10-3固体吸附物理化学全解

合集下载

天津大学物理化学第十章 界面现象

天津大学物理化学第十章 界面现象

4. 亚稳态及新相生成
系统分散度增大、粒径减小引起液滴和固
体颗粒的饱和蒸气压大于普通液体、固体的情
况,只有在粒径很小时才需要考虑。 在蒸气冷凝、液体凝固和沸腾、溶液结晶 等过程中,新相从无到有,最初尺寸极其微小, 比表面积和表面吉布斯函数都很大,新相的产
生非常困难,会出现一些特殊的状态——亚稳
态(介安态)。
dG dA 8πr dr
pr 4πr 2 (dr ) pr dG (dn) RT ln RT ln p M p
dG dA 8πr dr
pr 2 M RT ln p r
开尔文公式
由Kelvin公式可知: 凸液面 r 越小pr 越大 p 2 M 对于凹液面: RT ln pr r 比较饱和蒸气压: p凸> p平> p凹
吸附等温线:
Va

Va

0
Va

p/p*

1
0 Va
p/p*

1
Va
0p/p*ຫໍສະໝຸດ 10p/p*
1
0
p/p*
1
p: 达平衡时的吸附压力; p*: 该温度下吸附气体的饱和蒸气压。
2. 吸附经验式——弗罗因德利希公式
Freundlich用指数方程描述 型吸附等温线
V a kpn
n、k 是两个经验参数,均是 T 的函数。 k: 单位压力时的吸附量。一般T ,k; n :介于0~1之间,反映 p 对V a 影响的强弱。 直线式: lgV
§10.4 液 - 固界面
固体表面力场不对称,存在润湿和吸附 1. 接触角与杨氏方程
平衡时
cos
s ls lg

固体表面吸附和催化

固体表面吸附和催化
表面二聚体(Ad-dimer):结合在一起的两个adatoms; 表面岛(island):多个adatoms结合在一起形成的相对
稳定的表面团簇; 表面的台和阶:平台(Terrace)是指台阶的平坦晶面,
台阶(step)是指台阶平台之间的阶越部分; 空位(Vacancy):平台上尚未被填充的单原子空位; 扭折(Kink):指沿step拐折的内角;
• 如活性炭、氧化铝、硅胶、聚酰胺、硅酸 镁、滑石粉、氧化钙(镁)、淀粉、纤维 素和蔗糖等。
• 分类:吸附剂可按孔径大小、颗粒形状、化学成 分、表面极性等分类,如粗孔和细孔吸附剂,粉 状、粒状、条状吸附剂,碳质和氧化物吸附剂, 极性和非极性吸附剂等。
吸附剂的选择(制造困难,理论缺乏)
1、选择性高(如分子筛)(1)孔道(2)极性
催化剂
催化剂-反应物
产物
催化剂的特性
• 加快化学反应的速度,但不进入化学反应 计量
• 催化剂对反应有选择性 • 只能加速热力学上可能的反应 • 不改变化学平衡的位置 • 催化剂可使化学反应经由只需较少活化能
(activation energy)的路径来进行化学 反应。
固体催化剂的构成
• 载体(Al2O3 ) • 主催化剂(合成NH3中的Fe) • 助催化剂(合成NH3中的K2O) • 共催化剂(石油裂解SiO2-Al2O3)
13X分子筛除能吸附5A分子筛所 能吸附的物质外,还能吸附 CHCl3,CHBr3,CHI3,CCl4,CBr4,C6H6, N-C3F8,C(CH3)3OH,仲丁醇,环已 烷,异构烷烃,甲苯等。
由于具有很高的催化活性,可用 于催化剂的载体。
固体的应用(2)——催化剂
• 定义:根据IUPAC于1981年提出的定义, 催化剂是一种物质,它能够加速反应的速 率而不改变该反应的标准Gibbs自由焓变化。 这种作用称为催化作用。涉及催化剂的反 应为催化反应。

物理化学实验答案1

物理化学实验答案1

物理化学实验答案1一、溶液中的等温吸附五、注意事项1.溶液的浓度配制要准确,活性炭颗粒要均匀并干燥2.醋酸是一种有机弱酸,其离解常数Ka=1.76某,可用标准碱溶液直接滴定,化学计量点时反应产物是NaAc,是一种强碱弱酸盐,其溶液pH 在8.7左右,酚酞的颜色变化范围是8-10,滴定终点时溶液的pH正处于其内,因此采用酚酞做指示剂,而不用甲基橙和甲基红。

直到加入半滴NaOH标准溶液使试液呈现微红色,并保持半分钟内不褪色即为终点。

3.变红的溶液在空气中放置后,因吸收了空气中的CO2,又变为无色。

4.以标定的NaOH标准溶液在保存时若吸收了空气中的CO2,以它测定醋酸的浓度,用酚酞做为指示剂,则测定结果会偏高。

为使测定结果准确,应尽量避免长时间将NaOH溶液放置于空气中。

七、讨论1.测定固体比表面时所用溶液中溶质的浓度要选择适当,即初始溶液的浓度以及吸附平衡后的浓度都选择在合适的范围内。

既要防止初始浓度过高导致出现多分子层吸附,又要避免平衡后的浓度过低使吸附达不到饱和。

2.按朗格谬尔吸附等温线的要求,溶液吸附必须在等温条件下进行,使盛有样品的磨口锥形瓶置于恒温器中振荡,使之达到平衡。

本实验是在空气浴中将盛有样品的磨口锥形瓶置于振荡器上振荡。

实验过程中温度会有变化,这样会影响测定结果。

3.由实验结果可知,活性炭在醋酸溶液中的吸附为单分子层吸附,可用Langmuir吸附等温式表征其吸附特性。

用溶液吸附法测定活性炭比表面积,不需要特殊仪器,但测定过程中要防止溶剂挥发,以免引起测量误差。

此外,由于忽略界面上被溶剂占据部分,因此由这一方法所测得的比表面积一般偏小。

但由于方法简便,可以作为了解固体吸附剂特性的一种简便方法。

八、思考题(供参考)1.吸附作用与哪些因素有关?固体吸附剂吸附气体与从溶液中吸附溶质有何不同?答:吸附作用与温度、压力、溶剂、吸附质和吸附剂性质有关。

固体在溶液中的吸附,除了吸附溶质还有溶剂,液固吸附到达平衡时间更长;固体吸附剂吸附气体受温度、压力及吸附剂和吸附质性质影响:气体吸附是放热过程,温度升高吸附量减少;压力增大,吸附量和吸附速率增大;一般吸附质分子结构越复杂,被吸附能力越高。

天津大学物理化学课件 界面现象

天津大学物理化学课件 界面现象
31
3. 吸附经验式——弗罗因德利希公式
对I类吸附等温线:
lgV a nlgplgkk, n 经验常数, 与吸附体系及T 有关。
直线式:
bp
1
bp
lg(Va/[ V])
T1 <T2
斜率 n; 截距 k(p =1时的吸附量)
T,k
lg(p/[p])
方程的优点:(1) 形式简单、计算方便、应用广泛;
直径:1cm 表面积:3.1416 cm2
直径:10nm 表面积:314.16 m2
表面积是原来的106倍
界面相示意图
一些多孔物质如:硅胶、活性炭等,也具有很大的比表面积。
3
物质的分散度可用比表面积as来表示,其定义为 as = As/m
单位为m2kg-1。
小颗粒的分散系统往往具有很大的比表面积,因此 由界面特殊性引起的系统特殊性十分突出。
——过饱和蒸气,过热液体,过冷液体,过饱和溶液
27
§10-3 固体表面
在固体或液体表面,某物质的浓度与体相浓度不同 的现象称为吸附。
产生吸附的原因,也是由于表面分子受力不对称。
dG = dA+Ad
被吸附的物质—— 有吸附能力的物质——
28
1. 物理吸附与化学吸附:
性质 吸附力 吸附层数 吸附热 选择性 可逆性 吸附平衡
26
(4) 过饱和溶液
na
n m
溶液浓度已超过饱和 液体,但仍未析出晶体的 溶液称为过饱和溶液。
原因:小晶体为凸面, pr>p , 表明分子从固相中逸出的倾向大 , 这造成它的浓度大,即溶解度大, 由此产生过饱和现象。
由于小颗粒物质的表面特殊性,造成新相难以生成, 从而形成四种不稳定状态(亚稳态):

最全的物理化学名词解释

最全的物理化学名词解释

最全的物理化学名词解释材料人考学饱和蒸汽压:单位时间内有液体分子变为气体分子的数目与气体分子变为液体分子数目相同,宏观上说即液体的蒸发速度与气体的凝结速度相同的气体称为饱和蒸汽,饱和气体所具有的压力称为饱和蒸汽压。

敞开体系:体系与环境之间既有物质交换,又有能量交换。

封闭体系:体系与环境之间无物质交换,但有能量交换孤立体系:体系与环境之间既无物质交换,又无能量交换,故又称为隔离体系。

广度量和强度量:是指与物质的数量成正比的性质,如系统物质的量,体积,热力学能,熵等。

具有加和性,在数学上是一次齐函数,而是指与物质无关的性质,如温度压力等平衡态:系统内部处于热平衡、力平衡、相平衡、化学平衡状态函数:体系的一些性质,其数值仅取决于体系所处的状态,而与体系的历史无关;它的变化值仅取决于体系的始态和终态,而与变化的途径无关。

具有这种特性的物理量称为状态函数。

热:体系与环境之间由于温度的不同而传递的能量称为热。

功:体系与环境之间传递的除热以外的其它能量都称为功。

摩尔相变焓:是指单位物质的量的物质在恒定温度T及该温度平衡压力下发生相变时对应的焓变标准摩尔生成焓:在温度为T的标准态下,由稳定相态的单质生成化学计量数VB=1的β相态的化合物B 该生成反应的焓变称为该化合物B在温度T时的标准摩尔生成焓。

标准摩尔燃烧焓:在标准压力下,反应温度时,1摩尔反应物质B完全氧化成相同温度的指定产物时的标准摩尔反应焓。

可逆过程:我们把某一体系经过某一个过程,如果能使体系和环境都完全复原,则该过程称为“可逆过程”。

反应热当体系发生反应之后,使产物的温度回到反应前始态时的温度,体系放出或吸收的热量,称为该反应的热效应。

溶解热:在恒定的T、p下,单位物质的量的溶质B溶解与溶剂A中,形成B的摩尔分数xB=0.1的溶液时,过程的焓变。

稀释热:在恒定的T、p下,某溶剂中质量摩尔浓度b1的溶液用同样的溶剂稀释成为质量摩尔浓度b2的溶液时,所引起的每单位物质的量的溶质之焓变。

吸附(物理吸附与化学吸附)在催化中的应用

吸附(物理吸附与化学吸附)在催化中的应用

物理吸附与化学吸附在催化中的应用摘要:吸附过程与催化作用在国民经济和环境保护方面具有重要意义。

他们是化学工业,石油炼制以及国民经济其他领域最活跃的研究课题之一。

这两个领域涉及到的都是表面现象,使用的都是多孔固体。

吸附是催化反应得以发展的最关键步骤之一,通过它揭示催化本质和研究催化性质越来越受到人们的重视,因此许多在线原位动态测量技术得以快速发展。

关键词:物理化学吸附表征测定孔结构气体探针1. 吸附现象吸附:当流体与多孔固体接触时, 流体中某一组分或多个组分在固体表面处产生积蓄, 此现象称为吸附。

吸附也指物质(主要是固体物质)表面吸住周围介质(液体或气体)中的分子或离子现象[1,2]。

实际上,人们很早就发现并利用了吸附现象,如生活中用木炭脱湿和除臭等。

随着新型吸附剂的开发及吸附分离工艺条件等方面的研究,吸附分离过程显示出节能、产品纯度高、可除去痕量物质、操作温度低等突出特点,使这一过程在化工、医药、食品、轻工、环保等行业得到了广泛的应用,例如:(1)气体或液体的脱水及深度干燥,如将乙烯气体中的水分脱到痕量,再聚合。

(2)气体或溶液的脱臭、脱色及溶剂蒸气的回收,如在喷漆工业中,常有大量的有机溶剂逸出,采用活性炭处理排放的气体,既减少环境的污染,又可回收有价值的溶剂。

(3)气体中痕量物质的吸附分离,如纯氮、纯氧的制取。

(4)分离某些精馏难以分离的物系,如烷烃、烯烃、芳香烃馏分的分离。

(5)废气和废水的处理,如从高炉废气中回收一氧化碳和二氧化碳,从炼厂废水中脱除酚等有害物质。

1.1吸附吸附属于一种传质过程,物质内部的分子和周围分子有互相吸引的引力,但物质表面的分子,其中相对物质外部的作用力没有充分发挥,所以液体或固体物质的表面可以吸附其他的液体或气体,尤其是表面面积很大的情况下,这种吸附力能产生很大的作用,所以工业上经常利用大面积的物质进行吸附,如活性炭、水膜等。

当液体或气体混合物与吸附剂长时间充分接触后,系统达到平衡,吸附质的平衡吸附量(单位质量吸附剂在达到吸附平衡时所吸附的吸附质量),首先取决于吸附剂的化学组成和物理结构,同时与系统的温度和压力以及该组分和其他组分的浓度或分压有关。

物理化学知识点chap 10

物理化学知识点chap 10

Pa
2.356
103
kPa
【10.5】水蒸气迅速冷却至298.15K时可达到过饱和状态。已
知该温度下水的表面张力为71.97×10-3 N·m -1 ,密度为997
kg·m-3。 当过饱和水蒸气压力为平液面水的饱和蒸气压的4
倍时,计算: (1)开始形成水滴的半径;(2)每个水滴中
所含水分子的个数。
m
= 7.569 ? 10- 10m
(2)每个水滴的体积
( ) V 水滴=
4 3
pr
3
=
4 创3.14 3
7.569 ? 10- 10 3 m 3
1.815 ? 10- 27m 3
每个水分子的体积
V 水分子=
M rL
=
骣 琪 琪 琪 桫997

0.018 6.022
m 3 = 3.00 ? 10- 29m 3 1023
分析: 利用拉普拉斯方程
p 2
r
解: (1)和(2)两种情况下均只存在一个气-液界面, 其附加压力相同。根据拉普拉斯方程
p
2
r
2 58.91103 0.1106
Pa
1.178
103
kPa
(3)空气中存在的气泡,有两个气-液界面,其附加压力 为
p
4
r
4
58.91103 0.1106

pg
••



p
• •
pl
(a)
pg
• 气 p • •
液•
pl (b)
附加压力方向示意图


气•


• •
p=• 0

半导体材料(复习资料)

半导体材料(复习资料)

半导体材料(复习资料)半导体材料复习资料0:绪论1.半导体的主要特征:(1)电阻率在10-3 ~ 109 ??cm 范围(2)电阻率的温度系数是负的(3)通常具有很高的热电势(4)具有整流效应(5)对光具有敏感性,能产生光伏效应或光电导效应2.半导体的历史:第一代:20世纪初元素半导体如硅(Si)锗(Ge);第二代:20世纪50年代化合物半导体如砷化镓(GaAs)铟磷(InP);第三代:20世纪90年代宽禁带化合物半导体氮化镓(GaN)碳化硅(SiC)氧化锌(ZnO)。

第一章:硅和锗的化学制备第一节:硅和锗的物理化学性质1.硅和锗的物理化学性质1)物理性质硅和锗分别具有银白色和灰色金属光泽,其晶体硬而脆。

二者熔体密度比固体密度大,故熔化后会发生体积收缩(锗收缩5.5%,而硅收缩大约为10%)。

硅的禁带宽度比锗大,电阻率也比锗大4个数量级,并且工作温度也比锗高,因此它可以制作高压器件。

但锗的迁移率比硅大,它可做低压大电流和高频器件。

2)化学性质(1)硅和锗在室温下可以与卤素、卤化氢作用生成相应的卤化物。

这些卤化物具有强烈的水解性,在空气中吸水而冒烟,并随着分子中Si(Ge)?H键的增多其稳定性减弱。

(2)高温下,化学活性大,与氧,水,卤族(第七族),卤化氢,碳等很多物质起反应,生成相应的化合物。

注:与酸的反应(对多数酸来说硅比锗更稳定);与碱的反应(硅比锗更容易与碱起反应)。

2.二氧化硅(SiO2)的物理化学性质物理性质:坚硬、脆性、难熔的无色固体,1600℃以上熔化为黏稠液体,冷却后呈玻璃态存在形式:晶体(石英、水晶)、无定形(硅石、石英砂) 。

化学性质:常温下,十分稳定,只与HF、强碱反应3.二氧化锗(GeO2)的物理化学性质物理性质:不溶于水的白色粉末,是以酸性为主的两性氧化物。

两种晶型:正方晶系金红石型,熔点1086℃;六方晶系石英型,熔点为1116℃化学性质:不跟水反应,可溶于浓盐酸生成四氯化锗,也可溶于强碱溶液,生成锗酸盐。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吸附等压线:
T
5
2. 等温吸附
p
N2在活性炭上的 N2在硅胶上的 吸附(-195 ℃) 吸附(-195 ℃) Br2在硅胶上 的吸附(79 ℃) 苯在氧化铁凝胶 水气在活性碳上 上的吸附(50 ℃) 的吸附(100 ℃)
(a)
(b)
(c)
(d)
(e)
几种类型的吸附等温线
6
类型的吸附等温线

常见的等温吸附线
量 EC) 要比氢分子先
解离成原子再化学吸 附的途径(需能量DHH)
H H
0.16 0.32
r (距表面镍核的距离,nm)
4
吸附的势能曲线
容易得多.
• 氢在镍上的吸附势能曲线
2. 等温吸附
1)吸附量
当吸附达平衡时, 单位质量吸附剂所吸附的气体 的物质的量或标准状况下的体积称为平衡吸附量. a def n a def V n 或 V 3/kg Va 单位 mol/kg , m m m 气体的吸附量与温度和压力有关: Va = f ( T, pB ) 吸附等温线: Va= f ( pB ) 吸附等压线: Va = f ( T ) Va 吸附等温线 p
吸附的分类 曲线P为物理吸附,C 为化学吸附, 两条曲线
E Ni C
吸附的势能曲线
过 渡 状 态 X EC - HP P -HC =125 kJmol-1 H
在X 点相交.
DHH=434 kJmol-1
从能量上看, 先发生
物理吸附而后转变为 化学吸附的途径(需能
0
H H DHH氢分子离解能 HC化学吸附热 HP物理吸附热 EC化学吸附活化能
物理吸附 吸附力 分子间力 吸附分子层 多分子层或单分子层 吸附温度 低 吸附热 小 ,冷凝热数量级 大 , 吸附速率 快 吸附选择性 无
化学吸附 化学键力 单分子层 高 反应热数量级 慢 有
B 1 A
1.吸附的分类
2
物理吸附和化学吸附往往可以同时发生
T • 钯对CO的吸附等压线 3
§ 10-3 固体表面
A (s) + B(g)
吸附
脱附
A-B(ad)
4. 单分子层吸附理论 9
4. 单分子层吸附理论 1)表面覆盖率被吸附质覆盖的固体表 面 固体总的表面积二维浓度
(1- ) (1 - )
代表固体空白表面的分数
A (s) + B(g)
p
A-B(ad)
v吸 k1 p(1 )N

k1 b 1 k
由1916年兰格缪尔提出. 基本假设如下:
1) 单分子层吸附: 固体表面上每个吸附位只能吸附一个分子, 气体
分子只有碰撞到固体的空白表面上才能被吸附;
2) 吸附平衡是动态平衡: 达吸附平衡时, 吸附和脱附过程同时进 行, 且速率相同.
3) 固体表面是均匀的: 表面上各个晶格位置的吸附能力相同;
4) 被吸附的气体分子间无相互作用力: 吸附或脱附的难易与邻近有无吸附分子无关;
v脱 k-1
吸附平衡是动态平衡:
称为吸附系数,
k1 p(1 )N=k-1 N
bp 1 bp
具有压力倒数的量纲,Pa-1 本质b 即为吸附平衡常数, 其大小表示吸附作用的强弱. 其大小与吸附剂、吸附质的本性及温 度有关 10
2)兰格缪尔吸附等温式的其他形式
bp Va a 1 bp Vm
V a 代表覆盖率为 时的平衡吸附量
a Vm 代表在足够高压力下的饱和吸附量( =1
bp a V Vm 1 bp
dG表 dAs Asd
Fe
Fe
Fe
一个在恒温恒压下自发的吸附过程 G < 0, H = G + T S < 0 放热过程. 吸附的分类 1. 物理吸附 2. 化学吸附
S < 0
按吸附作用力性质的不同分类
范德华力:分子间力(色散力、诱导力、取向力) 化学键力:化学吸附时可发生电子的转移、原子的 2 重排、 化学键的断裂与形成等微观过程.
1
§ 10-3 固体表面
在相界面上某种物质的浓度不同于体相浓度的现象称为吸附 H H 红棕 色气体溴被碳吸附 吸附现象 H H 吸附剂A:具有吸附能力的物质 Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe 吸附质B:被吸附的 物质 Fe Fe Fe Fe Fe 吸附原因 固体表面会自发地捕获气相或液相中的分子,使之在固体表 面上浓集,从而降低表面吉布斯函数。 吸附热
定压时, 温度愈高吸附量愈低.
定温时, 压力愈高吸附量愈大. 低压段吸附量随压力直线上升; 中压段 压力影响逐渐减弱
•不同温度下氨气在炭粒上的吸附等温线
高压段 压力几乎无影响, 吸附趋向饱和.
7

3. 吸附经验式 弗罗因德利希提出如下等温吸附经验式: Va = kpn 式中k和n为经验常数, k (单位压力时的吸附量)一般随温 度升高而减小; n 一般介于 0 ~ 1 之间. 该经验式只适用于中压范 围的吸附(I型吸附等温线). 取对数得 lgVa =nlg p +lgk
§10-3 固体表面
吸附的分类 范德华力 化学键力
H H H H H H Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe H H H H
1. 物理吸附 2. 化学吸附
Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe
以lgVa对lg p 作图, 应得一条直 线, 可由斜率和截距分别求得 常数n和k.
优缺点:1、形式简单,计算方便, 应用广泛 • CO在椰子壳炭上的吸附 2、适用于固-液,气-固界面上的单分子吸附 3、仅适用于中压范围的吸附,k,n没有物理意义,不能解释吸 8 附作用的机理。 3. 吸附经验式
4. 单分子层吸附理论
• 固体表面上的原子或分子与液体一样,表面层 分子受力是不对称的,而且不同于液体表面分 子即固体表面分子几乎是不可以移动的 • 固体表面是不均匀的,即使从宏观上看似乎很 光滑,但从原子水平上看是凹凸不平的。 • 但固体可以从表面的外部空间吸引气体分子到 表面,以减小表面分子受力不对称的程度,降 低表面张力及表面吉布斯函数。 • 固体表面会自发地将气体富集到其表面, 使气体在固体表面的浓度(或密度)不同于气 相中的浓度(或密度)。
相关文档
最新文档