人答道:“如果这群羊增加一倍,再加上原来这群羊的一半,又加上原来这群羊一半的一半,连你这只羊也算进去,才刚好凑满100只.”问牧羊人的这群羊共有多少只【解析】设这群羊共有x 只,根据题意可列方程:112110024x x x +++=,解得36x =. 【答案】36【例13】 有粗细不同的两支蜡烛,细蜡烛之长时粗蜡烛之长的2倍,细蜡烛点完需1小时,粗蜡烛点完需2小时,有一次停电,将这样的两支未使用过的蜡烛同时点燃,来电时,发现两支蜡烛所剩的长度一样,问停电的时间有多长【解析】设停电时间为x 小时,粗蜡烛长l 米,则细蜡烛长2l 米,那么细蜡烛每小时点燃2l 米,粗蜡烛没小时点燃2l 米,根据题意可列方程:222l l l x l x -⋅=-,解得23x =【答案】停电时间为23小时【例14】 2006年我市在全国率先成为大面积实施“三免一补”的州市,据悉,2010年我市筹措农村义务教育经费与“三免一补”专项资金亿元【由中央、省、市、县(区)四级共同投入,其中,中央投入的资金约亿元,市级投入的资金分别是县(区)级、省级投入资金的倍、18倍】,且2010年此项资金比2009年增加亿元.【例15】 (1)2009年我市筹措农村义务教育经费与“三免一补”专项资金多少亿元【例16】 (2)2010年省、市、县(区)各级投入的农村义务教育经费与“三免一补”专项资金各多少亿元 【例17】 (3)如果按2009-2010年筹措此项资金的年平均增长率计算,预计2011年,我市大约需要筹措农村义务教育经费与“三免一补”专项资金多少亿元(结果保留一位小数)【解析】(1)3.61 1.69 1.91-=(亿元).(2)设市级投入x 亿元,则县级投入23x 亿元,省级投入118x 亿元,由题意得:212.98 3.6318x x ++=,解得0.36x =.所以20.243x =(亿元),10.0218x =(亿元).(3) 1.693.61 6.81.91⎛⎫⨯+≈ ⎪⎝⎭(亿元). 【答案】(1)亿元;(2)省、市、县分别投入亿元、亿元、亿元;(3)亿元.模块四:行程问题一、 行程问题路程=速度×时间 相遇路程=速度和×相遇时间 追及路程=速度差×追及时间二、 流水行船问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度水流速度=12×(顺流速度-逆流速度) 三、 火车过桥问题火车过桥问题是一种特殊的行程问题,需要注意从车头至桥起,到车尾离桥止,火车所行距离等于桥长加上车长,列车过桥问题的基本数量关系为:车速×过桥时间=车长+桥长.【例18】 有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙背向而行.甲每分钟走40米,乙每分钟走38米,丙每分钟走36米.出发后,甲和乙相遇后3分钟和丙相遇,求花圃的周长.【解析】设甲、乙相遇时间为t 分钟,则甲、丙相遇时间为()3t +分钟,根据题意,由相遇路程相等可列方程()()383634036t -=⨯+【答案】8892米【例19】 某人从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟,若每小时行18千米,则比火车开车时间迟到15分钟,现在此人打算在火车开车前10分钟到达火车站,则此人此时骑摩托车的速度应为多少【解析】设此人从家里出发到火车开车的时间为x 小时,根据题意可列方程:151530()18()6060x x -=+,解得1x =,此人打算在火车开车前10分钟到达,骑摩托车的速度应为1530(1)602710160⨯-=-(千米/时) 【答案】27【例20】 甲、乙两车同时从A ,B 两地出发,相向而行,在A ,B 两地之间不断往返行驶.甲车到达B 地后,在B 地停留了2个小时,然后返回A 地;乙车到达A 地后,马上返回B 地;两车在返回的途中又相遇了,相遇的地点距离B 地288千米.已知甲车的速度是每小时60千米,乙车的速度是每小时40千米.请问:A ,B 两地相距多少千米【解析】设A 、B 两地相距x 千米,根据题意可列方程:228828824060x x -+-=,解得420x = 【答案】420千米【例21】 某人骑自行车从A 地先以每小时12千米的速度下坡后,再以每小时9千米的速度走平路到B 地,共用了55分钟.回来时,他以每小时8千米的速度通过平路后,再以每小时4千米的速度上坡,从B 地到A 地共用112小时,问A 、B 两地相距多少千米【解析】间接设未知数,设从A 地到B 地共用x 小时,根据题意可列方程:5531293438602t t t t ⎛⎫⎛⎫+-⨯=⨯+-⨯ ⎪ ⎪⎝⎭⎝⎭,解得14t =,所以A 、B 两地相距55129960t t ⎛⎫+-⨯= ⎪⎝⎭(千米)【答案】9千米【例22】 一人步行从甲地去乙地,第一天行若干千米,自第二天起,每一天都比前一天多走同样的路程,这样10天可以到达乙地;如果每天都以第一天所行的相同路程步行,用15天才能到达乙地;如果每天都以第一种走法的最后一天所行的路程步行到乙地,需要几天【解析】设a 是第一次第一天走的路程,b 是第二天起每天多走的路程,x 是所求的天数.则根据题意可列方程:1523456789a a a b a b a b a b a b a b a b a b a b =++++++++++++++++++()()()()()()()()(), 解得9a b =.又()159a x a b =+,解得7.5x =.【答案】天【例23】 一只小船从甲港到乙港逆流航行需2小时,水流速度增加一倍后,再从甲港到乙港航行需3小时,水流速度增加后,从乙港返回甲港需航行多少小时【解析】设小船在静水中的速度为a ,原来的水速为b ,则2()3(2)a b a b -=-,解得4a b =,故所求时间为2()1(2)a b a b -=+(小时).【答案】1【例24】 一个人乘木筏在河面顺流而下,漂到一座桥下时此人想锻炼一下身体,便跳入水中逆水游泳,10分钟后转身追赶木筏,终于在离桥1500米远的地方追上木筏,假设水流速度及此人游泳的速度都一直不变,那么水流速度为多少【解析】因为向上游了10分钟,所以返回追赶也要10分钟(流水中的相遇时间与追及时间都与水流速度无关),即水流20分钟的路程为1500米,水流速度为11.5 4.53÷=(千米∕时).【答案】水流速度为4.5千米/时【例25】 一小船由A 港到B 港顺流需行6小时,由B 港到A 港逆流需行8小时,一天,小船从早晨6点由A 港出发顺流行至B 港时,发现一救生圈在途中掉落在水中,立即返回,1小时后找到救生圈.问:【例26】 (1)若小船按水流速度由A 港漂流到B 港需多少小时(2)救生圈是何时掉入水中的【解析】(1)设小船在静水中的速度为a ,水流速度为b ,则6()8()a b a b +=-,解得7a b =,故小船按水流速度由A 港漂流到B 港所需时间为6()48a b b+=(小时); (2)设小船行驶x 小时后,救生圈掉入水中,则(61)()1(6)()x b a b x a b -++-⨯=-+,将7a b =代入上式,得到5x =,故救生圈是上午11点掉入水中的【答案】48;5模块五:工程问题工作总量=工作时间×工作效率 各部分工作量之和=1【例27】 有甲、乙、丙三个水管,独开甲管5小时可以注满一池水;甲、乙两管齐开,2小时可注满一池水;甲、丙两管齐开,3小时注满一池水.现把三管一齐开,过了一段时间后甲管因故障停开,停开后2小时水池注满.问三管齐开了多少小时【解析】由题意知,甲管注水效率为15,甲、乙两管的注水效率之和为12,甲、丙两管的注水效率之和为13,设三管齐开了x 小时,根据题意可列方程:()1112215235x x ⎛⎫++-+= ⎪⎝⎭,解得419x =【答案】419小时【例28】 检修一住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天.前7天由甲、乙两人合作,但乙中途离开了一段时间,后2天由乙、丙两人合作完成,问乙中途离开了几天【解析】设乙中途离开了x 天,根据题意可列方程()1111772114181812x ⎛⎫⨯+-+⨯+= ⎪⎝⎭,解得3x = 【答案】乙中途离开了3天【例29】 某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲每天修桌凳16套,乙每天修桌凳比甲多8套,甲单独修完这些桌凳比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.【例30】 (1)问该中学库存多少套桌凳【例31】 (2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.你认为哪种方案省时又省钱为什么【解析】(1)设该中学库存x 套桌凳,根据题意可列方程:201624x x-=,解得960x =. (2)方案①所需费用:()9608010540016⨯+=(元); 方案②所需费用:()96012010520024⨯+=(元);方案③所需费用:()960801201050401624⨯++=+(元). 综上,方案③最省钱.【答案】(1)960套;(2)方案③最省钱.模块六:商品销售问题在现实生活中,购买商品和销售商品时,经常会遇到进价、标价、售价、打折等概念,在了解这些基本概念的基础上,还必须掌握以下几个等量关系:()=1+⨯标价进价利润率利润=售价-进价 =100%⨯利润利润率进价利润=进价×利润率 实际售价=标价×打折率【例32】 某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,求经销这种商品原来的利润率.【解析】设经销这种商品原来的利润率为x ,原进价为a ,根据题意可列方程:(1)(1 6.4%)(18%)a x a x +=-++,解得17%x =.【答案】17%【例33】 某商品月末的进货价为比月初的进货价降了8%,而销售价不变,这样,利润率月末比月初高10%,问月初的利润率是多少【解析】设月初进货价为a 元,月初利润率为x ,则月初的销售价为()1a x +元,月末进货价为()18%a -元,销售价为()()18%110%a x -++⎡⎤⎣⎦元,根据月初销售价与月末销售价相等可列方程:()()()118%110%a x a x +=-++⎡⎤⎣⎦,解得0.15x =.【答案】15%【例34】 某公司生产一种饮料是由A ,B 两种原料液按一定比例配制而成,其中A 原料液的成本价为15元/千克,B 原料液的成本价为10元/千克,按现行价格销售每千克获得70%的利润率.由于市场竞争,物价上涨,A 原料液上涨20%,B 原料液上涨10%,配制后的总成本增加了12%,公司为了拓展市场,打算再投入现总成本的25%做广告宣传,如果要保证每千克利润不变,则此时这种饮料的利润率是多少【解析】原料液A 的成本价为15元/千克,原料液B 的成本价为10元/千克,涨价后,原A 价格上涨20%,变为18元;B 上涨10%,变为11元,总成本上涨12%,设每100千克成品中,二原料比例A 占x 千克,B 占(100-x )千克,则涨价前每100千克成本为()1510100x x +-,涨价后每100千克成本为()1811100x x +-,根据题意可列方程:()()()18111001510100112%x x x x +-=+-⨯+⎡⎤⎣⎦,解得1007x =,所以6001007x -= 即二者的比例是::1:6A B =,则涨价前每千克的成本为156075777+=(元),销售价为127.57元,利润为元. 原料涨价后,每千克成本变为12元,成本的25%为3元,保证利润为元,则利润率为:()7.512350%÷+=.【答案】50%.模块七:方案决策问题在实际生活中,做一件事情往往会有多种选择,这就需要从几种方案中,选择最佳方案,如网络的使用,到不同旅行社购票等,一般都要运用方程解答,把每一种方案的结果先算出来,进行比较后得出最佳方案.【例35】 某开发商进行商铺促销,广告上写着如下条款:【例36】 投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:【例37】 方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%.【例38】 方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.【例39】 (1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高为什么(注:=100%⨯投资收益投资收益率实际投资额) (2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元【解析】(1)设商铺标价为x 万元,则按方案一购买,则获投资收益()120%110%50.7x x x -+⋅⨯=,投资收益率为0.7100%70%x x⨯= 按方案二购买,则获投资收益()()120%0.8510%110%30.62x x x -+⋅⨯-⨯=, 投资收益率为0.62100%72.9%0.85x x⨯≈. 所以投资者选择方案二获得的投资收益率高.(2)由题意得,0.70.625x x -=,解得62.5x =,所以甲投资了万元,乙投资了万元【答案】略【例40】 有一个只允许单向通过的窄道口,通常情况下,每分钟可以通过9人.一天王老师到达道口时,发现由于拥挤,每分钟只能有3人通过道口,此时,自己前面还有36个人等待通过,通过道口后,还需7分钟到达学校.【例41】 (1)若绕道而行,要15分钟到达学校。
一元一次方程应用题50例及答案

1. 某人乘车行121千米 的路程,一共用了3小时.第一段路程每小时行42千米,第二段每小时行38千米,第三段每小时行40千米.第三段路程为20千米,第一段和第二段路程各有多少千米?答:第一段63千米,第二段38千米2、某果园用硫磺、石灰、水制成一种杀虫药水,其中硫磺2份,石灰1份,水10份,要制成这种药水520千克,需要硫磺多少千克?答:40千克3、从每千克0.8元的苹果中取出一部分,又从每千克0.5元的苹果中取出一部分混合后共15千克,每千克要卖0.6元,问需从两种苹果中各取出多少千克?答:0.8元5千克;0.5元10千克4、某人骑自行车以每小时10千米的速度从甲地到乙地,返回时因事绕道而行,比去时多走8千米的路.虽然行车的速度增加到每小时12千米,但比去时还多用了10分钟.求甲、乙两地的距离.答:30千米5、甲、乙两个工程队合做一项工程,乙队单独做一天后,由甲、乙两队合做两天后就完成了全部工程.已知甲队单独做所需天数是乙队单独做所需天数的32,问甲、乙两队单独做,各需多少天?6、甲、乙两个仓库共有20吨货物,从甲仓库调出101到乙仓库后,甲仓库中的货物比乙仓库中的货物多16吨.问甲、乙两仓库中原来各有多少吨货物?答:甲库20吨,乙0吨答:常规解法:设乙队单独做要x 天完成,那么甲队单独做要2/3X 天完成。
由题意得巧解:设乙队每天完成的工作量为x ,那么甲队每天完成的工作量为,由题意得:7、一班打草600千克,二班比一班多打150千克,二班比三班多打100千克,把三班打的草按9:11分给一、二两个生产队,各应分多少千克?答:一 292.5 二 357.58、一项工程300人共做, 需要40天,如果要求提前10天完成,问需要增多少人?答:100人9、一个两位数,个位上的数字是十位上的数字的2倍.先将这个两位数的两个数字对调,得到第二个两位数,再将第二个两位数的十位数字加上1,个位数字减去1,得到第三个两位数.若第三个两位数恰好是原来两位数的2倍,求原来两位数的大小.答:3610、小王骑车从A 地到B 地共用了4小时.从B 地返回A 地,他先以去时的速度骑车行2小时, 后因车出了毛病,修车耽误了半小时,接着他用比原速度每小时快6千米的速度回到A 地,结果返程比去时少用了10分钟.求小王从A 地到B 地的骑车速度.答:6611、 某人每小时可走平路8千米,可走下坡路10千米,可走上坡路6千米.他从甲地到乙地去,先走一段上坡路,再走一段平路,到乙地后立即返回甲地.往返共用了2小时36分钟.若甲乙两地间的路程为10千米,问在这10千米路程中,上坡路及平路各有多少千米?答:6 ; 412、有两支成分不同且长度相等的蜡烛,其中一支3小时可燃烧完,另一支4小时燃烧完.现在要求到下午四点钟时,其中一支蜡烛的剩余部分恰是另一支剩余部分的二倍,问应在何时点燃这两支蜡烛?答:设燃烧X 小时 1-X/4=2(1-X/3) 1:3613、某同学要把450克浓度为60%的硝酸铵溶液配成浓度为40%的溶液,但他未经考虑便加入300克水.(1) 请通过计算说明,该同学加进的水是超量的.(2) 这时需加进硝酸铵多少克?配成浓度为40%的硝酸铵溶液多少克?2.450克浓度为60%的硝酸铵溶液的溶质质量为:450*60%=270克,浓度为40%的溶液,溶液质量为:270/40%=675克,实际加水的量为:675-450=225克,他未经考虑便加入300克水,300-225=75克,多加75克的水.这时需加进硝酸铵的量为:X 克.(270+X)/(450+300+X)=0.4,X=50克.配成浓度为40%的硝酸铵溶液的量为:450+300+50=800克14、学校买来一批练习本,分给三个班.甲班分得的为全部练习本的42%,乙班分到的是甲班的75,丙班分到的比乙班少20本,问共有多少练习本? 答:1000 本15、汽车从A 地往B 地送货.如果往返都以每小时60千米的速度行驶,那么可以按时返回.可是当司机到达B 地后才发现,从A 地到B 地每小时只走了55千米,为了按时返回A 地,汽车应以多大速度往回开?设以每小时60千米的速度行驶从A 到B 要x 小时 则一个来回要2x 小时。
一元一次方程应用题归类汇集(含答案)

一元一次方程应用题归类聚集〔含答案〕一、一般行程问题〔相遇与追击问题〕1.行程问题中的三个根本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题根本类型〔1〕相遇问题:快行距+慢行距=原距〔2〕追及问题:快行距-慢行距=原距二、环行跑道与时钟问题:三、行船与飞机飞行问题:航行问题:顺水〔风〕速度=静水〔风〕速度+水流〔风〕速度逆水〔风〕速度=静水〔风〕速度-水流〔风〕速度水流速度=〔顺水速度-逆水速度〕÷2四、工程问题1.工程问题中的三个量及其关系为:工作总量=工作效率×工作时间2.经常在题目中未给出工作总量时,设工作总量为单位1。
即完成某项任务的各工作量的和=总工作量=1.一元一次方程应用题型1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?设慢车开出a小时后与快车相遇50a+75〔a-1〕=27550a+75a-75=275125a=350a=2.8小时2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲乙两地间隔。
设原定时间为a小时45分钟=3/4小时根据题意40a=40×3+〔40-10〕×〔a-3+3/4〕40a=120+30a-67.510a=52.5a=5.25=5又1/4小时=21/4小时所以甲乙间隔40×21/4=210千米3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的 2倍,从甲队调16人到乙队,那么甲队剩下的人数比乙队的人数的一半少3人,求甲乙两队原来的人数?解:设乙队原来有a人,甲队有2a人那么根据题意2a-16=1/2×〔a+16〕-34a-32=a+16-63a=42a=14那么乙队原来有14人,甲队原来有14×2=28人如今乙队有14+16=30人,甲队有28-16=12人4、某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份的月增长率。
一元一次方程应用题(精选拔高-题型全-含详细答案-可编辑)

一元一次方程应用题(精选拔高-题型全-含详细答案-可编辑)一元一次方程的应用在解决应用题时,列方程是非常重要的步骤。
以下是列方程解应用题的基本步骤和方法:步骤:1.审题:读懂题目,理解题意,找出能够表达应用题全部含义的相等关系。
2.设未知数:根据问题直接设元,或者间接设元避免列出恒等式。
3.列方程:根据等量关系列出方程。
4.解方程:求出未知数的值。
5.检验:把方程的解代入方程检验,或根据实际问题进行检验。
6.作答:写出答案,作出结论。
注意事项:1.审题是分析解题的过程,解答过程中不用体现出来。
2.设未知数一般是问什么,就直接设什么为x,即直接设元。
3.如果是间接设元,求出的未知数还需要利用其他算式得到所求的量。
4.列一元一次方程解应用题检验的步骤在解答过程中不用写出来。
5.方程的解要符合实际问题,这一步在列方程解应用题中必不可少,是一种规范要求。
在初中列方程解应用题时,可以按照题目要求直接列出方程,不必担心未知数过多,简化审题和列方程的步骤,把难度转移到解方程的步骤上。
解方程的步骤不用写出,直接写结果即可。
设未知数时,要标明单位。
如果题中数据的单位不统一,必须把单位换算成统一单位,尤其是行程问题里需要注意这个问题。
设未知数的方法一般有以下几种:1.“直接设元”:题目里要求的未知量是什么,就把它设为未知数,多适用于要求的未知数只有一个的情况。
2.“间接设元”:有些应用题,若直接设未知数很难列出方程,或者所列的方程比较复杂,可以选择间接设未知数,而解得的间接未知数对确定所求的量起中介作用。
3.“辅助设元”:有些应用题不仅要直接设未知数,而且要增加辅助未知数,但这些辅助未知数本身并不需要求出,它们的作用只是为了帮助列方程,同时为了求出真正的未知量,可以在解题时消去。
4.“部分设元”与“整体设元”转换:当整体设元有困难时,可以考虑设其一部分为未知数,反之亦然,如数字问题。
在数字问题中,一个两位数的十位数字、个位数字分别为a、b,则这个两位数可以表示为10a+b。
一元一次方程典型应用题汇编(精选题型含答案)

一元一次方程典型应用题汇编(精选题型含答案)1、列方程解应用题的基本步骤和方法:解应用题的基本步骤包括:审题,设未知数,列方程,解方程,检验结果,并作出结论。
在设未知数时,可以直接设元,也可以间接设元,但需要注意单位的统一。
解方程的步骤不必写出,直接写出结果即可。
最后,检验方程的解是否符合实际问题。
2、设未知数的方法:设未知数的方法有直接设元、间接设元、辅助设元、部分设元和整体设元转换。
其中,直接设元适用于只有一个未知数的情况;间接设元可以解决难以列出方程或方程较复杂的问题;辅助设元可以帮助列方程,消去不必要的未知数;部分设元和整体设元转换则适用于数字问题。
数字问题中,一个两位数可以表示为10a+b,其中a、b分别为十位数和个位数;一个三位数可以表示为100a+10b+c,其中a、b、c分别为百位数、十位数和个位数。
在列方程时,需要注意单位的统一。
XXX在7:00时看到的两位数是16.解法是:将16表示为10(1)+6,然后代入题目中的表达式,得到10(7-x)+(1+x)=100x+(7-x),化简得到9x=93,解得x=10,因此7-x=6.在日历问题中,横行相邻两数相差1,竖列相邻两数相差7.此外,一个竖列上相邻3个数的和的最小值是24,最大值是72,且这个和一定是3的倍数。
一年中,每个月的天数也有规律,其中1、3、5、7、8、10、12月每月都是31天,4、6、9、11月每月都是30天,2月平年28天,闰年29天。
因此,在日历表中日期的取值是有范围的。
在2011年12月的日历表中,框出的4个数的和为74.设第一个数是x,则根据平行四边形框框出4个数,其他3天可分别表示为x+1,x+6,x+7.根据题意可列方程:x+(x+1)+(x+6)+(x+7)=74,解得x=15,因此这4天分别是15、16、21、22.在图中,框内的四个数字的和为28.设四个数字是a,a+1,a+7,a+8,则根据题意可列方程:a+(a+1)+(a+7)+(a+8)=28,解得a=5.因此,这4个数字分别是5、6、12、13.要使框内的四个数字之和为68,可以将框向右平移5格,得到13、14、20、21.但无法使框内的四个数字之和为49,因为49不是4的倍数,而一个竖列上相邻3个数的和一定是3的倍数。
一元一次方程应用难题精选(含答案解析)

一.主观题(共8小题,每题1分)1.某公司现有甲、乙两种品牌的打印机,其中甲品牌有A,B两种型号,乙品牌有C,D,E三种型号.朝阳中学计划从甲、乙两种品牌中各选购一种型号的打印机.(1)利用树状图或列表法写出所有选购方案;(2)若各种型号的打印机被选购的可能性相同,那么C型号打印机被选购的概率是多少?(3)各种型号打印机的价格如下表:甲品牌乙品牌型号 A B C D E价格(元)2000 1700 1300 1200 1000朝阳中学购买了两种品牌的打印机共30台,其中乙品牌只选购了E型号,共用去资金5万元,问E型号的打印机购买了多少台?2.甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.(1)求甲乙两件服装的进价各是多少元;(2)由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;(3)若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).3.2012年,某地开始实施农村义务教育学校营养计划--“蛋奶工程”.该地农村小学每份营养餐的标准是质量为300克,蛋白质含量为8%,包括一盒牛奶、一包饼干和一个鸡蛋.已知牛奶的蛋白质含量为5%,饼干的蛋白质含量为12.5%,鸡蛋的蛋白质含量为15%,一个鸡蛋的质量为60克.(1)一个鸡蛋中含蛋白质的质量为多少克?(2)每份营养餐中牛奶和饼干的质量分别为多少克?4.天宇便利店老板到厂家购进A,B两种香油,A种香油每瓶进价6.5元,B种香油每瓶进价8元,购进140瓶,共花了1 000元,且该店销售A种香油每瓶8元,B种香油每瓶10元.(1)该店购进A,B两种香油各多少瓶?(2)将购进140瓶香油全部销售完可获利多少元?(3)老板打算再以原来的进价购进A,B两种香油共200瓶,计划投资不超过1 420元,且按原来的售价将这200瓶香油销售完成获利不低于339元,请问有哪几种购货方案?5.某校科技夏令营的学生在3位老师的带领下,准备赴北京大学参观,体验大学生活.现有两家旅行社前来洽谈,报价均为每人2000元,且各有优惠.希望旅行社表示:带队老师免费,学生按8折收费;青春旅行社表示师生一律按7折收费,经核算发现,参加两家旅行社的实际费用正好相等(1)该校参加科技夏令营的学生共有多少人?(2)如果又增加了部分学生,学校应选择哪家旅行社?为什么?6.甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.(1)求甲乙两件服装的进价各是多少元;(2)由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;(3)若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).7.一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?8.义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?二.填空题(共15小题,每题0分)1.甲、乙两人从A点同时同向出发沿400米的环形跑道跑步,过一段时间后,甲在跑道上离A点200米处,而乙在离A点不到100米处正向A点跑去.若甲、乙两人的速度比是4:3,则此时乙至少跑了 ___________米.2.电子跳蚤落在数轴上的某点k,第一步从k向左跳1个单位到k1,第二步由k1向右跳2个单位到k2,第三步由k向左跳3个单位到k3,第四步由k3向右跳4个单位到k4,…,按以上规律跳了100步时,电子跳蚤落在数轴上的点k100所表示的数恰是19.94.则电子跳蚤的初始位置k点所表示的数是___________.3.第三届中国大学生方程式汽车比赛赛前,甲、乙两辆参赛小汽车在一个封闭的环形跑道内进行耐久测试.两车从同一地点沿相同方向同时起步后,乙车速超过甲车速,在第15分钟时甲车提速,在第18分钟时甲车追上乙车并且开始超过乙,在第23分钟时,甲车再次追上乙车.已知在测试中甲、乙两车均是匀速行驶,那么如果甲车不提速,乙车首次超过甲车所用的时间是___________分钟.4.去年暑假某同学为锻炼自己,通过了解市场行情,从批发市场购进若干件印有“设计未来”标志的文化衫到自由市场去销售.首先按批发价提高25%销售了进货的60%,若要使最终赢利35%,则应在现行售价的基础上提高___________%销售完剩余的文化衫.5.某电脑公司在5月1日将500台电脑投放市场,经市场调研发现,该批电脑每隔10天平均日销售量减少2台,现准备用38天销售完该批电脑,则预计该公司5月1日至5月10日的平均日销售量是___________台.6.某人在同一条路上来回一次共用2小时.来时步行,平均速度是5千米/小时;回去的时坐公共汽车,平均速度是20千米/小时,则这条路长是___________千米.7.某市居民用电价格改革方案已出台,为鼓励居民节约用电,对居民生活用电实行阶梯制价格(见表):“一户一表”用电量不超过a千瓦时超过a千瓦时的部分单价(元/千瓦时)0.5 0.6小芳家二月份用电200千瓦时,交电费105元,则a=___________.8.某地按以下规定收取每月电费:用电量如果不超过60度,按每度电0.8元收费;如果超过60度则超过部分按1.2元收费.已知某用户3月份交电费66元.那么3月份该用户用电量为___________度.9.已知AB是一段只有3米长的窄道路,由于一辆小汽车与一辆大卡车在AB段相遇,必须倒车才能继续通过.如果小汽车在AB段正常行驶需10分钟,大卡车在AB段正常行驶需20分钟,小汽车在AB段倒车的速度是它正常行驶速度的,大卡车在AB段倒车的速度是它正常行驶的,小汽车需倒车的路程是大卡车的4倍.问两车都通过AB这段狭窄路面的最短时间是___________分钟.10.第三届中国大学生方程式汽车比赛赛前,甲、乙两辆参赛小汽车在一个封闭的环形跑道内进行耐久测试.两车从同一地点沿相同方向同时起步后,乙车速超过甲车速,在第15分钟时甲车提速,在第18分钟时甲车追上乙车并且开始超过乙,在第23分钟时,甲车再次追上乙车.已知在测试中甲、乙两车均是匀速行驶,那么如果甲车不提速,乙车首次超过甲车所用的时间是___________分钟.11.一杯“可乐”饮料售价3.6元,商家为了促销,顾客每买一杯“可乐”饮料获一张赠券,每三张赠券可兑换一杯“可乐”饮料,则每张赠券的价值相当于___________元.12.某公司生产的一种饮料由A、B两种原液按一定比例配制而成,其中A原液成本价为10元/千克,B原液为15元/千克,按现行价格销售每千克获得60%的利润率.由于物价上涨,A原液上涨20%,B原液上涨10%,配制后的总成本增加15%,公司为了拓展市场,打算再投入现行总成本的25%做广告宣传,使得销售成本再次增加,如果要保证每千克的利润率不变,则此时这种饮料的售价与原售价之差为___________元/千克.13.“家电下乡”农民得实惠.村民小郑购买一台双门冰箱,在扣除13%的政府财政补贴后,再减去商场赠送的“家电下乡”消费券100元,实际只花了1988元钱,那么他购买这台冰箱节省了___________元钱.14.有一群麻雀,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只麻雀对地上觅食的麻雀说:“若从你们中飞上来一只,则树下的麻雀就是这群麻雀总数的;若从树上飞下去一只,则树上、树下的麻雀就一样多了.”那么这群麻雀一共有___________只.15.小明同学买了一包弹球,其中是绿色的,是黄色的,余下的是蓝色的.如果有12个蓝色的弹球,那么,他总共买了___________个弹球.三.单选题(共6小题,每题0分)1.某商家售出两种商品皆为120元,其中一种商品盈利25%另一种商品亏损25%,则商家在这次交易中的盈亏情况为()A.盈B.亏C.不盈不亏D.不清楚2.一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是()A.100元B.105元C.108元D.118元3.小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()A.B.C.D.4.某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有()A.54盏B.55盏C.56盏D.57盏5.某商场对顾客实行优惠,规定:(1)如一次购物不超过200元,则不予折扣;(2)如一次购物超过200元但不超过500元的,按标价给予九折优惠;(3)如一次购物超过500元的,其中500元按第(2)条给予优惠,超过500元的部分则给予八折优惠.某人两次去购物,分别付款168元与423元,如果他只去一次购买同样的商品,则应付款是()A.522.8元B.510.4元C.560.4元D.472.8元6.2010年“地球停电一小时”活动的某地区烛光晚餐中,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位.则下列方程正确的是()A.30x-8=31x+26B.30x+8=31x+26C.30x-8=31x-26D.30x+8=31x-26---------答题卡---------一.主观题1. 答案: E型号的打印机应选购10台.1. 解释:分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率;根据资金得到相应的方程,求解即可.解答:解:(1)所列树状图或列表表示为:C DEA,C A,D A,EAB,C B,D B,EB结果为:(A,C),(A,D),(A,E),(B,C),(B,D),(B,E);(2)由(1)知C型号的打印机被选购的概率为;(3)设选购E型号的打印机x台(x为正整数),则选购甲品牌(A或B型号)(30-x)台,由题意得:当甲品牌选A型号时:1000x+(30-x)×2000=50000,解得x=10,当甲品牌选B型号时:1000x+(30-x)×1700=50000,解得(不合题意),故E型号的打印机应选购10台.点评:本题着重考查了用树状图列举随机事件出现的所有情况,并求出某些事件的概率,但应注意在求概率时各种情况出现的可能性务必相同.用到的知识点为:概率=所求情况数与总情况数之比.2. 答案:定价至少为296元时,乙服装才可获得利润.2. 解释:分析:(1)若设甲服装的进价为x元,则乙服装的进价为(500-x)元.根据公式:总利润=总售价-总进价,即可列出方程.(2)利用乙服装的进价为200元,经过两次上调价格后,使乙服装每件的进价达到242元,利用增长率公式求出即可;(3)利用每件乙服装进价按平均增长率再次上调,再次上调价格为:242×(1+10%)=266.2(元),进而利用不等式求出即可.解答:解:(1)设甲服装的进价为x元,则乙服装的进价为(500-x)元,根据题意得:90%•(1+30%)x+90%•(1+20%)(500-x)-500=67,解得:x=300,500-x=200.答:甲服装的进价为300元、乙服装的进价为200元.(2)∵乙服装的进价为200元,经过两次上调价格后,使乙服装每件的进价达到242元,∴设每件乙服装进价的平均增长率为y,则200(1+y) 2=242,解得:y1=0.1=10%,y2=-2.1(不合题意舍去).答:每件乙服装进价的平均增长率为10%;(3)∵每件乙服装进价按平均增长率再次上调,∴再次上调价格为:242×(1+10%)=266.2(元),∵商场仍按9折出售,设定价为a元时,0.9a-266.2>0,解得:a>.故定价至少为296元时,乙服装才可获得利润.点评:此题主要考查了一元二次方程的应用以及增长率问题和一元一次不等式的应用,注意售价的算法:售价=定价×打折数.3. 答案:饼干的质量为:300-60-x=40.答:每份营养餐中牛奶和饼干的质量分别为200克和40克.3. 解释:分析:(1)鸡蛋中蛋白质的质量=鸡蛋的重量×鸡蛋的蛋白质含量就可以直接求出答案;(2)设每份营养餐中牛奶的质量为x克,则饼干的质量为(300-60-x)克,根据题意列出方程求出其解就可以解答:解:(1)由题意得:60×15%=9(克).答:一个鸡蛋中含蛋白质的质量为9克.(2)设每份营养餐中牛奶的质量为x克,则饼干的质量为(300-60-x)克,由题意得:5%x+12.5%(300-60-x)+60×15%=300×8%解得:x=200.故饼干的质量为:300-60-x=40.答:每份营养餐中牛奶和饼干的质量分别为200克和40克.点评:本题考查了列一元一次方程解实际问题的运用,根据各种食品的蛋白质的和加起来等于总蛋白质就可以建立方程,在解答时确定等量关系是关键.4. 答案:方案1:A种香油120瓶B种香油80瓶.方案2:A种香油121瓶B种香油79瓶.方案3:A种香油122瓶B种香油78瓶.答:(1)该店购进A种香油80瓶,B种香油60瓶.(2)将购进的140瓶全部销售完可获利240元.(3)有三种购货方案:方案1:A种香油120瓶B种香油80瓶;方案2:A种香油121瓶B种香油79瓶;方案3:A种香油122瓶B种香油78瓶.4. 解释:分析:(1)求A,B两种香油各购进多少瓶,根据题意购进140瓶,共花了1 000元,可列方程求解即可.(2)在(1)的基础之上已经得出A,B两种香油购进的瓶数,算出总价减去总进价即可得出获利多少.(3)由题意可列不等式组,解得120≤a≤122.因为a为非负整数,所以a取120,121,122.所以200-a=80或79或78.解答:解:(1)设:该店购进A种香油x瓶,B种香油(140-x)瓶,由题意可得6.5x+8(140-x)=1000,解得x=80,140-x=60.答:该店购进A种香油80瓶,B种香油60瓶.(2)80×(8-6.5)+60×(10-8)=240.答:将购进140瓶香油全部销售完可获利240元.(3)设:购进A种香油a瓶,B种香油(200-a)瓶,由题意可知6.5a+8(200-a)≤14201.5a+2(200-a)≥339解得120≤a≤122.因为a为非负整数,所以a取120,121,122.所以200-a=80或79或78.故方案1:A种香油120瓶B种香油80瓶.方案2:A种香油121瓶B种香油79瓶.方案3:A种香油122瓶B种香油78瓶.答:(1)该店购进A种香油80瓶,B种香油60瓶.(2)将购进的140瓶全部销售完可获利240元.(3)有三种购货方案:方案1:A种香油120瓶B种香油80瓶;方案2:A种香油121瓶B种香油79瓶;方案3:A种香油122瓶B种香油78瓶.点评:本题考查一元一次不等式组的应用,读懂题列出不等式关系式即可求解.5. 答案:如果又增加了部分学生,学校应选择青春旅行社合算.5. 解释:分析:(1)设该校参加科技夏令营的学生共有x人,根据题意可得等量关系:在希望旅行社的花费为2000x ×8折=在青春旅行社的花费为2000(x+3)×7折,根据等量关系列出方程解方程即可;(2)设学生总数为a人,在希望旅行社的花费为2000a×8折,在青春旅行社的花费为2000(a+3)×7折,如果选择希望旅行社合算,则2000a×80%<2000(a+3)×70%,如果选择青春旅行社合算,则2000a×80%>2000(a+3)×70%,解不等式即可知道如果又增加了部分学生,学校应选择哪家旅行社.解答:解:(1)设该校参加科技夏令营的学生共有x人,由题意得:2000x×80%=2000(x+3)×70%,解得:x=21,答:该校参加科技夏令营的学生共有21人;(2)设学生总数为a人,由题意得:如果选择希望旅行社合算,则2000a×80%<2000(a+3)×70%,解得:a<21,如果选择青春旅行社合算,则2000a×80%>2000(a+3)×70%,解得:a>21,故如果又增加了部分学生,学校应选择青春旅行社合算.点评:此题主要考查了一元一次方程与一元一次不等式的应用,关键是设出学生人数,表示出在希望旅行社的花费和在青春旅行社的花费.6. 答案:定价至少为296元时,乙服装才可获得利润.6. 解释:分析:(1)若设甲服装的进价为x元,则乙服装的进价为(500-x)元.根据公式:总利润=总售价-总进价,即可列出方程.(2)利用乙服装的进价为200元,经过两次上调价格后,使乙服装每件的进价达到242元,利用增长率公式求出即可;(3)利用每件乙服装进价按平均增长率再次上调,再次上调价格为:242×(1+10%)=266.2(元),进而利用不等式求出即可.解答:解:(1)设甲服装的进价为x元,则乙服装的进价为(500-x)元,根据题意得:90%•(1+30%)x+90%•(1+20%)(500-x)-500=67,解得:x=300,500-x=200.答:甲服装的进价为300元、乙服装的进价为200元.(2)∵乙服装的进价为200元,经过两次上调价格后,使乙服装每件的进价达到242元,∴设每件乙服装进价的平均增长率为y,则200(1+y) 2=242,解得:y1=0.1=10%,y2=-2.1(不合题意舍去).答:每件乙服装进价的平均增长率为10%;(3)∵每件乙服装进价按平均增长率再次上调,∴再次上调价格为:242×(1+10%)=266.2(元),∵商场仍按9折出售,设定价为a元时,0.9a-266.2>0,解得:a>.故定价至少为296元时,乙服装才可获得利润.点评:此题主要考查了一元二次方程的应用以及增长率问题和一元一次不等式的应用,注意售价的算法:售价=定价×打折数.7. 答案:甲公司单独完成此项工程,需20天,乙公司单独完成此项工程,需30天;(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y-1500)元,根据题意得12(y+y-1500)=102000,解得y=5000,甲公司单独完成此项工程所需的施工费:20×5000=100000(元);乙公司单独完成此项工程所需的施工费:30×(5000-1500)=105000(元);故甲公司的施工费较少.7. 解释:分析:(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可.(2)分别求得两个公司施工所需费用后比较即可得到结论.解答:解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得+=,解得x=20,经检验知x=20是方程的解且符合题意.1.5x=30故甲公司单独完成此项工程,需20天,乙公司单独完成此项工程,需30天;(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y-1500)元,根据题意得12(y+y-1500)=102000,解得y=5000,甲公司单独完成此项工程所需的施工费:20×5000=100000(元);乙公司单独完成此项工程所需的施工费:30×(5000-1500)=105000(元);故甲公司的施工费较少.点评:本题考查了分式方程的应用,解题的关键是从实际问题中整理出等量关系并利用等量关系求解.8. 答案:8. 解释:分析:(1)设购买一块A型小黑板需要x元,一块B型为(x-20)元,根据,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元可列方程求解.(2)设购买A型小黑板m块,则购买B型小黑板(60-m)块,根据需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的,可列不等式组求解.解答:解:(1)设购买一块A型小黑板需要x元,一块B型为(x-20)元,5x+4(x-20)=820,x=100,x-20=80,购买A型100元,B型80元;(2)设购买A型小黑板m块,则购买B型小黑板(60-m)块,,∴20<m≤22,而m为整数,所以m为21或22.当m=21时,60-m=39;当m=22时,60-m=38.所以有两种购买方案:方案一购买A21块,B 39块、方案二购买A22块,B38块.点评:本题考查理解题意的能力,关键根据购买黑板块数不同钱数的不同求出购买黑板的钱数,然后要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的,列出不等式组求解.二.填空题1. 答案: 750米.1. 解释:分析:因为甲、乙两人的速度比是4:3,所以,甲、乙两人的路程比S甲:S乙=4:3;由过一段时间后,甲在跑道上离A点200米处,所以,甲跑的路程为:S甲=400k+200米(k为自然数),此时,乙在离A点不到100米处正向A点跑去;再由题意分类讨论解答.解答:解:设甲、乙两人的路程分别为S甲、S乙,由题意知,S甲:S乙=4:3;由过一段时间后,甲在跑道上离A点200米处,根据题意,得S甲=400k+200米(k为自然数),①当k=0时,S乙=×(400×0+200)=150米,不符合题意;②当k=1时,S乙=×(400×1+200)=450米,不符合题意;③当k=2时,S乙=×(400×2+200)=750米,符合题意.故答案为:750米.点评:本题考查了一元一次方程的应用,关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,分类讨论再求解.2. 答案: -30.06.2. 解释:分析:易得每跳动2次,向右平移1个单位,跳动100次,相当于在原数的基础上加了50,相应的等量关系为:原数字+50=19.94.解答:解:设k0点所对应的数为19.94-100+99-98+97-…-6+5-4+3-2+1=-30.06,故答案为:-30.06.点评:考查一元一次方程的应用,得到每跳动2次相对于原数的规律是解决本题的突破点.3. 答案: 25.3. 解释:分析:首先表示出甲车提速前速度比乙车慢a/分钟,提速后速度比乙车快b/分钟,进而利用甲车在第15分钟时,离乙车的距离为15a,这个距离在第18分钟追回来,即可得出等式方程求出a,b关系,再表示出一圈的路程即可得出答案.解答:解:设甲车提速前速度比乙车慢a/分钟,提速后速度比乙车快b/分钟.那么有甲车在第15分钟时,离乙车的距离为15a.这个距离在第18分钟追回来.那么15a=(18-15)b.即b=5a,而且在第23分钟时,甲车比乙车多跑一圈.那么一圈的路程为(23-18)b=5b=25a,所以甲车不提速时,乙车首次超过甲车(即多跑一圈)所需时间为:25a÷a=25分钟,故答案为:25.点评:此题主要考查了追击问题,根据已知得出a,b之间的关系是解题关键.4. 答案:在现行售价的基础上提高20%销售完剩余的文化衫.故20.4. 解释:分析:要求应在售价的基础上提高的百分数,就要先设出求知数x,再根据题意列出方程求解.题中的等量关系为:按批发价提高25%销售了进货的60%后经过提价=最终赢利35%.此题要把原价看作单位1.解答:解:设应在现行售价的基础上提高x%销售完剩余的文化衫,依题意有:(1+25%)×60%+(1+25%)(1+x%)×40%=1+35%,解得:x=20.故在现行售价的基础上提高20%销售完剩余的文化衫.故答案为:20.点评:考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.5. 答案:填16.5. 解释:分析:分别表示每10天的日销售量,设预计该公司5月1日至5月10日的平均日销售量是x台,则11到20号就是(x-2)台,21到30号就是(x-4)台,第31天到第38天就是(x-6)台,所以依此列方程得10x+10(x-2)+10(x-4)+8(x-6)=500求解即可.解答:解:设预计该公司5月1日至5月10日的平均日销售量是x台,根据题意得:10x+10(x-2)+10(x-4)+8(x-6)=500解得x=16,故填16.点评:此题首先读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.6. 答案: 8.6. 解释:分析:设路长是x千米,根据某人在同一条路上来回一次共用2小时.来时步行,平均速度是5千米/小时;回去的时坐公共汽车,平均速度是20千米/小时,可列方程求解.解答:解:设路长是x千米,+=2x=8路长为8千米.故答案为:8.点评:本题考查理解题意的能力,关键设出路长,以时间做为等量关系列方程求解.7. 答案: 150.7. 解释:分析:根据题意可得等量关系:不超过a千瓦时的电费+超过a千瓦时的电费=105元,根据等量关系列出方程,解出a的值即可.解答:解:由题意得:0.5a+0.6(200-a)=105,解得:a=150,故答案为:150.点评:此题主要考查了一元一次方程的应用,关键是正确找出题目中的等量关系,列出方程.8. 答案:答案为75.8. 解释:分析:先判断出3月份用电量一定超过60度,再根据“某用户3月份交电费66元”得到等量关系:60×0.8+超过60度的用电量×1.2=66,设3月份该用户用电量为x度,从而列出方程求解即可.解答:解:∵某用户3月份交电费66元,0.8×60=48元,66>48,∴3月份用电量超过60度.设3月份该用户用电量为x度,由题意,得:60×0.8+(x-60)×1.2=66,解得:x=75,答:3月份该用户用电量为75度.故答案为75.点评:本题考查用一元一次方程解决实际问题,判断出用电量在60度以上是解决本题的突破点,根据3月份的电费是66元列出方程是解决本题的关键.9. 答案: 50.9. 解释:分析:先根据题意求出小汽车和大卡车倒车的时间分别为50min和160min,然后分别讨论大卡车和小汽车分别倒车,两车都通过AB这段狭窄路面所用的时间,最后进行比较即可.解答:解:小汽车X通过AB段正常行驶需要10分钟,小汽车在AB段倒车的速度是它正常行驶速度的,由此得出倒车时间AB段X=10÷=50分钟,卡车Y通过AB段正常行驶需20分钟,大卡车在AB段倒车的速度是它正常行驶速度的,由此得出倒车时间AB段Y=20÷=160分钟,又因为:小汽车需要倒车的路程是大卡车需倒车的路程的4倍,得到小车进入AB段,大车进入AB段,由此得出实际Y倒车时间=160×=32分钟,实际X倒车时间=50×=40分钟.若Y倒X进则是32+20=52分钟两车都通过AB路段,若X倒Y进则是40+10=50分钟两车都通过AB路段,所以两车都通过AB路段的最短时间是50分钟.故答案为:50.点评:本题属于应用题,有一定难度,解题时注意分别讨论小汽车和大卡车分别倒车所用的时间.10. 答案: 25.10. 解释:分析:首先表示出甲车提速前速度比乙车慢a/分钟,提速后速度比乙车快b/分钟,进而利用甲车在第15分钟时,离乙车的距离为15a,这个距离在第18分钟追回来,即可得出等式方程求出a,b关系,再表示出一圈的路程即可得出答案.解答:解:设甲车提速前速度比乙车慢a/分钟,提速后速度比乙车快b/分钟.。
初中数学一元一次方程精选试题(含答案和解析)

初中数学一元一次方程精选试题(含答案和解析)一.选择题1.(2018·湖北省恩施·3分)一商店在某一时间以每件120元的价格卖出两件衣服.其中一件盈利20%.另一件亏损20%.在这次买卖中.这家商店()A.不盈不亏 B.盈利20元C.亏损10元D.亏损30元【分析】设两件衣服的进价分别为x、y元.根据利润=销售收入﹣进价.即可分别得出关于x、y的一元一次方程.解之即可得出x、y的值.再用240﹣两件衣服的进价后即可找出结论.【解答】解:设两件衣服的进价分别为x、y元.根据题意得:120﹣x=20%x.y﹣120=20%y.解得:x=100.y=150.∴120+120﹣100﹣150=﹣10(元).故选:C.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.2.(2018湖南省邵阳市)(3分)程大位是我国明朝商人.珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著.详述了传统的珠算规则.确立了算盘用法.书中有如下问题:一百馒头一百僧.大僧三个更无争.小僧三人分一个.大小和尚得几丁.意思是:有100个和尚分100个馒头.如果大和尚1人分3个.小和尚3人分1个.正好分完.大、小和尚各有多少人.下列求解结果正确的是()A.大和尚25人.小和尚75人 B.大和尚75人.小和尚25人C.大和尚50人.小和尚50人 D.大、小和尚各100人【分析】根据100个和尚分100个馒头.正好分完.大和尚一人分3个.小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100.大和尚分得的馒头数+小和尚分得的馒头数=100.依此列出方程即可.【解答】解:设大和尚有x人.则小和尚有(100﹣x)人.根据题意得:3x+=100.解得x=25则100﹣x=100﹣25=75(人)所以.大和尚25人.小和尚75人.故选:A.【点评】本题考查了一元一次方程的应用.关键以和尚数和馒头数作为等量关系列出方程.二.填空题1.(2018·湖北江汉油田、潜江市、天门市、仙桃市·3分)某公司积极开展“爱心扶贫”的公益活动.现准备将6000件生活物资发往A.B两个贫困地区.其中发往A区的物资比B区的物资的1.5倍少1000件.则发往A区的生活物资为3200 件.【分析】设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据发往A.B两区的物资共6000件.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据题意得:x+1.5x﹣1000=6000.解得:x=2800.∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018•上海•4分)方程组的解是..【分析】方程组中的两个方程相加.即可得出一个一元二次方程.求出方程的解.再代入求出y即可.【解答】解:②+①得:x2+x=2.解得:x=﹣2或1.把x=﹣2代入①得:y=﹣2.把x=1代入①得:y=1.所以原方程组的解为..故答案为:..【点评】本题考查了解高次方程组.能把二元二次方程组转化成一元二次方程是解此题的关键.三.解答题1.(2018•广东•7分)某公司购买了一批A.B型芯片.其中A型芯片的单价比B型芯片的单价少9元.已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A.B型芯片的单价各是多少元?(2)若两种芯片共购买了200条.且购买的总费用为6280元.求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x ﹣9)元/条.根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.即可得出关于x的分式方程.解之经检验后即可得出结论;(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据总价=单价×数量.即可得出关于a的一元一次方程.解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x﹣9)元/条.根据题意得:=.解得:x=35.经检验.x=35是原方程的解.∴x﹣9=26.答:A型芯片的单价为26元/条.B型芯片的单价为35元/条.(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据题意得:26a+35(200﹣a)=6280.解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.2.(2018•海南•8分)“绿水青山就是金山银山”.海南省委省政府高度重视环境生态保护.截至2017年底.全省建立国家级、省级和市县级自然保护区共49个.其中国家级10个.省级比市县级多5个.问省级和市县级自然保护区各多少个?【分析】设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据国家级、省级和市县级自然保护区共49个.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据题意得:10+x+5+x=49.解得:x=17.∴x+5=22.答:省级自然保护区有22个.市县级自然保护区有17个.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018湖南张家界5.00分)列方程解应用题《九章算术》中有“盈不足术”的问题.原文如下:“今有共買羊.人出五.不足四十五;人出七.不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊.每人出5元.则差45元;每人出7元.则差3元.求人数和羊价各是多少?【分析】可设买羊人数为未知数.等量关系为:5×买羊人数+45=7×买羊人数+3.把相关数值代入可求得买羊人数.代入方程的等号左边可得羊价.【解答】解:设买羊为x人.则羊价为(5x+45)元钱.5x+45=7x+3.x=21(人).5×21+45=150(员).答:买羊人数为21人.羊价为150元.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.。
一元一次方程数学应用题含答案

一元一次方程数学应用题常见题型(1)、和,差,倍,分问题。
(抓住关键性词语)(2)、等积变形问题。
(变形前后体积不变)(3)、行程问题。
相遇问题:甲走的路程+乙走的路程=两地距离;追及问题:(1)同地不同时出发:前者走的路程=追者走的路程(2)同时不同地出发:前者走的路程+两地距离=追者走的路程(3)顺逆流问题:顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度(4)、劳力调配问题:从调配后的数量关系中找出相等关系,要抓住“相等”“几倍”“几分之几”“多少”等关键词语。
(5)、工程问题:工作总量=工作效率×工作时间(各部分总量之和等于1)(6)、利润率问题:商品利润=商品售价-商品进价。
商品利润率=(商品利润÷商品进价)×100% 。
售价=进价×(1+利润率)(抓住价格升降对利润率的影响考虑)(7)、数字问题:设一个两位数的十位上的数字为a,个位上为b,则这个两位数可以表示为10a+b(抓住数字间或新数,原数之间的关系)(8)、储蓄问题:利息=本金×利率×期数。
本息和=本金+利息=本金+本金×利率×期数×(1-利息税率)(9)、按比例分配问题:甲:乙:丙=a:b:c(抓住:全部数量=各种成分的数量之和。
设一份为x)(10)、日历问题:每一行上,右边的数比左边数大1,每一列上,下边比上边大7.日历中的数a的取值范围是1≤a≤31,且都是正整数。
1、甲、乙两车由A 和B 两地同时出发相向而行,甲、乙两车的速度比是2:3,已知甲走完全程用521小时,求两车几小时后在途中相遇? ( 2.2小时 )2、一个六位数,左边第一位上的数字是1,这个数乘以3以后,仍是一个六位数,这时右边第一位上的数字是1,而其余各位上的数字都是原六位数的后五位数字相应向左移一位得到的,求原来的六位数。
解:设后五位数为x, 3(100000+x)=10x+1. ∴ x=42857 ,六位数是1428573、两个缸内共有48桶水,如果甲缸给乙缸加水1倍,然后乙缸又给甲缸加剩余水的1倍,那么两缸水重量相等,最初两缸内分别有多少桶水?解:设甲x 桶 ,2[x-(48-x)]=2(48-x )-[x-( 48-x)] ∴x=304、某班举办集邮展览,展出的邮票比平均每人3张多24张,比平均每人4张少26张,这个班有多少学生?多少张邮票?解:设有x 个学生,3x+24=4x-26 ∴x=50人 , 邮票174张5、从甲地到乙地,水路比公路近40公里,上午10时一轮船从甲地到乙地,下午1时一汽车从甲地到乙地,结果同时到达终点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一兀一次方程的应用1、列方程解应用题的基本步骤和方法:(1)初中列方程解应用题时,怎么列简单就怎么列 (即所列的每一个方程都直接的表示题意),不用担心未知数过多,简化审题和列方程的步骤,把难度转移到解方程的步骤上.(2)解方程的步骤不用写出,直接写结果即可.(3)设未知数时,要标明单位,在列方程时,如果题中数据的单位不统一,必须把单位换算成统一单位,尤其是行程问题里需要注意这个问题.2、设未知数的方法:设未知数的方法一般来讲,有以下几种:(1)“直接设元”:题目里要求的未知量是什么,就把它设为未知数,多适用于要求的未知数只有一个的情况;(2)“间接设元”:有些应用题,若直接设未知数很难列出方程,或者所列的方程比较复杂,可以选择间接设未知数,而解得的间接未知数对确定所求的量起中介作用.(3)“辅助设元”:有些应用题不仅要直接设未知数,而且要增加辅助未知数,但这些辅助未知数本身并不需要求出,它们的作用只是为了帮助列方程,同时为了求出真正的未知量,可以在解题时消去.(4)“部分设元”与“整体设元”转换:当整体设元有困难时,可以考虑设其一部分为未知数,反之亦然,如:数字问题.模块一:数字问题(1)多位数字的表示方法:一个两位数的十位数字、个位数字分别为a、b,(其中a、b均为整数,i_a_9,0 _b -9 )则这个两位数可以表示为10a b .一个三位数的百位数字为a,十位数字为b,个位数字为c,(其中均为整数,且1 _a _9,0 _b _9,0_c_9 )则这个三位数表示为:100a 10b c .(2)奇数与偶数的表示方法:偶数可表示为2k,奇数可表示为2k 1 (其中k表示整数).(3)三个相邻的整数的表示方法:可设中间一个整数为a,则这三个相邻的整数可表示为a -1,a,a -1 .【例1】一次数学测验中,小明认为自己可以得满分,不料卷子发下来一看得了96分,原来是由于粗心把一个题目的答案十位与个位数字写颠倒了,结果自己的答案比正确答案大了36,而正确答案的个位数字是十位数字的2倍.正确答案是多少【解析】此题中数据96与列方程无关.与列方程有关的量就是小明粗心后所涉及的量.设正确答案的十位数字为X,则个位数字为2x ,依题意,得(10 2x x) -(10x - 2x) =36,解之得x=4 .于是2x =8 .所以正确答案应为48.【答案】48【例2】某年份的号码是一个四位数,它的千位数字是2,如果把2移到个位上去,那么所得的新四位数比原四位数的2倍少6,求这个年份.【解析】设这个年份的百位数字、十位数字、个位数字组成的三位数为X,则这个四位数字可以表示为2 1000 x,根据题意可列方程:10x 2 =2 2 1000 x -6,解得x =499【答案】2499年【例3】有一个四位数,它的个位数字是8,如果将个位数字8调到千位上,则这个数就增加117,求这个四位数.【解析】设由原数中的千位数字、百位数字和十位数字组成的三位数为X,则这个四位数可以表示为10x 8,则调换后的新数可以表示为8000 x,根据题意可列方程10x・8 =8000 x -117,解得x=875,所以这个四位数为8758【答案】8758【例4】五一放假,小明的爸爸幵车带着小明和妈妈去郊游,他们在公路上匀速行驶,下表是小明每隔1小时看到的路边里程碑上数的信息.你能确定小明在7:00时看到的里程碑上的数是多少吗?:00时看到的两位数的十位数字是X,则个位数字是7-x,根据题意可列方程:||100x • 7-: 10 7-x x -||_10 7-x -『00(,7-x,解得x =1,所以7 -x =6 .【答案】小明在7:00时看到的两位数是16.模块二:日历问题(1)、在日历问题中,横行相邻两数相差1,竖列相邻两数相差7.(2)、日历中一个竖列上相邻3个数的和的最小值时24,最大值时72,且这个和一定是3的倍数.(3)、一年中,每月的天数是有规律的,一、三、五、七、八、十、十二这七个月每月都是31天,四、六、九、十一这四个月每月都是30天,二月平年28天,闰年29天,所以,日历表中日期的取值是有范围的.【例5】下表是2011年12月的日历表,请解答问题:在表中用形如下图的平行四边形框框出4个数,【例6】(1)若框出的4个数的和为74,请你通过列方程的办法,求出它分别是哪4天?【例7】(2)框出的4个数的和可能是26吗?为什么?【解析】(1)设第一个数是X,则根据平行四边形框框出4个数得其他3天可分别表示为x 1,x 6,x 7 .根据题意可列方程:x亠〔X 亠〔x 6!亠〔X • 7]=74,解得x =15 ;所以它分别是:15,16, 21,22;(2)设第一个数为X,则4x74=26,x=3,本月3号是周六,由平行四边形框框出4个数,得出结论:无法构成平行四边形.【答案】(1)15,16, 21,22; (2)无法构成平行四边形.【例8】如图,框内的四个数字的和为28,请通过平移长方形框的方法,使框内的数字之和为68,这样的长方形的位置有几个?能否使框内的四个数字之和为49?若能,请找出这样的位置;若不能,请说明理由.【解析】(1)设四个数字是a, a 1 , a 7 , a 8,根据题意可列方程:a a 1 a 7 a ^68,解得a =13 .则平移后的四个数是13、14、20、21.(2)设四个数字是X, x 1, x 7 , x 8,则4x 16 =49 , x = 33.不合题4意,舍去【答案】平移后的四个数是13、14、20、21,这样的长方形的位置只有1个;不存在能使四个数字的和为49的长方形.【例9】把2012个正整数1, 2, 3, 4,…,2012按如图方式排列成一个表.【例10】(1)用如图方式框住表中任意4个数,记左上角的一个数为x,贝y另三个数用含x的式子表示出来,从小到大依次是 _______________________ .(2)由(1)中能否框住这样的4个数,它们的和会等于244吗?若能,则求出x的值;若不能,则说明理由.【解析】(1) •••记左上角的一个数为X, •••另三个数用含x的式子表示为:x 8 ,x 16 , x 24 .(2)不能.假设能够框住这样的4个数,则:X,x 8 x 16 x 24 =244 , 解得x=49 .••• 49是第七行最后一个数,.••不可以用如图方式框住.【答案】(1) x 8 , x 16 , x 24 ; (2)不能.模块三:和差倍分问题和、差、倍冋题关键要分清是几倍多几和几倍少几.(1)当较大量是较小量的几倍多几时,较大量=较小量倍数+多余量;(2)当较大量是较小量的几倍少几时,较大量=较小量倍数-所少量.【例11】一部拖拉机耕一片地,第一天耕了这片地的-;第二天耕了剩下部分的-,3 3还剩下42公顷没耕完,则这片地共有多少公顷?【解析】设这片地共有x公顷,第一天耕了这片地的2,则耕地公顷,第二3 3天耕了剩下部分的-,则第二天耕地1 I* xjx (公顷),根据题意3 3 I 3丿9可列方程:X—— x—— x=42,解得x=189 .3 9【答案】189.【例12】牧羊人赶着一群羊寻找一个草长得茂盛的地方,一个过路人牵着一只肥羊从后面跟了上来,他对牧羊人说:“你赶的这群羊大概有100只吧!”牧羊人答道:“如果这群羊增加一倍,再加上原来这群羊的一半,又加上原来这群羊一半的一半,连你这只羊也算进去,才刚好凑满100只.”问牧羊人的这群羊共有多少只【解析】设这群羊共有x只,根据题意可列方程:2x 1 x - x ^100,解得x=36.2 4【答案】36【例13】有粗细不同的两支蜡烛,细蜡烛之长时粗蜡烛之长的2倍,细蜡烛点完需1小时,粗蜡烛点完需2小时,有一次停电,将这样的两支未使用过的蜡烛同时点燃,来电时,发现两支蜡烛所剩的长度一样,问停电的时间有多长?【解析】设停电时间为x小时,粗蜡烛长I米,则细蜡烛长21米,那么细蜡烛每小时点燃2I米,粗蜡烛没小时点燃i米,根据题意可列方程:221 -21 x =\ —x,解得x =-23【答案】停电时间为-小时3【例14】2006年我市在全国率先成为大面积实施“三免一补”的州市,据悉,2010年我市筹措农村义务教育经费与“三免一补”专项资金 3.6亿元【由中央、省、市、县(区)四级共同投入,其中,中央投入的资金约 2.98亿元,市级投入的资金分别是县(区)级、省级投入资金的1.5倍、18倍】,且2010年此项资金比2009年增加1.69亿元.【例15】(1)2009年我市筹措农村义务教育经费与“三免一补”专项资金多少亿元?【例16】(2)2010年省、市、县(区)各级投入的农村义务教育经费与“三免一补”专项资金各多少亿元?【例17】(3)如果按2009-2010年筹措此项资金的年平均增长率计算,预计2011年,我市大约需要筹措农村义务教育经费与“三免一补”专项资金多少亿元(结果保留一位小数)?【解析】(1) 3.61 T.69 =1.91 (亿元).(2)设市级投入x亿元,则县级投入亿元,省级投入丄x亿元,3 18由题意得:2.98 2x —^3.6,解得x=0.36 •所以?x=0.24(亿元),3 18 31 _x=:0.02 (亿元).18(3) 3.6 1 169 : 6.8 (亿元).1.91 '【答案】(1) 1.91亿元;(2)省、市、县分别投入0.02亿元、0.36亿元、0.24亿元;(3) 6.8亿元.模块四:行程问题一、行程问题路程二速度x时间相遇路程二速度和x相遇时间追及路程二速度差X追及时间二、流水行船问题顺流速度二静水速度+水流速度逆流速度二静水速度-水流速度水流速度=1 X(顺流速度-逆流速度)2三、火车过桥问题火车过桥问题是一种特殊的行程问题,需要注意从车头至桥起,到车尾离桥止,火车所行距离等于桥长加上车长,列车过桥问题的基本数量关系为:车速X过桥时间二车长+桥长.【例18】有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙背向而行.甲每分钟走40米,乙每分钟走38米,丙每分钟走36米.出发后,甲和乙相遇后3分钟和丙相遇,求花圃的周长.【解析】设甲、乙相遇时间为 t 分钟,则甲、丙相遇时间为t 3分钟,根据题意,由相遇路程相等可列方程 t 38 -36[=340 36 【答案】8892米【例19】某人从家里骑摩托车到火车站, 如果每小时行30千米,那么比火车幵车 时间早到15分钟,若每小时行18千米,则比火车幵车时间迟到15分钟, 现在此人打算在火车幵车前 10分钟到达火车站,则此人此时骑摩托车的 速度应为多少?【解析】设此人从家里出发到火车幵车的时间为 x 小时,根据题意可列方程: 30(x 一加8(x 60,解得 xr , 【答案】27【例20】甲、乙两车同时从 A ,B 两地出发,相向而行,在 A ,B 两地之间不断往返行驶.甲车到达 B 地后,在B 地停留了 2个小时,然后返回 A 地;乙车到达A 地后,马上返回B 地;两车在返回的途中又相遇了,相遇的地点距离B 地288千米.已知甲车的速度是每小时 60千米,乙车的速度是 每小时40千米.请问:A ,B 两地相距多少千米?【解析】设A 、B 两地相距x 千米,根据题意可列方程:红湮一L 迦泊,解 40 60得 x = 420 【答案】420千米此人打算在火车幵车前 (千米/时)10分钟到达,骑摩托车的速度应为 30 (1 15)1060 =27【例21】某人骑自行车从A地先以每小时12千米的速度下坡后,再以每小时9千米的速度走平路到B地,共用了55分钟.回来时,他以每小时8千米的速度通过平路后,再以每小时4千米的速度上坡,从B地到A地共用il小2 时,问A B两地相距多少千米?【解析】间接设未知数,设从A地到B地共用x小时,根据题意可列方程:12t • 55 _t 卜9 =3t - -3t 8,解得t J,所以A、B 两地相距60 2 412t詈-t 9=9 (千米)【答案】9千米【例22】一人步行从甲地去乙地,第一天行若干千米,自第二天起,每一天都比前一天多走同样的路程,这样10天可以到达乙地;如果每天都以第一天所行的相同路程步行,用15天才能到达乙地;如果每天都以第一种走法的最后一天所行的路程步行到乙地,需要几天?【解析】设a是第一次第一天走的路程,b是第二天起每天多走的路程,x是所求的天数.则根据题意可列方程:15a =a - (a b) ( a 2b) - (a 3b)( a 4b) - (a 5b)( a 6b) (a 7b) (a 8b)( a 9b)又15a =x a • 9b,解得x =7.5 .【答案】7.5天【例23】一只小船从甲港到乙港逆流航行需2小时,水流速度增加一倍后,再从甲港到乙港航行需3小时,水流速度增加后,从乙港返回甲港需航行多少小时?【解析】设小船在静水中的速度为a,原来的水速为b,则2(a-b) =3(a-2b),解得a=4b,故所求时间为型®“(小时).(a +2b)【答案】1【例24】一个人乘木筏在河面顺流而下,漂到一座桥下时此人想锻炼一下身体,便跳入水中逆水游泳,10分钟后转身追赶木筏,终于在离桥1500米远的地方追上木筏,假设水流速度及此人游泳的速度都一直不变,那么水流速度为多少?【解析】因为向上游了10分钟,所以返回追赶也要10分钟(流水中的相遇时间与追及时间都与水流速度无关),即水流20分钟的路程为1500米,水流速度为1.5=4.5 (千米/时).3【答案】水流速度为4.5千米/时【例25】一小船由A港到B港顺流需行6小时,由B港到A港逆流需行8小时,天,小船从早晨6点由A港出发顺流行至B港时,发现一救生圈在途中掉落在水中,立即返回,1小时后找到救生圈.问:【例26】(1)若小船按水流速度由A港漂流到B港需多少小时?(2)救生圈是何时掉入水中的?【解析】(1)设小船在静水中的速度为a,水流速度为b,则6(a ,解得a =7b,故小船按水流速度由A港漂流到B港所需时间为=48b(小时);(2)设小船行驶x小时后,救生圈掉入水中,则(6 —x - 1)b - (a —b) 1 =(6 — x)(a b),将 a = 7b 代入上式,得到x =5,故救生圈是上午11点掉入水中的【答案】48 ; 5模块五:工程问题工作总量二工作时间X工作效率各部分工作量之和=1【例27】有甲、乙、丙三个水管,独幵甲管5小时可以注满一池水;甲、乙两管齐幵,2小时可注满一池水;甲、丙两管齐幵,3小时注满一池水.现把三管一齐幵,过了一段时间后甲管因故障停幵,停幵后2小时水池注满•问三管齐幵了多少小时?【解析】由题意知,甲管注水效率为-,甲、乙两管的注水效率之和为 -,甲、5 2丙两管的注水效率之和为1,设三管齐幵了x小时,根据题意可列方程:3丄x •丄x 2 =1,解得X,5 2 3 5 19【答案】—小时19【例28】检修一住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天, 丙单独完成需12天•前7天由甲、乙两人合作,但乙中途离幵了一段时间,后2天由乙、丙两人合作完成,问乙中途离幵了几天?【解析】设乙中途离幵了X 天,根据题意可列方程丄7 •丄7 - x?. 2丄1 1,14 18 * (18 12 丿解得x=3【答案】乙中途离幵了3天【例29】某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲每天修桌凳16套,乙每天修桌凳比甲多8套,甲单独修完这些桌凳比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.【例30】(1)问该中学库存多少套桌凳?【例31】(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.你认为哪种方案省时又省钱为什么?【解析】(1)设该中学库存X套桌凳,根据题意可列方程:---=20,解得x=960 .16 24(2)方案①所需费用:96080 10]=5400 (元);方案②所需费用:120 10 尸5200 (兀);24方案③所需费用:96080 120 10 =5040 (元).16 24 '综上,方案③最省钱.【答案】(1) 960套;(2)方案③最省钱.模块六:商品销售问题在现实生活中,购买商品和销售商品时,经常会遇到进价、标价、售价、打折等概念,在了解这些基本概念的基础上,还必须掌握以下几个等量关系:【例32】某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润增加了 8个百分点,求经销这种商品原来的利润率 • 【解析】设经销这种商品原来的利润率为 x ,原进价为a ,根据题意可列方程:a(1 x) =a(1 _6.4%)(1 x 8%),解得 x =17% .【答案】17%【例33】某商品月末的进货价为比月初的进货价降了 8%而销售价不变,这样,利润率月末比月初高10%问月初的利润率是多少?【解析】设月初进货价为 a 元,月初利润率为x ,则月初的销售价为a V x 元, 月末进货价为a 1 -8%元,销售价为a 1-8%址• X 70%元,根据月初 销售价与月末销售价相等可列方程:a 1 ^-a 1-8%乩「x T0% ,解得x =0.15 . 【答案】15%【例34】某公司生产一种饮料是由 A ,B 两种原料液按一定比例配制而成,其中 A标价=进价1+利润率 利润二售价一进价 利润率=利价 100%利润二进价X 利润率 实际售价二标价X 打折率原料液的成本价为15元/千克,B原料液的成本价为10元/千克,按现行价格销售每千克获得70%勺利润率.由于市场竞争,物价上涨,A原料液上涨20% B原料液上涨10%配制后的总成本增加了12%公司为了拓展市场,打算再投入现总成本的25%故广告宣传,如果要保证每千克禾y润不变,贝y此时这种饮料的利润率是多少?【解析】原料液A的成本价为15元/千克,原料液B的成本价为10元/千克,涨价后,原A价格上涨20%,变为18元;B上涨10%,变为11元,总成本上涨12%,设每100千克成品中,二原料比例A占x千克,B占(100-x)千克, 则涨价前每100千克成本为15x *10 100-x,涨价后每100千克成本为18x 11 100 -x ,根据题意可列方程:18x 11 100-x - 15x 10 100 -x」匚1 12%,解得x _10°,所以100 —x =6007即二者的比例是:A:B =1:6,则涨价刖每千克的成本为号牛7(元),销售价为年元,利润为7.5元.原料涨价后,每千克成本变为12元,成本的25%为3元,保证利润为7.5 元,则利润率为:7.5" 12 3 =50% .【答案】50%.模块七:方案决策问题在实际生活中,做一件事情往往会有多种选择,这就需要从几种方案中,选择最佳方案,如网络的使用,到不同旅行社购票等,一般都要运用方程解答,把每一种方案的结果先算出来,进行比较后得出最佳方案.【例35】某幵发商进行商铺促销,广告上写着如下条款:【例36】投资者购买商铺后,必须由幵发商代为租赁5年,5年期满后由幵发商以比原商铺标价高20%勺价格进行回购,投资者可在以下两种购铺方案中做出选择:【例37】方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%【例38】方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%但要缴纳租金的10%乍为管理费用.【例39】(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=7投资收益100% )实际投资额(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?【解析】(1)设商铺标价为x万元,则按方案一购买,则获投资收益120% -1 x x 10% 5=0.7x,投资收益率为0 7x100% =70%投资收益率为06竺100% : 72.9% .0.85x所以投资者选择方案二获得的投资收益率高.(2)由题意得,0.7x-0.62x =5,解得x=62.5,所以甲投资了62.5万元,乙投资了53.125万元【答案】略【例40】有一个只允许单向通过的窄道口,通常情况下,每分钟可以通过9人.一天王老师到达道口时,发现由于拥挤,每分钟只能有3人通过道口,此时,自己前面还有36个人等待通过,通过道口后,还需7分钟到达学校.【例41】(1)若绕道而行,要15分钟到达学校。