排队论模型
订单处理中的排队论模型研究

订单处理中的排队论模型研究在现代商业环境中,订单处理是任何企业或组织不可或缺的一部分。
如何高效地管理订单处理流程成为了检验企业运营能力的重要指标之一。
排队论模型是一种研究订单处理中服务设施效率的数学工具,其可以帮助企业找到优化订单处理流程的方法。
本文将介绍排队论模型在订单处理中的研究应用,并探讨其对提升服务质量和效率的意义。
一、排队论模型概述排队论模型是对排队系统进行建模和分析的数学工具。
它可以用来研究各种排队现象,例如:顾客到达时间、服务时间、顾客等待时间、服务人员数量等。
排队论模型中的关键参数包括到达率、服务率和服务设施数量,通过调整这些参数可以控制和优化排队系统。
在订单处理中,排队论模型可以衡量订单等待时间、服务水平,为企业提供决策依据。
二、排队论模型在订单处理中的应用1. 订单接受率优化通过排队论模型,企业可以根据订单的到达率和服务设施数量,优化订单接受率。
在接受新订单时,企业可以根据当前服务设施的负载情况来决定是否接受,并设置适当的等待阈值。
通过合理地控制订单接受率,企业可以避免资源浪费和订单滞后。
2. 服务设施数量优化排队论模型可以帮助企业确定合适的服务设施数量,以达到最佳的订单处理效率和服务质量。
在订单处理过程中,流程瓶颈往往出现在服务设施数量不足的环节。
通过分析排队论模型,企业可以评估当前服务设施的数量是否满足需求,避免因过多或过少的服务人员而导致效率低下或服务质量下降。
3. 顾客等待时间分析订单处理中的顾客等待时间是影响客户满意度和忠诚度的关键因素之一。
排队论模型可以用来分析顾客等待时间的概率分布,并提供相应的服务水平指标,如平均等待时间、最长等待时间等。
企业可以根据这些指标来设定合理的服务水平目标,以最大程度地满足客户需求。
三、排队论模型在订单处理中的意义排队论模型在订单处理中的应用,能够帮助企业合理分析和设计订单处理流程,提高服务质量和效率。
通过对排队论模型的研究,企业可以优化资源配置,减少服务瓶颈,提前预测和解决潜在问题,从而实现更高效的订单处理。
排队论模型

排队论模型随机服务系统理论是研究由顾客、服务机构及其排队现象所构成的一种排队系统的理论,又称排队论。
排队现象是一种经常遇见的非常熟悉的现象,例如:顾客到自选商场购物、乘客乘电梯上班、汽车通过收费站等。
随机服务系统模型已广泛应用于各种管理系统,如生产管理、库存管理、商业服务、交通运输、银行业务、医疗服务、计算机设计与性能估价,等等。
随机服务系统模拟,如存储系统模拟类似,就是利用计算机对一个客观复杂的随机服务系统的结构和行为进行动态模拟,以获得系统或过程的反映其本质特征的数量指标结果,进而预测、分析或估价该系统的行为效果,为决策者提供决策依据。
排队论模型及其在医院管理中的作用每当某项服务的现有需求超过提供该项服务的现有能力时,排队就会发生。
排队论就是对排队进行数学研究的理论。
在医院系统内,“三长一短”的现象是司空见惯的。
由于病人到达时间的随机性或诊治病人所需时间的随机性,排队几乎是不可避免的。
但如何合理安排医护人员及医疗设备,使病人排队等待的时间尽可能减少,是本文所要介绍的。
一、医院系统的排队过程模型医院是一个复杂的系统,病人在医院中的排队过程也是很复杂的。
如图1中每一个箭头所指的方框都是一个服务机构,都可构成一个排队系统,可见图2。
图1 医院系统的多级排队过程模型二、排队系统的组成和特征一般的排队系统都有三个基本组成部分:1. 输入过程其特征有:顾客源(病人源)的组成是有限的或无限的;顾客单个到来或成批到来;到达的间隔时间是确定的或随机的;顾客的到来是相互独立或有关联的;顾客相继到达的间隔时间分布和所含参数(如期望值、方差等)都与时间无关或有关。
2. 排队规则其特征是对排队等候顾客进行服务的次序有下列规则:先到先服务,后到先服务,有优先权的服务(如医院对于病情严重的患者给予优先治疗,在此不做一般性的讨论),随机服务等;还有具体排队(如在候诊室)和抽象排队(如预约排队)。
排队的列数还分单列和多列。
3. 服务机构其特征有:一个或多个服务员;服务时间也分确定的和随机的;服务时间的分布与时间有关或无关。
带优先权排队论模型简介应用案例

0.325 hour
0.033 hour
0.889 hour
0.048 hour
文档仅供参考,如有不当之处,请联系改正。
案例求解 3
即
W1
=W
= Wq
+
1 m
=
Lq l
+
1 m
=
P0(l m)s r s!(1- r)2 l
+
1 m
其中
r= l sm
åé s-1 (l / m)n (l / m)s 1 ù
➢ 非强占性优先权(Nonpreemptive Priorities)——虽然一种高优先级
旳顾客到达,也不能强制让一种正在接受服务旳低优先级顾客返回排队。
➢ 强占性优先权(Preemptive Priorities)——若有高优先级旳顾客到达,
服务员即中断对低优先级顾客旳服务,并立即开始为高优先级顾客服务。
N
l = å li
i=1
r= l m
k
å 【注:】这里假设了 li < sm,
i=1
从而使其能到达稳定状态。
文档仅供参考,如有不当之处,请联系改正。
计算公式 2
抢占性优先权(基于M/M/1)
1/ m
Wk = Bk-1Bk
for k=0,1,2,…,N
文档仅供参考,如有不当之处,请联系改正。
案例求解 3
文档仅供参考,如有不当之处,请联系改正。
案ቤተ መጻሕፍቲ ባይዱ求解 3
W1-1/μ W2-1/μ W3-1/μ
Preemptive Priorities
s=1
s=2
0.024 hour
0.154 hour
排队论模型

排队论模型排队论也称随机服务系统理论。
它涉及的是建立一些数学模型,藉以对随机发生的需求提供服务的系统预测其行为。
现实世界中排队的现象比比皆是,如到商店购货、轮船进港、病人就诊、机器等待修理等等。
排队的内容虽然不同,但有如下共同特征:➢有请求服务的人或物,如候诊的病人、请求着陆的飞机等,我们将此称为“顾客”。
➢有为顾客提供服务的人或物,如医生、飞机跑道等,我们称此为“服务员”。
由顾客和服务员就组成服务系统。
➢顾客随机地一个一个(或者一批一批)来到服务系统,每位顾客需要服务的时间不一定是确定的,服务过程的这种随机性造成某个阶段顾客排长队,而某些时候服务员又空闲无事。
排队论主要是对服务系统建立数学模型,研究诸如单位时间内服务系统能够服务的顾客的平均数、顾客平均的排队时间、排队顾客的平均数等数量规律。
一、排队论的一些基本概念为了叙述一个给定的排队系统,必须规定系统的下列组成部分:➢输入过程即顾客来到服务台的概率分布。
排队问题首先要根据原始资料,由顾客到达的规律、作出经验分布,然后按照统计学的方法(如卡方检验法)确定服从哪种理论分布,并估计它的参数值。
我们主要讨论顾客来到服务台的概率分布服从泊松分布,且顾客的达到是相互独立的、平稳的输入过程。
所谓“平稳”是指分布的期望值和方差参数都不受时间的影响。
➢排队规则即顾客排队和等待的规则,排队规则一般有即时制和等待制两种。
所谓即时制就是服务台被占用时顾客便随即离去;等待制就是服务台被占用时,顾客便排队等候服务。
等待制服务的次序规则有先到先服务、随机服务、有优先权的先服务等,我们主要讨论先到先服务的系统。
➢服务机构服务机构可以是没有服务员的,也可以是一个或多个服务员的;可以对单独顾客进行服务,也可以对成批顾客进行服务。
和输入过程一样,多数的服务时间都是随机的,且我们总是假定服务时间的分布是平稳的。
若以ξn表示服务员为第n个顾客提供服务所需的时间,则服务时间所构成的序列{ξn},n=1,2,…所服从的概率分布表达了排队系统的服务机制,一般假定,相继的服务时间ξ1,ξ2,……是独立同分布的,并且任意两个顾客到来的时间间隔序列{Tn}也是独立的。
mm1n排队论模型参数

mm1n排队论模型参数
M/M/1 排队论模型是一种简单的排队系统模型,用于分析单一服务台、顾客到达服从泊松分布、服务时间服从指数分布的系统。
在M/M/1 模型中,有三个主要参数:
1. 到达率(λ):表示单位时间内到达系统的顾客数的期望值,服从参数为λ的泊松分布。
到达率决定了系统中的顾客数量变化速率。
2. 服务率(μ):表示单位时间内一个顾客被服务完成的期望值,服从参数为μ的指数分布。
服务率决定了系统中顾客等待服务的速度。
3. 顾客到达和服务时间是独立的:这个条件表明顾客的到达和服务的完成之间没有影响,使得模型更具有现实意义。
通过平衡方程法,可以对M/M/1 模型进行稳态分析,计算出以下几个重要性质:
1. 队长(Ls):表示系统中的顾客数(n)的期望值。
2. 排队长(Lq):表示系统中排队等待服务的顾客数(n)的期望值。
3. 逗留时间(Ws):指一个顾客在系统中的全部停留时间,为期望值。
4. 等待时间(Wq):指顾客在系统中等待服务的時間,为期望值。
了解这些参数后,可以对M/M/1 模型进行评估和优化,以提高系统的效率和服务质量。
M/M/1 模型虽然简单,但在实际应用中具有广泛的价值,如电话交换系统、计算机网络、银行窗口等。
掌握M/M/1 模型的基本原理和分析方法对于学习排队论和实际应用具有重要意义。
优先权排队论模型

优先权排队论模型带优先权的排队论模型在优先权排队模型中,队中的成员被服务的顺序基于他们被赋予的优先级。
相⽐⼀般的排队模型,很多真实存在的排队系统实际上更符合带优先权的排队论模型,⽐如紧急⼯作的招聘优先于其他⼀般的⼯作;VIP客户较其他⼀般客户,在服务上享有优先权等等。
因此,带优先权的排队论模型有其实际意义。
这⾥介绍两种最基本的优先权排队模型——⾮强占性优先权模型和强占性优先权模型。
两个模型除优先权⾏使⽅式之外,其他假设均⼀致。
我们⾸先描述这两个模型,之后分别给出其结论,最后通过⼀个案例来阐述其在实际中的应⽤。
1.模型公共假设:(1)两个模型都存在N个优先级(1级代表最⾼)(2)服务顺序⾸先基于优先级,同⼀优先级内,依据“先到先服务”(3)对任意优先级,顾客到达服从Poisson分布,服务时间服从负指数分布(4)对任意优先级顾客的服务时间相同(5)不同优先级顾客的平均到达率可以不同⾮强占性优先权(Nonpreemptive Priorities)是指,即使⼀个⾼优先级的顾客到达,也不能强制让⼀个正在接受服务的低优先级顾客返回排队。
也就是说,⼀旦服务员开始对⼀个顾客服务,这项服务就不能被打断直⾄服务结束。
强占性优先权(Preemptive Priorities)是指,⼀旦有⾼优先级的顾客到达,服务员即中断对低优先级顾客的服务(这名顾客重新回到排队中),并马上开始为⾼优先级顾客服务。
结束这项服务后,再按照公共假设中的原则选取下⼀个被服务的顾客。
(这⾥由于负指数分布的⽆记忆性,我们不必关注被中断顾客的服务进度,因为剩余服务时间的分布与从起点开始的服务时间的分布总是相同的。
)对这两个模型来说,如果忽略顾客的优先级,它们是完全等同于⼀般的M/M/s排队模型的。
因此,当计算整个队列中顾客的总⼈数(L,L q)时,M/M/s模型的结论是适⽤的;实际上,若随机选择⼀个顾客,其等待时间(W,W q)也可以通过Little公式计算得出。
计算机网络的排队论模型

计算机网络的排队论模型计算机网络的排队论模型是一种理论模型,用于研究计算机网络中传输数据时产生的排队现象和性能表现。
排队论模型可以帮助我们理解计算机网络中的数据传输过程,优化网络性能,提高网络的吞吐量和响应速度。
在本文中,我们将介绍计算机网络排队论模型的基本概念、分类和应用。
一、排队论模型的基本概念1.1 排队系统排队系统是指在一个服务设施之前等待服务的顾客队列。
在计算机网络中,排队系统可以看作是数据包在网络节点之间传输时产生的排队现象。
排队系统包括输入过程、服务机构和排队规则。
1.2 排队论模型排队论模型是对排队系统进行数学建模和分析的方法。
排队论模型通常包括顾客到达过程、服务时间分布、队列容量和服务规则等因素。
排队论模型可以帮助我们预测排队系统的性能表现,如平均等待时间、系统繁忙度和响应时间等指标。
二、排队论模型的分类2.1 M/M/1排队模型M/M/1排队模型是最简单的排队论模型之一,其中"M"代表顾客到达过程和服务时间满足指数分布,"1"代表只有一个服务设施。
M/M/1排队模型可以用来分析单一服务节点的性能表现,如平均等待时间和系统繁忙度等指标。
2.2 M/M/C排队模型M/M/C排队模型是相对复杂一些的排队论模型,其中"C"代表有C个服务设施。
M/M/C排队模型可以用来分析多个服务节点的性能表现,如系统的吞吐量和响应时间等指标。
2.3 其他排队模型除了M/M/1和M/M/C排队模型,还有很多其他类型的排队论模型,如M/M/∞排队模型、M/G/1排队模型和多类别排队模型等。
每种排队模型都有其独特的特点和适用范围,可以根据实际情况选择合适的模型进行性能分析。
三、计算机网络排队论模型的应用3.1 网络流量建模计算机网络排队论模型可以用来建模网络中的数据传输过程,分析网络节点的繁忙度和数据包的平均等待时间。
通过对网络流量进行建模,可以优化网络拓扑结构、改进路由算法和提高网络性能。
数学建模排队论模型

数学建模排队论模型排队论模型是一种数学建模方法,用于研究排队系统中的等待时间、服务效率和资源利用率等问题。
排队论模型可以应用于各种领域,如交通运输、医疗服务、银行业务等。
本文将介绍排队论模型的基本概念和应用。
一、排队论模型的基本概念排队论模型的基本概念包括:顾客到达率、服务率、队列长度、等待时间、系统利用率等。
顾客到达率是指单位时间内到达系统的顾客数量,通常用λ表示。
服务率是指单位时间内一个服务员能够完成服务的顾客数量,通常用μ表示。
队列长度是指系统中正在等待服务的顾客数量。
等待时间是指顾客在队列中等待服务的时间。
系统利用率是指系统中所有服务员的利用率之和。
排队论模型可以分为单队列模型和多队列模型。
单队列模型是指系统中只有一个队列,多个服务员依次为顾客提供服务。
多队列模型是指系统中有多个队列,每个队列对应一个服务员,顾客可以选择任意一个队列等待服务。
二、排队论模型的应用排队论模型可以应用于各种领域,如交通运输、医疗服务、银行业务等。
下面以银行业务为例,介绍排队论模型的应用。
在银行业务中,顾客到达率和服务率是两个重要的参数。
顾客到达率受到银行营业时间、银行位置、顾客数量等因素的影响。
服务率受到银行服务员数量、服务质量、服务时间等因素的影响。
为了提高银行的服务效率和资源利用率,可以采用排队论模型进行优化。
首先需要确定银行的顾客到达率和服务率,然后根据排队论模型计算出等待时间、队列长度、系统利用率等指标。
根据这些指标,可以制定相应的服务策略,如增加服务员数量、优化服务流程、提高服务质量等。
例如,如果银行的顾客到达率较高,服务员数量较少,导致顾客等待时间较长,可以考虑增加服务员数量或优化服务流程,以缩短顾客等待时间。
如果银行的服务率较低,导致服务员利用率较低,可以考虑提高服务质量或增加服务时间,以提高服务员利用率。
三、排队论模型的局限性排队论模型虽然可以应用于各种领域,但也存在一些局限性。
首先,排队论模型假设顾客到达率和服务率是稳定的,但实际情况中这些参数可能会发生变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排队论模型排队论也称随机服务系统理论。
它涉及的是建立一些数学模型,藉以对随机发生的需求提供服务的系统预测其行为。
现实世界中排队的现象比比皆是,如到商店购货、轮船进港、病人就诊、机器等待修理等等。
排队的内容虽然不同,但有如下共同特征:有请求服务的人或物,如候诊的病人、请求着陆的飞机等,我们将此称为“顾客”。
有为顾客提供服务的人或物,如医生、飞机跑道等,我们称此为“服务员”。
由顾客和服务员就组成服务系统。
顾客随机地一个一个(或者一批一批)来到服务系统,每位顾客需要服务的时间不一定是确定的,服务过程的这种随机性造成某个阶段顾客排长队,而某些时候服务员又空闲无事。
排队论主要是对服务系统建立数学模型,研究诸如单位时间内服务系统能够服务的顾客的平均数、顾客平均的排队时间、排队顾客的平均数等数量规律。
一、排队论的一些基本概念为了叙述一个给定的排队系统,必须规定系统的下列组成部分:输入过程即顾客来到服务台的概率分布。
排队问题首先要根据原始资料,由顾客到达的规律、作出经验分布,然后按照统计学的方法(如卡方检验法)确定服从哪种理论分布,并估计它的参数值。
我们主要讨论顾客来到服务台的概率分布服从泊松分布,且顾客的达到是相互独立的、平稳的输入过程。
所谓“平稳”是指分布的期望值和方差参数都不受时间的影响。
排队规则即顾客排队和等待的规则,排队规则一般有即时制和等待制两种。
所谓即时制就是服务台被占用时顾客便随即离去;等待制就是服务台被占用时,顾客便排队等候服务。
等待制服务的次序规则有先到先服务、随机服务、有优先权的先服务等,我们主要讨论先到先服务的系统。
服务机构服务机构可以是没有服务员的,也可以是一个或多个服务员的;可以对单独顾客进行服务,也可以对成批顾客进行服务。
和输入过程一样,多数的服务时间都是随机的,且我们总是假定服务时间的分布是平稳的。
若以ξ表示服务员为n},n=1,2,…第n个顾客提供服务所需的时间,则服务时间所构成的序列{ξn所服从的概率分布表达了排队系统的服务机制,一般假定,相继的服务时间ξ,1ξ2,……是独立同分布的,并且任意两个顾客到来的时间间隔序列{T n}也是独立的。
如果按服务系统的以上三个特征的各种可能情形来对服务系统进行分类,那么分类就太多了。
因此,现在已被广泛采用的是按顾客相继到达时间间隔的分布、服务时间的分布和服务台的个数进行分类。
研究排队问题的目的,是研究排队系统的运行效率,估计服务质量,确定系统参数的最优值,以决定系统的结构是否合理,设计改进措施等。
所以,必须确定用来判断系统运行优劣的基本数量指标,这些数量指标通常是: 队长指排队系统中的顾客数,它的期望值记为L系;排队长,指在排队系统中排队等待服务的顾客数,其期望值记为L队。
系统中的顾客数 = 等待服务的顾客数 + 正被服务的顾客数所以L队(或L系)越大,说明服务效率越低。
逗留时间指一个顾客在排队系统中的停留时间,即顾客从进入服务系统到服务完毕的整个时间。
其期望值记为W系。
等待时间,指一个顾客在排队系统中等待服务的时间,其期望值记为W队。
逗留时间 = 等待时间 + 服务时间忙期指从顾客到达空闲服务机构起到服务机构再次为空闲这段时间长度,即服务机构连续工作的时间长度。
它关系到服务员的工作长度,即服务机构连续工作的时间长度。
它关系到服务员的工作强度、忙期的长度和一个忙期中平均完成服务的顾客数,这些都是衡量服务效率的指标。
要计算以上这些指标必须知道系统状态的概率,所谓系统状态即时刻t时排队系统中的顾客数。
如果时刻t时排队系统中有n个顾客,就说系统的状态是n,其概率一般用Pn (t)表示。
求Pn(t)的方法,首先要建立含Pn(t)关系式,因t为连续变量而n只取非负整数,所以建立的Pn(t)的关系式一般是微分差分方程,这时要求方程的解是不容易的,有时即使求出也很难利用。
因此,往往只求稳态解Pn ,求Pn并不一定求t→∞时的Pn(t)极限,而只需由)('tPn=0,用Pn代替Pn(t)即可。
下面分析几个排队系统。
二、单通道等待制排队问题对于单通道等待制排队问题主要讨论输入过程服从泊松分布,服务时间服从负指数分布,单服务台的情形。
分两种模型来分析:标准模型所谓标准模型是指顾客源为无限,顾客单个到来,相互独立,一定时间的到达数服从泊松分布,到达过程是平稳的,排队为单队,队长没有限制,先到先服务,各顾客的服务时间服从负指数分布,且相互独立。
同时还假定顾客到达的时间间隔和服务时间是相互对立的。
可以证明,顾客相继到达的时间间隔独立且为负指数分布的充要条件是输入过程服从泊松分布。
首先求出排队系统在任意时刻t的、状态为n的概率Pn(t),不妨假设顾客到达规律服从参数为λ的泊松分布,服务时间服从参数为μ的负指数,由此决定了[t,t+△t]时间间隔内:1、有1个顾客到达的概率为λ△t+o(△t),没有顾客到达的概率是1-λ△t+o(△t)。
2、当有顾客在接受服务时,1个顾客被服务完了的概率是μ△t+o(△t),没有服务完的概率是1-μ△t+o(△t)。
3、多于一个顾客到达或服务完的概率为o(△t),均可忽略。
注1:因为单位时间内顾客到达数X ~P (λ),所以Δt 时间间隔内顾客到达数Y ~ P (λΔt ),因而在Δt 时间间隔内有一个顾客到达的概率为:P{ Y=1 }=λΔt ·e -λΔt =λΔt + o(Δt),没有顾客到达的概率为P{Y=0}= e -λΔt=1-λΔt + o(Δt)。
注2:由于服务时间T ~E (μ),故在有顾客接受服务时,一个顾客被服务完的概率为P{T ≤Δt }=1 - e -μΔt =μΔt + o(Δt),没有被服务完的概率为1 -μΔt + o(Δt)。
在t+△t 时刻,系统中有n 个顾客的状态由t 时刻的以下状态转化而来:①t 时刻系统中有n 个顾客,没有顾客到达且没有顾客服务完毕,其概率为:[1-λ△t+o(△t)][ 1-μ△t+o(△t)]= (1-λ△t-μ△t)+o(△t);②t 时刻系统中有n+1个顾客,没有顾客到达且有一个顾客服务完毕,其概率为:[1-λ△t+o(△t)][μ△t+o(△t)]= μ△t+o(△t);③t 时刻系统中有n-1个顾客,有一个顾客到达且没有顾客服务完毕,其概率为:[λ△t+o(△t)][1-μ△t+o(△t)]= λ△t+o(△t);④其他状态的概率为o(△t)。
因此,在t+△t 时刻,系统中有n 个顾客的概率P n (t+△t)满足:P n (t+△t)= P n (t)(1-λ△t-μ△t)+ P n+1(t)μ△t + P n-1(t)λ△t+o(△t)[P n (t+△t)- P n (t)]/△t=λP n-1(t)+μP n+1(t)-(λ+μ)P n (t)+o(△t)/△t令△t →0,得到2,1)()()()()(11=+-+=+-n t P t P t P dtt dP n n n n μλμλn=0时,因为P 0(t+△t)= P 0(t)(1-λ△t)+ P 1(t)(1-λ△t) μ△t+o(△t) 所以,有)()()(100t P t P dtt dP μλ+-= 对于稳态情形,与t 无关,其导数为零。
因此,得到差分方程⎩⎨⎧=+-≥=+-++-01,0)(1011P P n P P P n n n μλμλμλ求解此差分方程P n =(λ/μ)n P 0 由概率的性质知∑∞==01n nP,将上式代入λ/μ<1时可得到P 0=1-λ/μP n =(1-λ/μ)( λ/μ)n因为顾客到达规律服从参数为λ的泊松分布,服务时间服从参数为μ的负指数分布,其期望值就分别为λ,1/μ。
所以λ表示单位时间内平均到达的顾客数,μ表示单位时间内能服务完的顾客数。
如果令ρ=λ/μ,这时ρ就表示相同区间内顾客到达的平均数与能被服务的平均数之比,它是刻画服务效率和服务机构利用程度的重要标志,称ρ为服务强度。
上面在ρ<1的条件下得到了稳定状态下的概率P n ,n=0,1,2,…。
其实,如果ρ>1,可以证明排队长度将是无限增加的,即使ρ=1的情况下,P 0(t)也是随时间而变化的,系统达不到稳定状态。
因此,这里只讨论ρ<1时情况,从上面的推导知P n =(1-ρ) ρn n=0,1,2,… 下面计算出系统的运行指标)/()1/()1(1λμλρρρρ-=-=-==∑∑∞=∞=n n n n n np L 系)/()1/()1()1()1(211λμρλρρρρ-=-=--=-=∑∑∞=∞=n n n n n p n L 队可以证明,顾客在系统中逗留时间服从参数为的负指数分布。
因此,有W 系=1/(μ-λ)W 队=W 系-)/(1λμρμ-=由以上结论可以看出,各指标之间有如下关系:L 系=λW 系; L 队=λW 队W 系=W 队+1/μ, L 系=L 队+λ/μ在指标的计算过程中,一般只要计算其中一个,其它的指标便可随之导出。
例1 病人候诊问题 某单位医院的一个科室有一位医生值班,经长期观察,每小时平均有4个病人,医生每小时平均可诊5个病人,病人的到来服从泊松分布,医生的诊病时间服从负指数分布。
试分析该科室的工作状况。
如果满足99%以上的病人有座,此科室至少应设多少个座位?如果该单位每天24h 上班,病人看病1h 因耽误工作单位要损失30元,这样单位平均每天损失多少元?如果该科室提高看病速度,每小时平均可诊6个病人,单位每天可减少损失多多少?可减少多少个座位?解 由题意知λ=4,μ=5,ρ=4/5,ρ=4/5=0.8<1,从而排队系统的稳态概率为:P n =0.2×0.8n n=0,1,2… 该科室平均有病人数为:L 系=ρ/(1-ρ)=0.8/(1-0.8)=4(人) 该科室内排队候诊病人的平均数为:L 队=L 系-λ/μ=4-0.8=3.2(人) 看一次病平均所需的时间为:W 系=L 系/λ=4/4=1h 排队等候看病的平均时间为:W 队=W 系-1/μ=1-1/5=0.8h为满足99%以上的病人有座,设科室应设m 个座位,则m 应满足:P{医务室病人数≤m}≥0.9999.01)1(10≥-=-+=∑m mn n ρρρ201ln 01.0ln 01.01=-≥≤+ρρm m所以该科室至少应设20个座位。
如果该单位24h 上班,则每天平均有病人24×4=96人,病人看病所花去的总时间为96×1=96 h 。
因看病平均每天损失30×96=2880元。
如果医生每小时可诊6个病人,ρ=2/3,则L 系=2(人),L 队=4/3(人) W 系=0.5h ,W 队=1/3h这样单位每天的损失费为96×0.5×30=1440元,因而单位每天平均可减少损失2880-1440=1440元,这时为保证99%以上的病人有座,应设座位数m ≥ln0.01/ln(2/3)-1=11个,比原来减少了9个。