分式方程的解法与技巧_知识精讲

分式方程的解法与技巧_知识精讲
分式方程的解法与技巧_知识精讲

分式方程的解法与技巧

【典型例题】

1. 局部通分法:

例1. 解方程:x x x x x x x x -----=-----34456778

分析:该方程的特点是等号两边各是两个分式,相邻两个分式的分子与分子,分母与分母及每个分式的分子与分母都顺序相差1,象这类通常采取局部通分法。

解:方程两边分别通分并化简,得: 145178()()()()

x x x x --=-- 去分母得:()()()()x x x x --=--4578

解之得:x =6

经检验:x =6是原分式方程的根。

点拨:此题如果用常规法,将出现四次项且比较繁,而采用局部通分法,就有明显的优越性。

但有的时候采用这种方法前需要考虑适当移项,组合后再进行局部通分。

2. 换元法:

例2. 解方程:

7643165469222x x x x x x ----+=--+ 分析:此方程中各分式的分母都是含未知数x 的二次三项式,且前两项完全相同,故可考虑用换元法求解。令或或或k x x k x x k x x =--=-+=-+222646569 k x x =-26均可。

解:设,则原方程可化为:k x x =-+265

793144k k k --=-+

去分母化简得:20147111602k k --=

∴()()k k -+=1220930

∴,k k ==-129320

当时,k x x =--=126702

()()x x -+=710 解之得:,x x 1217=-=

当时,k x x =--+=-93206593202

2012019302x x -+=

解此方程此方程无解。 经检验:,是原分式方程的根。x x 1217=-=

点拨:换元法解分式方程,是针对方程实际,正确而巧妙地设元,达到降次,化简的目的,它是解分式方程的又一重要的方法,本题还有其它的设法,同学们可自己去完成。

3. 拆项裂项法:

例3. 解方程:

12442212x x x x ++-+-=

分析:这道题虽然可用通分去分母的常规解法,但若将第二项拆项、裂项,则更简捷。

解:原方程拆项,变形为:

()()()()12222222221x x x x x x ++++-+---=

裂项为:

122222221x x x x ++-++--=

化简得:321x +=

解之得:x =1 经检验:x =1是原分式方程的解。

4. 凑合法:

例4. 解方程:x x x x 4143412

+-=--- 分析:观察此方程的两个分式的分母是互为相反数,考虑移项后易于运算合并,能使运算过程简化。

解:部分移项得:

x x x x 4143412=--+---

∴x x x x 4143412=------

∴x 412=

∴x =2

经检验:x =2是原分式方程的根。

5. 构造法:

例5. 解方程:x x x x

221103+++= 分析:此方程在形式上有很明显的特征,可以构造为型的方程x x k k

+=+11 来求解,而不用常规解法。

解:原方程可化为:

x x x x 221313+++=+ ∴或x x x x 22313+=+=

解之得:,x x 123411321216

21,,=-±=-± 经检验:,均是原分式方程的根。x x 123411321216

21,,=-±=-±

6. 比例法:

例6. 解方程:2562582422

2222x x x x x x x x +-+-=++++ 分析:由于方程两边分子、分母未知数的对应项系数相等,因此可以利用这样的恒等变形,即若,则有的性质,可使分母化为常数,从而简化a b c d a b a b c d c d

=+-=+- 运算。

解:应用上述性质,可将方程变形为:

()()()()()()()()

2562582562582422242222222222x x x x x x x x x

x x x x x x x +-++-+--+-=+++++++-++ 化简得:4101422462

22x x x x +-=++

∴4101424622x x x x +-=++

∴x x 23100+-=

∴()()x x +-=520

∴或x x 1225==-

经检验:,是原方程的解。x x 1225==-

【模拟试题】(答题时间:20分钟) 解下列分式方程:

1. x x x x x x x x +++++=+++++12672356

2. 21212222

2222x x x x x x x x ++--=-++- 3.

x x x x x -+-+-=-112141

2 4. x x

x x 2215580+--+= 5. 23123222x x x x +++=-

【试题答案】

1. 解:原方程变形为:

x x x x x x x x +-+++-+=+-+++-+212717313616 即13121716x x x x +-+=+-+

方程两边分别通分为: ()()()()

-++=-++123167x x x x 去分母得:()()()()x x x x ++=++2367

化简得:836x =-

∴x =-92 经检验:是原方程的解。x =-92

解法2:x x x x x x x x +++++=+++++12672356

原方程变变形得:

7

6653221X ++-++=++-++X X X X X X X 两边分别通分得: ()()()()

-++=-++123167x x x x

去分母得:()()()()x x x x ++=++2367

化简得:836x =-

∴x =-92 经检验:是原方程的解。x =-92

2. 由比例的性质可得: 421422

222

2x x x x x x --=+-

∴402x =或212222x x x x --=+- 解之得:x x 12012==

, 经检验:x x 12012==,是原分式方程的解。 3. 解:原方程可化为:

1211312121

-+?? ???-+-?? ???=--+x x x x 化简得:--=-3121x x

∴--=510x ∴原分式方程无解

4. 原方程可变形为:x x x x 2215180+?

? ???-+?? ??

?+= 设x x y +=1,则有x x x x y 222

21122+=+?? ???-=-

∴原方程可化为:y y 22580--+=

即y y 2560-+=

解之得:y y 1223==, 当y 12=时,即x x +

=12,解得x x 121==

当y 23=时,即x x +=13,解得x 34352,=± 经检验:x x 121==,x 34352

,=±均是原方程的解。 5. 解:原方程可变形为:231231122x x x x ++

+=--

∴2312x x +=-

即23102x x ++=

()()∴x x ++=1210

∴x 11=-或x 212=- 经检验:x 11=- 或x 212

=-

均为原分式方程的解。

分式方程知识点归纳总结(整理)

重庆渝昂教育个性化辅导中心 重庆市渝北区两路步行街金易都会八楼809 电话:67836768 邮箱:youngedu@https://www.360docs.net/doc/1d2384481.html, 第 1 页 共 1 页 分式方程知识点归纳总结 1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子 B A 叫做分式。 1) 分式与整式最本质的区别:分式的字母必须含有字母,即未知数;分子可含字母可不含字母。 2) 分式有意义的条件:分母不为零,即分母中的代数式的值不能为零。 3) 分式的值为零的条件:分子为零且分母不为零 2. 分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。 用式子表示 其中A 、B 、C 为整式(0≠C ) 注:(1)利用分式的基本性质进行分时变形是恒等变形,不改变分式值的大小,只改变形式。 (2)应用基本性质时,要注意C ≠0,以及隐含的B ≠0。 (3)注意“都”,分子分母要同时乘以或除以,避免只乘或只除以分子或分母的部分项,或避免出现分子、分 母乘除的不是同一个整式的错误。 3. 分式的通分和约分:关键先是分解因式 1) 分式的约分定义:利用分式的基本性质,约去分式的分子与分母的公因式,不改变分式的值。 2) 最简分式:分子与分母没有公因式的分式 3) 分式的通分的定义:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母 的分式化成分母相同的分式。 4) 最简公分母:取“各个分母”的“所有因式”的最高次幂的积做公分母,它叫做最简公分母。 4. 分式的符号法则 分式的分子、分母与分式本身的符号,改变其中任何两个分式的值不变。用式子表示为 注:分子与分母变号时,是指整个分子或分母同时变号,而不是指改变分子或分母中的部分项的符号。 5. 条件分式求值 1) 整体代换法:指在解决某些问题时,把一些组合式子视作一个“整体”,并把这个“整体”直接代入另一个式 子,从而可避免局部运算的麻烦和困难。 例:已知 ,则求 2)参数法:当出现连比式或连等式时,常用参数法。 例:若 ,则求 6. 分式的运算: 1)分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。 2)分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 3)分式乘方法则: 分式乘方要把分子、分母分别乘方。 4)分式乘方、乘除混合运算:先算乘方,再算乘除,遇到括号,先算括号内的,不含括号的,按从左到右的顺序运算 5)分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。 异分母的分式相加减,先通分,变为同分母分式,然后再加减 ,a b a b a c ad bc ad bc c c c b d bd bd bd ±±±=±=±= bc ad c d b a d c b a bd ac d c b a =?=÷=?;n n n b a b a =)(C B C A B A ??=C B C A B A ÷÷= 41 1=+b a b b a b ab a a 7223-++-4 32c b a == c b a c b a +++-523

八年级数学下册《分式第二讲分式方程》知识点及典型例习题.doc

【知识要点】 1. 分式方程的概念以及解法 ; 2. 分式方程产生增根的原因 3. 分式方程的应用题 【主要方法】 2. 1. 分式方程主要是看分母是否有外未知数 ; 解分式方程的关健是化分式方程为整式方程 ; 方程两边同乘以最简公分 母. 3. 解分式方程的应用题关健是准确地找出等量关系, 恰当地设末知数 . 2019-2020 年八年级数学下册《分式第二讲 分式方程》知识点和典型例习题 题型一:用常规方法解分式方程 【例 1】解下列分式方程 ( 1) 1 3 ;( 2) 2 1 0 ;( 3) x 1 4 1 ;( 4) 5 x x 5 x 1 x x 3 x x 1 x 2 1 x 3 4 x 提示易出错的几个问题: ①分子不添括号;②漏乘整数项;③约去相同因式至使漏根; ④忘 记验根 . 题型二:特殊方法解分式方程 【例 2】解下列方程 ( 1) x 4 x 4 4 ; ( 2) x 7 x 9 x 10 x 6 x 1x x 6 x 8 x 9 x 5 提示:( 1)换元法,设 x y ;( 2)裂项法, x 7 1 1 . x 1 x 6 x 6 【例 3】解下列方程组 1 1 1 (1) x y 2 1 1 1 (2) y z 3 1 1 1 (3) z x 4 题型三:求待定字母的值 【例 4】若关于 x 的分式方程 2 1 m 有增根,求 m 的值 . x 3 x 3

【例 5】若分式方程 2 x a 1的解是正数,求 a 的取值范围 . x 2 提示: 2 a 0 且 x 2 , a 2 且 a 4 . x 3 题型四:解含有字母系数的方程 【例 6】解关于 x 的方程 x a c b x d (c d 0) 提示:( 1) a, b, c, d 是已知数;( 2) c d 0 . 题型五:列分式方程解应用题 练习: 1.解下列方程: ( 1) x 1 2x 0 ; (2) x 2 4 ; x 1 1 2x x 3 x 3 ( 3) 2x 3 2 ; (4) 7 3 1 7 x 2 x 2 x 2 x 2 x x x 2 x 2 1 ( 5) 5x 4 2x 5 1 (6) 1 1 1 1 2x 4 3x 2 2 x 1 x 5 x 2 x 4 ( 7) x x 9 x 1 x 8 x 2 x 7 x 1 x 6 2.解关于 x 的方程: ( 1) 1 1 2 (b 2a) ;( 2) 1 a 1 b (a b) . a x b a x b x 3.如果解关于 x 的方程 k 2 x 会产生增根,求 k 的值 . x 2 x 2 4.当 k 为何值时,关于 x 的方程 x 3 (x k 2) 1 的解为非负数 . x 2 1)( x 5.已知关于 x 的分式方程 2a 1 a 无解,试求 a 的值 . x 1 (二)分式方程的特殊解法 解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验, 但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下: 一、交叉相乘法 例 1.解方程: 1 x 3 x 2 二、化归法 例 2.解方程: 1 2 0 1 x 2 x 1

分式方程解法的标准

分式方程解法的标准 一,内容综述: 1.解分式方程的基本思想 在学习简单的分式方程的解法时,是将分式方程化为一元一次方程,复杂的(可化为一元二次方程)分式方程的基本思想也一样,就是设法将分式方程"转化"为整式方程.即 分式方程整式方程 2.解分式方程的基本方法 (1)去分母法 去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的最简公分母,使分式方程转化为整式方程.但要注意,可能会产生增根.所以,必须验根. 产生增根的原因: 当最简公分母等于0时,这种变形不符合方程的同解原理(方程的两边都乘以或除以同一个不等于零的数,所得方程与原方程同解),这时得到的整式方程的解不一定是原方程的解. 检验根的方法: 将整式方程得到的解代入原方程进行检验,看方程左右两边是否相等. 为了简便,可把解得的根直接代入最简公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根.必须舍去. 注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公 分母为0. 用去分母法解分式方程的一般步骤: (i)去分母,将分式方程转化为整式方程; (ii)解所得的整式方程; (iii)验根做答 (2)换元法 为了解决某些难度较大的代数问题,可通过添设辅助元素(或者叫辅助未知数)来解决.辅助元素的添设是使原来的未知量替换成新的未知量,从而把问题化繁为简,化难为易,使未知量向已知量转化,这种思维方法就是换元法.换元法是解分式方程的一种常用技巧,利用它可以简化求解过程. 用换元法解分式方程的一般步骤: (i)设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数 式; (ii)解所得到的关于辅助未知数的新方程,求出辅助未知数的值; (iii)把辅助未知数的值代回原设中,求出原未知数的值; (iv)检验做答. 注意:(1)换元法不是解分式方程的一般方法,它是解一些特殊的分式方程的特殊

分式及分式方程知识点总结

分式及分式方程 聚焦考点☆温习理解 一、分式 1、分式的概念 一般地,用A 、B 表示两个整式,A ÷B 就可以表示成B A 的形式,如果B 中含有字母,式子B A 就叫做分式。其中,A 叫做分式的分子, B 叫做分式的分母。分式和整式通称为有理式。 2、分式的性质 (1)分式的基本性质: 分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。 (2)分式的变号法则: 分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。 3、分式的运算法则 ;;bc ad c d b a d c b a bd ac d c b a =?=÷=? );()(为整数n b a b a n n n = ;c b a c b c a ±=± bd bc ad d c b a ±=± 二、分式方程 1、分式方程 分母里含有未知数的方程叫做分式方程。 2、分式方程的一般方法 解分式方程的思想是将“分式方程”转化为“整式方程”。它的一般解法是: (1)去分母,方程两边都乘以最简公分母 (2)解所得的整式方程 (3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程

的根。

3、分式方程的特殊解法 换元法: 换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。 名师点睛☆典例分类 考点典例一、分式的值 【例1】(2015·黑龙江绥化)若代数式6 265x 2-+-x x 的值等于0 ,则x=_________. 【点睛】分式6 265x 2-+-x x 的值为零则有x 2-5x+6为0分母2x-6不为0,从而即可求出x 的值. 【举一反三】 1.要使分式x 1x 2 +-有意义,则x 的取值应满足( ) A. x 2≠ B. x 1≠- C. x 2= D. x 1=- 2.(2015·湖南常德)若分式211 x x -+的值为0,则x = 考点典例二、分式的化简 【例2】化简:2x x x 1x 1 ---=( ) A 、0 B 、1 C 、x D 、 1 x x - 【点睛】观察所给式子,能够发现是同分母的分式减法。利用同分母分式的减法法则计算即可得到结果. 【举一反三】 1.化简22 a b ab b a --结果正确的是【 】 2.若241()w 1a 42a +?=--,则w=( )

分式方程的解法与技巧_知识精讲

分式方程的解法与技巧 【典型例题】 1. 局部通分法: 例1. 解方程:x x x x x x x x -----=-----34456778 分析:该方程的特点是等号两边各是两个分式,相邻两个分式的分子与分子,分母与分母及每个分式的分子与分母都顺序相差1,象这类通常采取局部通分法。 解:方程两边分别通分并化简,得: 145178()()()() x x x x --=-- 去分母得:()()()()x x x x --=--4578 解之得:x =6 经检验:x =6是原分式方程的根。 点拨:此题如果用常规法,将出现四次项且比较繁,而采用局部通分法,就有明显的优越性。 但有的时候采用这种方法前需要考虑适当移项,组合后再进行局部通分。 2. 换元法: 例2. 解方程: 7643165469222x x x x x x ----+=--+ 分析:此方程中各分式的分母都是含未知数x 的二次三项式,且前两项完全相同,故可考虑用换元法求解。令或或或k x x k x x k x x =--=-+=-+222646569 k x x =-26均可。 解:设,则原方程可化为:k x x =-+265 793144k k k --=-+ 去分母化简得:20147111602k k --= ∴()()k k -+=1220930 ∴,k k ==-129320 当时,k x x =--=126702 ()()x x -+=710 解之得:,x x 1217=-=

当时,k x x =--+=-93206593202 2012019302x x -+= 解此方程此方程无解。 经检验:,是原分式方程的根。x x 1217=-= 点拨:换元法解分式方程,是针对方程实际,正确而巧妙地设元,达到降次,化简的目的,它是解分式方程的又一重要的方法,本题还有其它的设法,同学们可自己去完成。 3. 拆项裂项法: 例3. 解方程: 12442212x x x x ++-+-= 分析:这道题虽然可用通分去分母的常规解法,但若将第二项拆项、裂项,则更简捷。 解:原方程拆项,变形为: ()()()()12222222221x x x x x x ++++-+---= 裂项为: 122222221x x x x ++-++--= 化简得:321x += 解之得:x =1 经检验:x =1是原分式方程的解。 4. 凑合法: 例4. 解方程:x x x x 4143412 +-=--- 分析:观察此方程的两个分式的分母是互为相反数,考虑移项后易于运算合并,能使运算过程简化。 解:部分移项得: x x x x 4143412=--+--- ∴x x x x 4143412=------ ∴x 412= ∴x =2 经检验:x =2是原分式方程的根。

分式方程知识点复习总结大全

分式方程知识点复习总结大全重点:1理解分式的概念、有意义的条件,分式的值为零的条件。 2理解分式的基本性质. 3会用分式乘除的法则进行运算. 4熟练地进行分式乘除法的混合运算. 5熟练地进行分式乘方的运算. 6熟练地进行异分母的分式加减法的运算. 7熟练地进行分式的混合运算. 8掌握整数指数幂的运算性质. 9会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的增根. 10利用分式方程组解决实际问题. 难点: 1能熟练地求出分式有意义的条件,分式的值为零的条件. 2灵活应用分式的基本性质将分式变形. 3灵活运用分式乘除的法则进行运算 4熟练地进行分式乘除法的混合运算. 5熟练地进行分式乘、除、乘方的混合运算. 6熟练地进行异分母的分式加减法的运算. 7熟练地进行分式的混合运算. 8会用科学计数法表示小于1的数. 9会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的增根. 10会列分式方程表示实际问题中的等量关系. 16.1分式及其基本性质

1.分式的概念:形如(A、B是整式,且B中含有字母,B≠0)的式子,叫做分式。其中A 叫做分式的分子,B叫做分式的分母。分母,分式才有意义 整式和分式统称有理式, 即有有理式=整式+分式. 分式值为0的条件:分子等于0,分母不等于0(两者必须同时满足,缺一不可) 例1:( 2011重庆江津)下列式子是分式的是( ) A. B. C. D. 【答案】B. 注意:不是分式 例2:已知,当x为何值时,分式无意义? 当x为何值时,分式有意义? 例3:(2011四川南充市)当分式的值为0时,x的值是()(A)0(B)1(C)-1(D)-2 【答案】B 2.分式的基本性质 (1)分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. ,,且均表示的是整式。 (2)分式的变号法则:

分式方程的解法及应用(提高)知识讲解

分式方程的解法及应用(提高) 责编:杜少波 【学习目标】 1. 了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程. 2. 会列出分式方程解简单的应用问题. 【要点梳理】 【高清课堂分式方程的解法及应用知识要点】 要点一、分式方程的概念 分母中含有未知数的方程叫分式方程. 要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数. (2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数 的方程是整式方程. (3)分式方程和整式方程的联系:分式方程可以转化为整式方程. 要点二、分式方程的解法 解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根. 解分式方程的一般步骤: (1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母); (2)解这个整式方程,求出整式方程的解; (3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解. 要点三、解分式方程产生增根的原因 方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根. 产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根. 要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方 程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方 程不是同解方程,这时求得的根就是原方程的增根. (2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中 没有错误的前提下进行的. 要点四、分式方程的应用 分式方程的应用主要就是列方程解应用题. 列分式方程解应用题按下列步骤进行: (1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系; (2)设未知数; (3)找出能够表示题中全部含义的相等关系,列出分式方程; (4)解这个分式方程;

分式方程知识点总结

分式方程知识点总结 一.分式方程、无理方程的相关概念: 1.分式方程:分母中含有未知数的方程叫做分式方程。2.无理方程:根号内含有未知数的方程。(无理方程又叫根式方程) 3.有理方程:整式方程与分式方程的统称。 二.分式方程与无理方程的解法: 1.去分母法: 用去分母法解分式方程的一般步骤是: ①在方程的两边都乘以最简公分母,约去分母,化成整式方程; ②解这个整式方程; ③把整式方程的根代入最简公分母,看结果是不是零,使最简公分母不为零的根是原方程的根,使最简公分母为零的根是增根,必须舍去。 在上述步骤中,去分母是关键,验根只需代入最简公分母。2.换元法: 用换元法解分式方程的一般步骤是: ②换元:换元的目的就是把分式方程转化成整式方程,要注意整体代换的思想; ③三解:解这个分式方程,将得出来的解代入换的元中再求解;

④四验:把求出来的解代入各分式的最简公分母检验,若结果是零,则是原方程的增根,必须舍去;若使最简公分母不为零,则是原方程的根。 解无理方程也大多利用换元法,换元的目的是将无理方程转化成有理方程。 三.增根问题: 1.增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的增根。 2.验根:因为解分式方程可能出现增根,所以解分式方程必须验根。 3.增根的特点:增根是原分式方程转化为整式方程的根,增根必定使各分式的最简公分母为0。 解分式方程的思想就是转化,即把分式方程整式方程。 常见考法 (1)考查分式方程的概念、分式方程解和增根的机会比较少,通常与其他知识综合起来命题,题型以选择、填空为主;(2)分式方程的解法,是段考、中考考查的重点。 误区提醒 (1)去分母时漏乘整数项; (2)去分母时弄错符号;

分式方程知识点归纳总结

分式方程知识点归纳总结 This manuscript was revised on November 28, 2020

分式方程知识点归纳总结 1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子B A 叫做分式。 1) 分式与整式最本质的区别:分式的字母必须含有字母,即未知数;分子可含字母可不含字 母。 2) 分式有意义的条件:分母不为零,即分母中的代数式的值不能为零。 3) 分式的值为零的条件:分子为零且分母不为零 2. 分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。 用式子表示 其中A 、B 、C 为整式(0≠C ) 注:(1)利用分式的基本性质进行分时变形是恒等变形,不改变分式值的大小,只改变形式。 (2)应用基本性质时,要注意C ≠0,以及隐含的B ≠0。 (3)注意“都”,分子分母要同时乘以或除以,避免只乘或只除以分子或分母的部分项, 或避免出现分子、分母乘除的不是同一个整式的错误。 3. 分式的通分和约分:关键先是分解因式 1) 分式的约分定义:利用分式的基本性质,约去分式的分子与分母的公因式,不改变分式的 值。 2) 最简分式:分子与分母没有公因式的分式 3) 分式的通分的定义:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的 值,把几个异分母的分式化成分母相同的分式。 4) 最简公分母:取“各个分母”的“所有因式”的最高次幂的积做公分母,它叫做最简公分 母。 4. 分式的符号法则 分式的分子、分母与分式本身的符号,改变其中任何两个分式的值不变。用式子表示为 注:分子与分母变号时,是指整个分子或分母同时变号,而不是指改变分子或分母中的部分项的 符号。 5. 条件分式求值 1) 整体代换法:指在解决某些问题时,把一些组合式子视作一个“整体”,并把这个“整体” 直接代入另一个式子,从而可避免局部运算的麻烦和困难。 例:已知 ,则求 2)参数法:当出现连比式或连等式时,常用参数 法。 例:若 ,则求 6. 分式的运算: 1)分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。 2)分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 3)分式乘方法则: 分式乘方要把分子、分母分别乘方。 4)分式乘方、乘除混合运算:先算乘方,再算乘除,遇到括号,先算括号内的,不含括号的, 按从左到右的顺序运算 5)分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。 异分母的分式相加减,先通分,变为同分母分式,然后再加减 7. 整数指数幂. 1) 任何一个不等于零的数的零次幂等于1, 即)0(10 ≠=a a ; 2) 任何一个不等于零的数的-n 次幂(n 为正整数),等于这个数的n 次幂的倒数,即 n n a a 1=- ()0≠a bc ad c d b a d c b a bd ac d c b a =?=÷=?;C B C A B A ??=C B C A B A ÷÷=n n b a a b )()(=-

分式方程解题技巧(提高)

分式方程解题技巧 例一, 一般结构的分式方程 解方程:x x x x x ++-=-2227115 解:(分解因式以便确定最简公分母)原方程变形为: ) 1(7)1)(1(1)1(5++-+=-x x x x x x )1(7)1(5-+=+x x x 4=x 检验:把4=x 代入0)1)(1(≠-+x x x 所以4=x 是原方程的解。 例1:解方程:) 4)(1(52)3)(2(1)2)(1(1+++=+++++x x x x x x x 分析:一般解法,最简公分母为)4)(3)(2)(1(++++x x x x ,此题直接去分母较为复杂。经观察发现,左边分母两个因式的差等与分子,右边分母两个因式的和等与分子。故考虑将分式拆开。 解:原方程变形为: 4 11131212111+++=+-+++-+x x x x x x 4 132+=+-x x 2 7-=x 经检验27- =x 是原方程的根。 例2:解方程:

20 7245361121330163223223+++++=+++++x x x x x x x x x x 分析:经观察发现直接去分母计算量非常可观,而且分母用公式法或十字相乘法都不能分解成两个因式的积。但是,同时也发现分子的最高次项的次数都比分母的最高次项高。我们知道假分数可以转化为带分数,故考虑将假分式变为真分式。 解:原方程变形为: 20 72522134222+++++=+++++x x x x x x x x 20 725213422+++=+++x x x x x x 解得:5=x 经检验5=x 是原方程的根。 例3:解方程:02)1(2122=++-+x x x x 分析:此题借用关系式2)1(122 2-+=+x x x x 较为简单。 解:原方程变形为:0)1 (2)1 (2=+-+x x x x 设x x y 1+= 则022=-y y 0=y 或2 当0=y 时,01=+x x ,则方程无解。 当2=y 时,21=+ x x ,即0122=+-x x ,则1=x 经检验:1=x 是原方程的解。 例4:解方程:5 26423234=+-+-+x x x x 分析:根据题目特点,利用下面关系式解题较为简单, 若c c x x 11+=+(c 为常数),则X=C 或c 1。

分式方程知识点归纳总结

分式方程知识点归纳总 结 This model paper was revised by LINDA on December 15, 2012.

分式方程知识点归纳总结 1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子 B A 叫做分式。 1) 分式与整式最本质的区别:分式的字母必须含有字母,即未知数;分子可含字母 可不含字母。 2) 分式有意义的条件:分母不为零,即分母中的代数式的值不能为零。 3) 分式的值为零的条件:分子为零且分母不为零 2. 分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不 变。 用式子表示 其中A 、B 、C 为整式(0≠C ) 注:(1)利用分式的基本性质进行分时变形是恒等变形,不改变分式值的大小,只改变形式。 (2)应用基本性质时,要注意C ≠0,以及隐含的B ≠0。 (3)注意“都”,分子分母要同时乘以或除以,避免只乘或只除以分子或分母的 部分项,或避免出现分子、分母乘除的不是同一个整式的错误。 3. 分式的通分和约分:关键先是分解因式 1) 分式的约分定义:利用分式的基本性质,约去分式的分子与分母的公因式,不改 变分式的值。 C B C A B A ??=C B C A B A ÷÷=

2)最简分式:分子与分母没有公因式的分式 3)分式的通分的定义:利用分式的基本性质,使分子和分母同乘适当的整式,不改 变分式的值,把几个异分母的分式化成分母相同的分式。 4)最简公分母:取“各个分母”的“所有因式”的最高次幂的积做公分母,它叫做 最简公分母。 4. 分式的符号法则 分式的分子、分母与分式本身的符号,改变其中任何两个分式的值不变。用式子表示为 注:分子与分母变号时,是指整个分子或分母同时变号,而不是指改变分子或分母中的部分项的符号。 5. 条件分式求值 1)整体代换法:指在解决某些问题时,把一些组合式子视作一个“整体”,并把这个“整体”直接代入另一个式子,从而可避免局部运算的麻烦和困难。 例:已知,则求 2)参数法:当出现连比式或连等式时,常用参数法。 例:若,则求 6. 分式的运算: 1)分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

分式方程的解法

分式方程的解法 多年的教学,总结了一下分式方程的解法,供大家参考,希望对大家有所帮助。 方法1:计算法 例 解方程 32 223=-++x x x 解:移项,得 ()() ()()是原方程的根时, 检验:当计算,得 4,022440 164022164-032 223=≠-+===+-=-++=--++x x x x x x x x x x x x 原理:分式的值为0,分子为0,分母不为0.方法是把所有的项集中于方程左边,右边为0 ,从而利用分式的值为0求出未知数。 方法2:分式相等法 例 解方程 32 223=-++x x x 解:原方程化为 ()()()()()()()() ()()()() 4 16 412344322322232222322222322=-=--=+--+=++--+-+=-+++-x x x x x x x x x x x x x x x x x x x 经检验,x=4是原方程的解。 原理:两分式相等,分母相等,分子也相等。 方法3:等式性质法 例 解方程 32 223=-++x x x 解:方程两边同乘()()22-+x x 得 ()()()() 4 16 412 3443223222322=-=--=+--+=++-x x x x x x x x x x 经检验,x=4是原方程的解。 原理:利用等式性质,去分母化为整式方程。方法2结合方法3,降低去分母的难度。

方法4:比例式法 例 解方程 41 5+=x x 解:两外项的乘积等于两內项的乘积 () 5 55 54154-==-+=+=x x x x x x 经检验,x=-5是原方程的解。

分式方程的解法及应用(提高)

分式方程的解法及应用(提高) 一、目标与策略 明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数! 学习目标: ●了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程. ●会列出分式方程解简单的应用问题. 学习策略: ●解分式方程去分母是关键; ●解分式方程的应用注意找等量关系,最后要验根. 二、学习与应用 1.一艘轮船在静水中的速度是20km/h,水流速度为v km/h,则轮船顺流航行的速度为,逆流航行的速度为 ,顺流航行100km所用的时间为,逆流航行60km所用的时间为 . 2. 解方程 21101 1 36 x x ++ -=时,去分母,去括号后为 . 3.将方程 11111 24396 x x x x +++=去分母后得到方程________. 要点一、分式方程的概念 分母中含有的方程叫分式方程. 要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含 有未知数. (2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一 般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有 未知数的方程是整式方程. (3)分式方程和整式方程的联系:分式方程可以转化为整式方程. 要点二、分式方程的解法 “凡事预则立,不预则废”.科学地预习才能使我们上课听讲更有目的性和针对 要点梳理——预习和课堂学习 认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习.课堂笔记或者其它补充填在右栏.预习和课堂学习更多知识点解析请学习网校资源 ID:#45981#405285 知识回顾——复习 学习新知识之前,看看你的知识贮备过关了吗?

分式方程的解法.doc

分式方程的解法 一、知识清单 1. 分式方程的定义:分母里含有未知数的方程叫分式方程. 2. 解分式方程的基本思想是:去分母,化为整式方程. 3. 解分式方程的一般步骤是: 去分母→去括号→移项→合并同类项→化系数为1→检验. 4. 分式方程增根:使最简公分母为0 的未知数的值叫做分式方程的增根. 二、基础夯实 1. 解下列分式方程: (1) 4x x 2 1 3 2 x x 2 (2) 1 x 1 ( x 1)( x 2) 2. 当m 为何值时,分式方程 m 2 x 1 x 1 3 2 x 会产生增根? 1 三、经典例题 1 1 例1. 我们容易求得分式方程 2 x x 2 的解为x 2或 1 x (口头检验一下). 2 1 1 (1)方程 3 x x 3 的解为; 1 1 (2)以x为未知数的方程 c x x c 的解为; (3)解方程: x 3x 4 2 3x x 2 4 26 5

例2. 解方程 x x 2 1 x x 3 2 x x 4 3 x x 5 4 例 3. 解 方 程 1 x(x 1) (x 1 1)( x 2) ... ( x 1 1998)( x 1999 ) 1 1 x . 4 ax 例4. 当a 为何值时,以x为未知数的方程 3 x 2 无 解? 1 1 5 ab 1 x y y z 6 a b 3 例5. 解方程组(1) bc b c 1 4 (2) 1 1 y z z x 7 12 ca 1 1 1 3 c a 5 z x x y 4

四、方法归纳 1. 解分式方程常用的方法:去分母法、部分分式法、逐项通分或整体通分法、裂项相消法、 1 1 换元法、倒置变换法等,还可以巧妙应用“x c x c ”型的解是x c或x 1 c . 2. 利用增根的意义解题是一类重要题型,其方法为:(1)先将分式方程转化为整式方程;(2)从原分式方程中求出使分母为零的增根;(3)把增根代入所得到的整式方程中. 3. 方程无解与方程有增根不是一回事. 如例4 方程无解时 a 有2 个值,但方程有增根时 a 只 有1 个值. 五、考题演练 1. 解关于x的方程 1 1 x a . x 1 a 1 2. 解方程13 11 2x 2x 17 15 2x 2x 19 17 2x 2x 11 9 2x 2x 3. 解方程x 1 1 1 1 2 x x x x x x2 x 2 2 3 2 5 6 7 12 4 21

分式方程知识点归纳总结(整理)

分式方程知识点归纳总结 1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子 B A 叫做分式。 1) 分式与整式最本质的区别:分式的字母必须含有字母,即未知数;分子可含字母可不含字母。 2) 分式有意义的条件:分母不为零,即分母中的代数式的值不能为零。 3) 分式的值为零的条件:分子为零且分母不为零 2. 分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。 用式子表示 其中A 、B 、C 为整式(0≠C ) 注:(1)利用分式的基本性质进行分时变形是恒等变形,不改变分式值的大小,只改变形式。 (2)应用基本性质时,要注意C ≠0,以及隐含的B ≠0。 (3)注意“都”,分子分母要同时乘以或除以,避免只乘或只除以分子或分母的部分项,或避免出现分子、分 母乘除的不是同一个整式的错误。 3. 分式的通分和约分:关键先是分解因式 1) 分式的约分定义:利用分式的基本性质,约去分式的分子与分母的公因式,不改变分式的值。 2) 最简分式:分子与分母没有公因式的分式 3) 分式的通分的定义:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母 的分式化成分母相同的分式。 4) 最简公分母:取“各个分母”的“所有因式”的最高次幂的积做公分母,它叫做最简公分母。 4. 分式的符号法则 分式的分子、分母与分式本身的符号,改变其中任何两个分式的值不变。用式子表示为 注:分子与分母变号时,是指整个分子或分母同时变号,而不是指改变分子或分母中的部分项的符号。 5. 条件分式求值 1) 整体代换法:指在解决某些问题时,把一些组合式子视作一个“整体”,并把这个“整体”直接代入另一个式 子,从而可避免局部运算的麻烦和困难。 例:已知 ,则求 2)参数法:当出现连比式或连等式时,常用参数法。 例:若 ,则求 6. 分式的运算: 1)分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。 2)分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 3)分式乘方法则: 分式乘方要把分子、分母分别乘方。 4)分式乘方、乘除混合运算:先算乘方,再算乘除,遇到括号,先算括号内的,不含括号的,按从左到右的顺序运算 5)分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。 异分母的分式相加减,先通分,变为同分母分式,然后再加减 ,a b a b a c ad bc ad bc c c c b d bd bd bd ±±±=±=±= 7. 整数指数幂. 1) 任何一个不等于零的数的零次幂等于1, 即)0(10 ≠=a a ; 2) 任何一个不等于零的数的-n 次幂(n 为正整数),等于这个数的n 次幂的倒数,即 n n a a 1 = - ()0≠a 注:分数的负指数幂等于这个分数的倒数的正整数指数幂。即 bc ad c d b a d c b a bd ac d c b a =?=÷=?;n n n b a b a =)(C B C A B A ??=C B C A B A ÷÷= n n b a a b )()(=-411=+b a b b a b ab a a 7223-++-432c b a ==c b a c b a +++-523

分式方程的解法及应用(提高)导学案+习题【含标准答案】

分式方程的解法及应用(提高) 【学习目标】 1. 了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程. 2. 会列出分式方程解简单的应用问题. 【要点梳理】 要点一、分式方程的概念 分母中含有未知数的方程叫分式方程. 要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数. (2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母 系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的 方程是整式方程. (3)分式方程和整式方程的联系:分式方程可以转化为整式方程. 要点二、分式方程的解法 解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根. 解分式方程的一般步骤: (1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母); (2)解这个整式方程,求出整式方程的解; (3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解. 要点三、解分式方程产生增根的原因 方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根. 产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根. 要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方程 的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方程 不是同解方程,这时求得的根就是原方程的增根. (2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解 方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程 中没有错误的前提下进行的. 要点四、分式方程的应用 分式方程的应用主要就是列方程解应用题. 列分式方程解应用题按下列步骤进行: (1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系; (2)设未知数; (3)找出能够表示题中全部含义的相等关系,列出分式方程; (4)解这个分式方程; (5)验根,检验是否是增根; (6)写出答案.

分式方程概念及解法

分式方程的概念,解法 知识要点梳理 要点一:分式方程的定义 分母里含有未知数的方程叫分式方程。 要点诠释: 1.分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量。 2.分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和 都是分式方程,而关于的方程和都是整式方程。 要点二:分式方程的解法 1. 解分式方程的其本思想 把分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,将分式方程转化为整式方程,然后利用整式方程的解法求解。 2.解分式方程的一般方法和步骤 (1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程。 (2)解这个整式方程。 (3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公 分母等于零的根是原方程的增根。 注:分式方程必须验根;增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零。 3. 增根的产生的原因: 对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件。当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根。 规律方法指导 1.一般地,解分式方程时,去分母后所得整式方程有可能使原方程中分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式方程的解. 经典例题透析: 类型一:分式方程的定义 1、下列各式中,是分式方程的是() A.B.C.D. 举一反三:

(完整版)新版北师大八年级下数学第五章分式与分式方程知识点总结

第五章:分式与分式方程 5.1认识分式 一般地,用,A B 表示两个整式,A B ÷可以表示成 A B 的形式,如果B 中含有字母,那么称A B 为分式,其中A 称为分式的分子,B 称为分式的分母,对于任意一个分式,分母都不能为零. 例1, 下列各式中哪些是整式?哪些是分式? 211(1);;(3);(4);2242 b a b x xy x y a x ++-+- (2) 分式的基本性质 分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值保持不变. 这一性质可以用式子表示为:,(0)b b m b b m m a a m a a m ?÷==≠?÷. 把一个分式的分子和分母的公因式约去,这种变形称为分式的约分. 例2, 化简下列分式 2225(1);;20xy a ab x y b ab ++ (2) 在化简的结果中,如果分子和分母已没有公因式,这样的分式称为最简分式,化简分式时,通常要使结果成为最简分式或是整式. 5.2分式的乘除法 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母; 两个分式相除,把除式的分子和分母颠倒位置后在与被除式相乘. 这一法则可以用式子表示为:;b d bd b d b c bc a c ac a c a d ad ?=÷=?= . 例3, 计算 222 2244(1);(4);2x xy xy x xy y x y x y x y x y +-+÷÷---+ (2) 5.3分式的加减法 同分母的分式相加减,分母不变,把分子相加减. 这一法则可以用式子表示为:b c b c a a a ±±=. 例4,计算 222(1);(2);(3);22a b x y m n n n a b b a x y y x n m n m n m ++++-------- 根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分,为了计算方便,异分母分式通分时,通常取最简单的公分母(最简公分母)作为它们的共同分母. 异分母分式的加减法法则是: 异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算. 这一法则可以用式子表示为:;b d bc ad bc ad a c ac ac ac ±±=±= 例5,计算

相关文档
最新文档