而且元素的排列顺序也完全相同
6.2排列与组合(学生版) 讲义-2021-2022学年人教A版(2019)高中数学选择性必修第三册

排列与组合一排列概念的理解1.排列:一般地,从n个不同元素中取出m(m≤n)个元素,并按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.2.根据排列的定义,两个排列相同的充要条件:(1)两个排列的元素_完全相同;(2)元素的排列顺序也相同.注意点:(1)要求m≤n.(2)按照一定顺序排列,顺序不同,排列不同.二画树状图写排列利用“树状图”法解决简单排列问题的适用范围及策略(1)适用范围:“树状图”在解决排列元素个数不多的问题时,是一种比较有效的表示方式.(2)策略:在操作中先将元素按一定顺序排出,然后以先安排哪个元素为分类标准进行分类,再安排第二个元素,并按此元素分类,依次进行,直到完成一个排列,这样能做到不重不漏,然后再按树状图写出排列.三简单的排列问题要想正确地表示排列问题的排列个数,应弄清这件事中谁是分步的主体,分清m个元素和n(m≤n)个不同的位置各是什么.四排列数公式1.排列数:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A m n表示.2.排列数公式:A m n=n(n-1)(n-2)…(n-m+1)=n!n-m!(n,m∈N*,m≤n).3.全排列:把n个不同的元素全部取出的一个排列,叫做n个元素的一个全排列.正整数1到n的连乘积,叫做n的阶乘,用n!表示,于是,n个元素的全排列数公式可以写成A n n=n(n-1)(n-2)×…×2×1=n!.规定:0!=1.注意点:(1)乘积是m个连续正整数的乘积;(2)第一个数最大,是A的下标n;(3)第m个数最小,是n-m+1.五利用排列数公式化简与证明排列数公式的阶乘形式主要用于与排列数有关的证明、解方程和不等式等问题,具体应用时注意阶乘的性质,提取公因式,可以简化计算.六排列数公式的简单应用对于简单的排列问题可直接代入排列数公式,也可以用树状图法.情况较多的情形,可以进行分类后进行.七元素的“在”与“不在”问题解决排列应用题,常用的思考方法有直接法和间接法.排列问题的实质是“元素”占“位子”问题,有限制条件的排列问题的限制条件主要表现在某元素不排在某个“位子”上或某个“位子”不排某些元素,解决该类排列问题的方法主要是按“优先”原则,即优先排特殊元素或优先满足特殊“位子”.八“相邻”与“不相邻”问题处理元素“相邻”“不相邻”问题应遵循“先整体,后局部”的原则.元素相邻问题,一般用“捆绑法”,先把相邻的若干个元素“捆绑”为一个大元素与其余元素全排列,然后再松绑,将这若干个元素内部全排列.元素不相邻问题,一般用“插空法”,先将不相邻元素以外的“普通”元素全排列,然后在“普通”元素之间及两端插入不相邻元素.九定序问题在有些排列问题中,某些元素的前后顺序是确定的(不一定相邻).解决这类问题的基本方法有两个:(1)整体法,即若有(m+n)个元素排成一列,其中m个元素之间的先后顺序确定不变,将这(m+n)个元素排成一列,有A m+nm+n种不同的排法;然后任取一个排列,固定其他n个元素的位置不动,把这m个元素交换顺序,有A m m种排法,其中只有一个排列是我们需要的,因此共有A m+nm+nA m m种满足条件的不同排法;(2)插空法,即m个元素之间的先后顺序确定不变,因此先排这m个元素,只有一种排法,然后把剩下的n个元素分类或分步插入由以上m个元素形成的空中.十组合概念的理解组合:一般地,从n个不同元素中取出m(m≤n)个元素作为一组,叫做从n个不同元素中取出m个元素的一个组合.注意点:(1)组合中取出的元素没有顺序;(2)两个组合相同的充要条件是其中的元素完全相同.十一利用组合数公式化简、求值与证明(1)组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号C m n表示.(2)组合数公式:C m n=A m nA m m=n n-1n-2…n-m+1m!或C m n=n!m!n-m!(n,m∈N*,且m≤n).(3)规定:C0n=1.注意点:(1)m≤n,m,n∈N*;(2)C m n=A m nA m m=n n-1n-2…[n-m-1]m!常用于计算;(3)C m n=n!m!n-m!常用于证明.(1)两个组合数公式在使用中的用途有所区别.(2)在解有关组合数的方程或不等式时,必须注意隐含条件,即C m n中的n为正整数,m为自然数,且n≥m.因此求出方程或不等式的解后,要进行检验,将不符合的解舍去.十二简单的组合问题解简单的组合应用题时,首先要判断它是不是组合问题,组合问题与排列问题的根本区别在于排列问题与取出的元素之间的顺序有关,而组合问题与取出元素的顺序无关.其次要注意两个基本原理的运用,即分类与分步的灵活运用,在分类与分步时,一定要注意有无重复和遗漏.十三组合数的性质1组合数的性质1:C m n=C n-mn.注意点:(1)体现了“取法”与“剩法”是一一对应的思想;(2)两边下标相同,上标之和等于下标.十四组合数的性质2组合数的性质2:C m n+1=C m n+C m-1n.注意点:(1)下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与大的相同的一个组合数;(2)体现了“含”与“不含”的分类思想.性质2常用于有关组合数式子的化简或组合数恒等式的证明.应用时要注意公式的正用、逆=C m n+1-用和变形用.正用是将一个组合数拆成两个,逆用则是“合二为一”,使用变形C m-1nC m n,为某些项前后抵消提供了方便,在解题中要注意灵活应用.十五组合数在实际问题中的简单应用在求与两个基本原理的应用有关的问题时,即分类与分步的运用,在分类与分步时,一定要注意有无重复和遗漏.十六有限制条件的排列、组合问题有限制条件的抽(选)取问题,主要有两类(1)“含”与“不含”问题,其解法常用直接分步法,即“含”的先取出,“不含”的可把所指元素去掉再取,分步计数.(2)“至多”“至少”问题,其解法常有两种解决思路:一是直接分类法,但要注意分类要不重不漏;二是间接法,注意找准对立面,确保不重不漏.十七多面手问题解决多面手问题时,依据多面手参加的人数和从事的工作进行分类,将问题细化为较小的问题后再处理.十八分组、分配问题角度1不同元素分组、分配问题“分组”与“分配”问题的解法(1)分组问题属于“组合”问题,常见的分组问题有三种:①完全均匀分组,每组的元素个数均相等,均匀分成n组,最后必须除以n!;②部分均匀分组,应注意不要重复,有n组均匀,最后必须除以n!;③完全非均匀分组,这种分组不考虑重复现象.(2)分配问题属于“排列”问题,分配问题可以按要求逐个分配,也可以分组后再分配.角度2相同元素分配问题反思感悟相同元素分配问题的处理策略(1)隔板法:如果将放有小球的盒子紧挨着成一行放置,便可看作排成一行的小球的空隙中插入了若干隔板,相邻两块隔板形成一个“盒”.每一种插入隔板的方法对应着小球放入盒子的一种方法,此法称之为隔板法.隔板法专门解决相同元素的分配问题.(2)将n个相同的元素分给m个不同的对象(n≥m),有C m-1种方法.可描述为(n-1)个空中插n-1入(m-1)块隔板.考点一 排列的概念【例1】(2021年广东汕头)(1)下列问题是排列问题的是( )A .从10名同学中选取2名去参加知识竞赛,共有多少种不同的选取方法?B .10个人互相通信一次,共写了多少封信?C .平面上有5个点,任意三点不共线,这5个点最多可确定多少条直线?D .从1,2,3,4四个数字中,任选两个相加,其结果共有多少种?(2)从3个不同的数字中取出2个:①相加;②相减;③相乘;④相除;⑤一个为被开方数,一个为根指数.则上述问题为排列问题的个数为( )A .2B .3C .4D .5【练1】(2020·新疆)已知2132n A =,则n =( )A .11B .12C .13D .14考点二 排列数 【例2】(2020·全国高二单元测试)对于满足13n ≥的正整数n ,(5)(6)(12)n n n --⋅⋅⋅-=( )A .712n A -B .75n A -C .85n A -D .125n A -【练2】(2020·江西九江一中)5人随机排成一排,其中甲、乙不相邻的概率为( )A .15B .25C .35D .45考点三 排队问题【例3】(2021·全国高二练习)有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.(1)选5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体排成一排,女生必须站在一起;(4)全体排成一排,男生互不相邻;(5)全体排成一排,其中甲不站最左边,也不站最右边;(6)全体排成一排,其中甲不站最左边,乙不站最右边.【练3】(2020·江苏高二期中)由1,2,3,4,5,6组成没有重复数字且1,3不相邻的六位数的个数是( )A.36B.72C.600D.480考点四数字问题【例4】(2020·浙江省东阳中学)由0,1,2,3,4,5共6个不同数字组成的6位数,要求0不能在个位数,奇数恰好有2个相邻,则组成这样不同的6位数的个数是( )A.144B.216C.288D.432考点五组合的概念【例5】(2020·广东湛江高二单元测试)给出下列问题:①有10个车站,共需要准备多少种车票?②有10个车站,共有多少中不同的票价?③平面内有10个点,共可作出多少条不同的有向线段?④有10个同学,假期约定每两人通电话一次,共需通话多少次?⑤从10个同学中选出2名分别参加数学和物理竞赛,有多少中选派方法?以上问题中,属于组合问题的是_________(填写问题序号).【练5】下列问题不是组合问题的是 ( )A .10个朋友聚会,每两人握手一次,一共握手多少次?B .平面上有2015个不同的点,它们中任意三点不共线,连接任意两点可以构成多少条线段?C .集合{a 1,a 2,a 3,…,a n }的含有三个元素的子集有多少个?D .从高三(19)班的54名学生中选出2名学生分别参加校庆晚会的独唱、独舞节目,有多少种选法?考点六 组合数【例6】(2020·陕西高二期末)若()6671*n n n C C C n +-=∈Ν,则n 等于( )A .11B .12C .13D .14【练6】(2020·山东菏泽·高二期末)已知4m ≥,3441m m m C C C +-+=( )A .1B .mC .1m +D .0考点七 组合应用 【例7】(2020·江苏金湖中学)一个口袋内有3个不同的红球,4个不同的白球(1)从中任取3个球,红球的个数不比白球少的取法有多少种?(2)若取一个红球记2分,取一个白球记1分,从中任取4个球,使总分不少于6分的取法有多少种?【练7】(2020·北京朝阳·高二期末)从3名男生和4名女生中各选2人组成一队参加数学建模比赛,则不同的选法种数是( )A.12B.18C.35D.36考点八全排列【例8】(2020·全国专题练习)在新冠肺炎疫情防控期间,某记者要去武汉4个方舱医院采访,则不同的采访顺序有( )A.4种B.12种C.18种D.24种【练8】(2020·中山大学附属中学高二期中)一个市禁毒宣传讲座要到4个学校开讲,一个学校讲一次,不同的次序种数为( )A.4B.44C.24D.48考点九相邻问题【例9】(2021·河北张家口市)某班优秀学习小组有甲、乙、丙、丁、戊共5人,他们排成一排照相,则甲、乙二人相邻的排法种数为( )A.24B.36C.48D.60【练9】(2020·沙坪坝区·重庆八中)小涛、小江、小玉与本校的另外2名同学一同参加《中国诗词大会》的决赛,5人坐成一排,若小涛与小江、小玉都相邻,则不同坐法的总数为( )A.6B.12C.18D.24考点十 不相邻问题【例10】(2020·河北石家庄市·石家庄二中高二期中)省实验中学为预防秋季流感爆发,计划安排学生在校内进行常规体检,共有3个检查项目,需要安排在3间空教室进行检查,学校现有一排6间的空教室供选择使用,但是为了避免学生拥挤,要求作为检查项目的教室不能相邻,则共有( )种安排方式. A .12 B .24 C .36 D .48【练10】(2020·全国)六个人排队,甲乙不能排一起,丙必须排在前两位的概率为( ) A .760B .16C .1360D .14考点十一 分组分配【例11】(2020·全国)疫情期间,上海某医院安排5名专家到3个不同的区级医院支援,每名专家只去一个区级医院,每个区级医院至少安排一名专家,则不同的安排方法共有( ) A .60种 B .90种C .150种D .240种【练11】(2020·全国)将6本不同的书分给甲、乙、丙3名学生,其中一人得1本,一人得2本,一人得3本,则有________种不同的分法.考点十二 几何问题【例12】(2020·全国)如图,MON 的边OM 上有四点1A 、2A 、3A 、4A ,ON 上有三点1B 、2B 、3B ,则以O 、1A 、2A 、3A 、4A 、1B 、2B 、3B 中三点为顶点的三角形的个数为( )A .30B .42C .54D .56【练12】(2021·全国)直线x m =,y x =将圆面224x y +≤分成若干块,现有5种颜色给这若干块涂色,且任意两块不同色,则所有可能的涂色种数是( ) A .20 B .60C .120D .240考点十三 方程不等式问题【例13】(2020·全国)方程10x y z ++=的正整数解的个数__________.【练13】(2021·太原市)不定方程12x y z ++=的非负整数解的个数为( ) A .55 B .60C .91D .540考点十四 数字问题【例14】(2020·南通西藏民族中学)从1,2,3,4,5,6中任取三个不同的数相加,则不同的结果共有( ) A .6种 B .9种C .10种D .15种【练14】已知集合{}A a b c d =,,,,从集合A 中任取2个元素组成集合B ,则集合B 中含有元素b 的概率为( )A.16B.13C.12D.1课后练习1.(2021高二下·天津期中)用1,2,3,4,5,6组成没有重复数字的五位数,要求偶数不能相邻,则这样的五位数有()个A.120B.216C.222D.2522.(2021高二下·临沂期末)若A n3=8C n2,则n=()A.4B.5C.6D.73.(2021高二下·梅州期末)在象棋比赛中,参赛的任意两位选手都比赛一场,其中胜者得2分,负者得0分,平局各得1分.现有四名学生分别统计全部选手的总得分为55分,56分,57分,58分,但其中只有一名学生的统计结果是正确的,则参赛选手共有()A.6位B.7位C.8位D.9位4.(2021高三上·运城开学考)某市抽调5位医生分赴4所医院支援抗疫,要求每位医生只能去一所医院,每所医院至少安排一位医生.由于工作需要,甲、乙两位医生必须安排在不同的医院,则不同的安排种数是()A.90B.216C.144D.2405.(2020高二上·昌平期末)某社区5名工作人员要到4个小区进行“爱分类”活动的宣传,要求每名工作人员只去一个小区,每个小区至少去一名工作人员,则不同的安排方法共有种.6.(2021·富平模拟)2021年是中国共产党百年华诞.某学校社团将举办庆祝中国共产党成立100周年革命歌曲展演.现从《歌唱祖国》、《英雄赞歌》、《唱支山歌给党听》、《毛主席派人来》4首独唱歌曲和《没有共产党就没有新中国》、《我和我的祖国》2首合唱歌曲中共选出4首歌曲安排演出,要求最后一首歌曲必须是合唱,则不同的安排方法共有种.7.(2021高二下·郑州期末)2021年7月1日是中国共产党成立100周年纪念日,2021年也是“十四五”开局之年,必将在中国历史上留下浓墨重彩的标注,作为当代中学生,需要发奋图强,争做四有新人,首先需要学好文化课.现将标有数字2,0,2,1,7,1的六张卡片排成一排,组成一个六位数,则共可组成个不同的六位数.8.(2021·三明模拟)设n∈N且n<5,若62021+n能被5整除,则n等于.9.(2021高二下·江苏期中)用0,1,2,3,4,5这六个数字:(最后运算结果请以数字作答)(1)能组成多少个无重复数字的四位偶数?(2)能组成多少个无重复数字且为5的倍数的四位数?(3)能组成多少个无重复数字且比1230大的四位数?)m(m∈N∗)的展开式中,第三项系数是10.(2021高二下·郑州期末)在二项式(x2+2√x.倒数第三项系数的18(1)求m的值;(2)求展开式中所有的有理项.精讲答案【例1】 【答案】(1)B(2)B【解析】(1)排列问题是与顺序有关的问题,四个选项中只有B 中的问题是与顺序相关的,其他问题都与顺序无关,所以选B. (2)排列与顺序有关,故②④⑤是排列. 【练1】 【答案】B【解析】∵2132n A =,∴(1)132n n -=,整理,得,21320n n --=;解得12n =,或11n =- (不合题意,舍去);∴n 的值为12. 故选:B. 【例2】 【答案】C【解析】根据排列数定义,要确定元素总数和选取个数,元素总数为5n -,选取个数为(5)(12)18n n ---+=,85(5)(6)(12)n n n n A ---⋅⋅⋅-=.故选:C .【练2】 【答案】C【解析】将5人随机排成一列,共有55120A =种排列方法;当甲、乙不相邻时,先将5人中除甲、乙之外的3人排成一列,然后将甲、乙插入,故共有323461272A A =⨯=种排列方法,则5人随机排成一排,其中甲、乙不相邻的概率为7231205P ==. 故选:C. 【例3】【答案】(1)2520;(2)5040;(3)576;(4)1440;(5)3600;(6)3720.【解析】(1)从7人中选5人排列,共有57765432520A =⨯⨯⨯⨯=(种).(2)分两步完成,先选3人站前排,有37A 种方法,余下4人站后排,有44A 种方法,按照分步乘法计数原理计算可得一共有347476543215040A A ⋅=⨯⨯⨯⨯⨯⨯=(种).(3)捆绑法,将女生看成一个整体,进行全排列,有44A 种,再与3名男生进行全排列有44A 种,共有4444576A A ⨯=(种).(4)插空法,先排女生,再在空位中插入男生,故有43451440A A ⨯=(种). (5)先排甲,有5种方法,其余6人有66A 种排列方法,共有6653600A ⨯=(种).(6) 7名学生全排列,有77A 种方法,其中甲在最左边时,有66A 种方法,乙在最右边时,有66A 种方法,其中都包含了甲在最左边且乙在最右边的情形,有55A 种方法,故共有76576523720A A A -⨯+= (种).【练3】 【答案】D【解析】根据题意将2,4,5,6进行全排列,再将1,3插空得到4245480A A ⨯=个.故选:D .【例4】 【答案】B【解析】先从3个奇数中选出2个捆绑内部全排共有236A =种排法,再把捆绑的2个奇数看成一个整体,因为这个整体与剩下的一个奇数不相邻,将2个非0偶数全排有222A =种选法, 奇数插空全排有236A =种选法,最后把0插空,0不能在两端,有3种排法,可组成这样不同的6位的个数为6263216⨯⨯⨯=种排法, 故选:B【例5】 【答案】②④【解析】①有10个车站,共需要准备多少种车票?相当于从10个不同元素任取2个按一定顺序排列起来,属于排列问题;②有10个车站,共有多少中不同的票价?相当于从10个不同元素任取2个并成一组,属于组合问题;③平面内有10个点,共可作出多少条不同的有向线段?相当于从10个不同元素任取2个按一定顺序排列起来,属于排列问题;④有10个同学,假期约定每两人通电话一次,共需通话多少次?相当于从10个不同元素任取2个并成一组,属于组合问题;⑤从10个同学中选出2名分别参加数学和物理竞赛,有多少中选派方法?相当于从10个不同元素任取2个按一定顺序排列起来,属于排列问题;以上问题中,属于排列问题的是②④. 【练5】 【答案】 D【解析】 组合问题与次序无关,排列问题与次序有关,D 项中,选出的2名学生,如甲、乙,其中“甲参加独唱、乙参加独舞”与“乙参加独唱、甲参加独舞”是两个不同的选法,因此是排列问题,不是组合问题,选D. 【例6】 【答案】B【解析】根据题意,6671n n n C C C +-=变形可得,6671n n n C C C +=+;由组合性质可得,6771n n n C C C ++=,即6711n n C C ++=,则可得到16712n n +=+⇒=.故选:B.【练6】 【答案】D【解析】3443444411110m m m m m m m m C C C C C C C C ++++=--++-==.故选:D【例7】【答案】(1) 13;(2) 22.【解析】(1 )从中任取3个球,红球的个数不比白球少的取法:红球3个,红球2个和白球1个.当取红球3个时,取法有1种;当取红球2个和白球1个时,.取法有213412C C =种.根据分类计数原理,红球的个数不少于白球的个数的取法有11213+=种. (2 )使总分不少于6分情况有两种:红球2个和白球2个,红球3个和白球1个.第一种,红球2个和白球2个,取法有223418C C =种; 第二种,红球3个和白球1个,取法有31344C C =种,根据分类计数原理,使总分不少于6分的取法有18422+=种. 【练7】 【答案】B【解析】先从3名男生中选出2人有233C =种,再从4名女生中选出2人有246C =种,所以共有1863=⨯种,故选:B【例8】 【答案】D【解析】由题意可得不同的采访顺序有4424A =种,故选:D.【练8】 【答案】C【解析】一个市禁毒宣传讲座要到4个学校开讲,一个学校讲一次,不同的次序种数为44=432124A ⨯⨯⨯=.故选:C 【例9】 【答案】C【解析】先安排甲、乙相邻,有22A 种排法,再把甲、乙看作一个元素,与其余三个人全排列,故有排法种数为424248A A ⨯=.故选:C【练9】 【答案】B【解析】解:将小涛与小江、小玉捆绑在一起,与其他两个人全排列,其中小涛位于小江、小玉之间,按照分步乘法计算原理可得323212A A ⋅=故选:B【例10】 【答案】B【解析】6间空教室,有3个空教室不使用,故可把作为检查项目的教室插入3个不使用的教室之间,故所有不同的安排方式的总数为3424A =.故选:B.【练10】 【答案】C【解析】丙排第一,除甲乙外还有3人,共33A 种排法,此时共有4个空,插入甲乙可得24A ,此时共有3234=612=72A A ⋅⨯种可能;丙排第二,甲或乙排在第一位,此时有1424C A 排法,甲和乙不排在第一位, 则剩下3人有1人排在第一位,则有122323C A A 种排法,此时故共有1412224323+=84C A C A A 种排法. 故概率6672841360P A +==. 故选:C. 【例11】【答案】C【解析】5名专家到3个不同的区级医院,分为1,2,2和1,1,3两种情况;分为1,2,2时安排有1223542322C C C A A ;分为1,1,3时安排有1133543322C C C A A 所以一共有12211333542543332222150C C C C C C A A A A +=故选:C 【练11】 【答案】360【解析】先把书分成三组,把这三组分给甲、乙、丙3名学生.先选1本,有16C 种选法;再从余下的5本中选2本,有25C 种选法;最后余下3本全选,有33C 种选法.故共有12365360C C C ⋅⋅=种选法.由于甲、乙、丙是不同的3人,还应考虑再分配,故共有3360360A =种分配方法.故答案为: 360.【例12】 【答案】B【解析】利用间接法,先在8个点中任取3个点,再减去三点共线的情况,因此,符合条件的三角形的个数为33384542C C C --=.故选:B.【练12】 【答案】D【解析】当2m ≤-或2m ≥时,圆面224x y +≤被分成2块, 此时不同的涂色方法有5420⨯=种,当22m -<≤-或22m ≤<时,圆面224x y +≤被分成3块, 此时不同的涂色方法有54360⨯⨯=种, 当22m -<<时,圆面224x y +≤被分成4块, 此时不同的涂色方法有5432120⨯⨯⨯=种, 所有可能的涂色种数是240. 故选:D 【例13】 【答案】36【解析】问题中的x y z 、、看作是三个盒子,问题则转化为把10个球放在三个不同的盒子里,有多少种方法.将10个球排一排后,中间插入两块隔板将它们分成三堆球,使每一堆至少一个球.隔板不能相邻,也不能放在两端,只能放在中间的9个空内.∴共有2936C =种.故答案为:36 【练13】【答案】C【解析】不定方程12x y z ++=的非负整数解的个数⇔将12个相同小球放入三个盒子,允许有空盒的放法种数.现在在每个盒子里各加一个相同的小球,问题等价于将15个相同小球放入三个盒子,没有空盒的放法种数,则只需在15个小球中形成的空位(不包含两端)中插入两块板即可,因此,不定方程12x y z ++=的非负整数解的个数为21491C =.故选:C.【例14】 【答案】C【解析】在这六个数字中任取三个求和,则和的最小值为1236++=,和的最大值为45615++=,所以当从1,2,3,4,5,6中任取三个数相加时,则不同结果有10种.故选:C. 【练14】 【答案】C【解析】A 中任取2个元素组成集合B ,则B 的情况有{}{}{}{}{}{}123456,,,,,,,,,,,B a b B a c B a d B b c B b d B c d ======,共6个,其中符合情况的集合为145,,B B B 共3个,故集合B 中含有元素b 的概率为3162P ==故选:C练习答案1. 【答案】 D【考点】排列、组合及简单计数问题 【解析】解:由题意知,分两种情况:①五位数是由2个偶数,3个奇数组成,共有A 33C 32A 42=216个; ②五位数是由3个偶数,2个奇数组成,共有C 32A 22A 33=36个;则这样的五位数一共有216+36=252个故答案为:D【分析】由排列与组合,结合题意,直接求解即可2.【答案】C【考点】排列及排列数公式,组合及组合数公式【解析】由题意知:n!3!=8⋅n!2!(n−2)!,即(n−2)!=24=4!,可得n−2=4,∴n=6.故答案为:C【分析】利用排列组合数计算公式,即可得出答案。
2023年高中数学新人教A版选择性必修第三册 第六章 6

的情况下,直接用排列数公式进行计算.
探究一
探究二
探究三
素养形成
当堂检测
变式训练1从甲、乙、丙三人中选两人站成一排的所有站法为
(
)
A.甲乙、乙甲、甲丙、丙甲
B.甲乙丙、乙丙甲
C.甲乙、甲丙、乙甲、乙丙、丙甲、丙乙
D.甲乙、甲丙、乙丙
解析:从三人中选出两人,而且要考虑这两人的顺序,所以有如下几
!
-1
=m·
=mA
,
+1-
(+1-)!
故原等式成立.
探究一
探究二
探究三
素养形成
当堂检测
“邻”与“不邻”问题
例37人站成一排.
(1)甲、乙两人相邻的排法有多少种?
(2)甲、乙两人不相邻的排法有多少种?
(3)甲、乙、丙三人必相邻的排法有多少种?
(4)甲、乙、丙三人两两不相邻的排法有多少种?
一个全排列.这时,排列数公式中 m=n,即有
A =n(n-1)(n-2)×…×3×2×1.也就是说,将 n 个不同的元素全部取出
的排列数,等于正整数 1 到 n 的连乘积.正整数 1 到 n 的连乘积,叫做
n 的阶乘,用 n!表示.于是,n 个元素的全排列数公式可以写成A =n!.
另外,我们规定,0!=1.
不同的排法?
(1)甲不在中间,也不在两端;
(2)甲、乙两人必须排在两端;
(3)男女相间.
【审题视点】这是一个排列问题,一般情况下,从受到限制的特殊
元素开始考虑,或从特殊的位置开始考虑.
探究一
探究二
探究三
素养形成
排列与组合知识点

排列与组合一、两个基本计数原理:(排列与组合的基础)1、分类加法计数原理:做一件事,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法,那么完成这件事共有n m m m N +⋅⋅⋅++=21种不同方法.2、分步乘法计数原理:做一件事,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事共有n m m m N ⨯⋅⋅⋅⨯⨯=21种不同的方法.二、排列与组合(1)排列定义:一般地,从n 个不同元素中取出)(n m m ≤个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列;排列数用符号mn A 表示对排列定义的理解:1、定义中包括两个基本内容:①取出元素②按照一定顺序。
因此,排列要完成的“一件事情”是“取出m 个元素,再按顺序排列”2、相同的排列:元素完全相同,并且元素的排列顺序完全相同。
若只有元素相同或部分相同,而排列顺序不相同,都是不同的排列。
比如abc 与acb 是两个不同的排列描述排列的基本方法:树状图排列数公式:),)(1()2)(1(*∈+-⋅⋅⋅--=N m n m n n n n A m n 我们把正整数由1到n 的连乘积,叫做n 的阶乘,用!n 表示,即12)2()1(!⨯⨯⋅⋅⋅⨯-⨯-⨯=n n n n ,并规定1!0=。
全排列数公式可写成!n A n n =.由此,排列数公式可以写成阶乘式:)!(!)1()2)(1(m n n m n n n n A m n -=+-⋅⋅⋅--=(主要用于化简、证明等) 排列应用题的主要解题方法有:直接法、间接法(排除法)、优先法、捆绑法、插空法、定序问题除法处理1、直接法:把符合条件的排列数直接列式计算2、间接法(排除法):先不考虑题目中的限制条件,求出所有的排列数,然后从中减去不符合条件的排列数,从而得到所求的排列数。
排列组合问题教案_排列组合解题技巧_排列组合问题经典例题_排列组合a和c的区别

排列组合的知识点(一)排列和排列数(1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法。
(2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列当m=n时,为全排列Pnn=n(n-1)(n-1)…3·2·1=n!(二)组合和组合数(1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从 n个不同元素中取出m 个元素的一个组合。
从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合。
(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个数这里要注意排列和组合的区别和联系,从n个不同元素中,任取m(m≤n)个元素,“按照一定的顺序排成一列”与“不管怎样的顺序并成一组”这是有本质区别的。
[反思] 排列与组合的共同点是从n个不同的元素中,任取m(m≤n)个元素,而不同点是排列是按照一定的顺序排成一列,组合是无论怎样的顺序并成一组,因此“有序”与“无序”是区别排列与组合的重要标志。
简单举例:1、2、3挑两个组成一个数字和1、2、3挑两个数字是完全不一样的!1、2、3挑两个组成一个数字那是排列;1、2、3挑两个数字那是组合。
例如我选1和2,排列里面12和21是两个数字!但是组合的话挑1和2就和挑2和1没有分别!!!《排列组合》教案教学目标:一.知识与技能目标:使学生通过观察,猜测,试验等活动,找出简单事物的排列规律,培养学生初步观察,分析,推理能力,以及有规律的全面思考问题。
二.过程与方法:引导学生使用数学方法解决实际生活中的问题,学会表达解决问题的大致过程。
三.情感态度目标:感受数学与生活的联系,激发学习数学,探索数学的浓厚兴趣,使学生在数学活动中养成与人合作的良好习惯。
高二数学排列、排列数公式人教版知识精讲

高二数学排列、排列数公式人教版【同步教育信息】一. 本周教学内容:排列、排列数公式二. 重点、难点:重点:1. 排列的概念、排列数公式2. 排列的应用难点:有附加条件的排列数的计算,排列应用问题等是这部分内容的难点。
【典型例题】例1. 一排有8个座位3个人去坐,若每个人左右均有空位,有多少种坐法?分析:转化为3个人插5个空的模型:每个人都拿着一把椅子,先排其余的5个椅子(一种排法),它们之间产生4个空档,再把手拿椅子的3个人排到这4个空档中,共有A 43=24种。
例2. 把1、2、3、4、5这五个数字组成无重复数字的五位数,并把它们按从小到大的顺序排列,构成一个数列。
(1)43251是这个数列的第几项?(2)这个数列的第96项是多少?(3)求这个数列的各项和。
解:(1)本题实际上是求不大于43251的五位数有多少个的问题,逆向考虑,将大于它的数分成如下三种情况。
答:43251是此数列的第88项。
(2)用排除法逆向分析,此数列共有120项,第96项以后还有120-96=24项,即比第96项所表示的五位数大的五位数有24个,而以5打头的五位数恰好有A 44=24(个),所以小于以5打头的五位数中最大的一个就是该数列的第96项,即为45321.答:这个数列的第96项是45321.(2)实际上是求所组成的五位数的和,因为1、2、3、4、5各在万位上时都有44P 个五位数,所以在万位上的和为10000)54321(44⋅++++P 。
同理,它们在千位、百位、十位、个位上也都有44P 个五位数,所以其和为)1000100101()54321(44+++⋅++++P 。
∴综上可知,这个数列的和为:答:这个数列的各项和为3999960。
说明:本题中的逆向思维的分析方法是解决问题的重要方法,当从正面解决问题比较困难时,可以考虑从它的反面入手,问题往往就可以迎刃而解。
例3. 一场晚会有5个唱歌和3个舞蹈共8个节目,问按下列要求各可排出多少种不同的节目单?(1)前4个节目中即要有唱歌又要有舞蹈;(4)3个舞蹈节目的先后顺序一定。
排列组合经典练习题答案答案.doc

排列组合二项定理排列组合二项定理知识要点—、两个原理.1.乘法原理、加法原理.2.可以有事复无奉的排列.从m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二...... 第n位上选取元素的方法都是m个,所以从m个不同元素中,每次取出n个元素可重复排列数m-m-... m= m n..例如:n件物品放入m个抽屉中,不限放法,共有多少种不同放法?(解:秫"种)二' 排列.1.⑴对排列定义的理解.定义:从n个不同的元素中任取m(m<n)个元素,哲眼丁定顺序排成一列,叫做从儿个不同元素中取出秫个元素的一个排列.⑵相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同.⑶排列数.从n个不同元素中取出个元素排成一列,称为从«个不同元素中取出m个元素的一个排列.从n个不同元素中取出m个元素的一个排列数,用符号A片表示.⑷排列数公式:A m= n(n一1)• • • (〃一m +1)= :——(m < n, n, m G N)注意:n-nl=(n + l)!-n!规定0! = 1看=履客规定C?=C:=12,含有可事及素的排列问题.对含有相同元素求排列个数的方法是:设重集S有k个不同元素a” a2,......a”其中限重复数为ni、n2......n k,且n = ni+n2+ ... 以,则S的排列个数等于n = ----- --- .n i ln2\..n k\例如:已知数字3、2、2,求其排列个数"=(1 + 2)!=3又例如:数字5、5、5、求其排列个数?其排列个1!2! 数n = - = l.3!三、组合.1.⑴组合:从〃个不同的元素中任取m(m<n)个元素并成一组,叫做从〃个不同元素中取出秫个元素的一个组合.⑵组合数公式:c,"=41 = "("T)“・(n + l)C"'=—-—”A;;;尻"m\(n-my.⑶两个公式:①C*=Cf②C%+驾=C£%1从n个不同元素中取出m个元素后就剩下n-m个元素,因此从n个不同元素中取出n-m个元素的方法是一一对应的,因此是一样多的就是说从n个不同元素中取出n-m个元素的唯一的一个组合.(n + 1)! (n (或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是 含红球选法有c m -*-c ;=c m-,! 一类是不含红球的选法有C :)%1 根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与 不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m-l 个元素,所以有C”':,如果不取这 一元素,则需从剩余n 个元素中取出m 个元素,所以共有C :种,依分类原理有C m ~\+C^=C n ^.⑷排列与组合的联系与区别.联系:都是从"个不同元素中取出加个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.⑸①几个常用组合数公式 n n n nC°+C 2+C 4+••- =C*+C 3+C 5+••• =2,?-1n n nn n n ° 〃十° m+1 十° m+2 • •七 m+n+1kc k =心:1 「k_ 1 厂灯1C n~ C n+1k + 1 n + 1%1 常用的证明组合等式方法例.i. 裂项求和法.如:-+-+-+—— =1-一—(利用 —=——一1)n! (〃一 1)! n\ 2! 3! 4! (n + 1)! (〃 + 1)!ii. 导数法.iii.数学归纳法.iv.倒序求和法.V.递推法(即用 c"-+c m -l=c n :;递推)如:C ;+C ;+C ;+ •••C :=C"+:. Vi.构造二项式.如:(C°)2+(C^)2 + ••• + (C:)2=C 2;; 证明:这里构造二项式(x + l)"(l + x)"=(l + x)2"其中x"的系数,左边为席吒+•••+ac=e)2+(c;)2+...+(a)2,而右边=c 2:四、排列' 组合综合.i.i.排列、组合问题几大解题方法及题型:%1 直接法.②排除法.%1 捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局 部”的排列.它主要用于解决“元素相邻问题”,例如,一般地,n 个不同元素排成一列,要求其中某/»(/»<»)个元素必相邻的排列有个.其中A ::::;是一个“整体排列”,而则是“局部排列”.又例如①有n 个不同座位,A 、B 两个不能相邻,则有排列法种数为-%1 有n 件不同商品,若其中A 、B 排在一起有%1 有n 件不同商品,若其中有二件要排在一起有A,;.A ;;:;.注:①③区别在于①是确定的座位,有A ;种;而③的商品地位相同,是从n 件不同商品任取的2个,有不 确定性.%1插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题例如:n个元素全排列,其中m个元素互不相邻,不同的排法种数为多少?(插空法),当n-m+l>m,即mV*时有意义,2%1占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.%1调序法:当某些元素次序一定时,可用此法.解题方法是:先将n个元素进行全排列有种,个元素的全排列有A岩种,由于要求m个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到A n去调序的作用,即若"个元素排成一列,其中加个元素次序一定,共有二种排列方法.A m例如:n个元素全排列,其中m个元素顺序不变,共有多少种不同的排法?C n C%1平均法:若把kn个不同元素平均分成k组,每组n个,共有~ .例如:从1, 2, 3, 4中任取2个元素将其平均分成2组有几种分法?有管=3 (平均分组就用不着管组2!与组之间的顺序问题了)又例如将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少?厂8厂2(p=)G”2!注意:分组与插空综合.例如:n个元素全排列,其中某m个元素互不相邻且顺序不变,共有多少种排法?有当n-m+l>m, BP m<ZL±l 时有意义.2%1隔板法:常用于解正整数解组数的问题.例如:%1+X2+X3+X4=12的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为无,巧/3/4显然X1+X2+X3+X4=12,故(x1,x2,x3,x4)是方程的一组解.反之,方程的任何一组解(y1,j,2,y3,y4),对应着惟了的一f 中在〔12个球之间插入隔板的方式(如图•匚丁',二,所示)故方程的解和插板的方法一一对应.即方程的解的组数等于插隔板的方法数C* 注意:若为非负数解的X 个数,即用勺皿中⑶等于"1 ,有X] + x2 + .v3... + X" = A => % -1 + % -1 + ■■-a n -1 = A ,进而转化为求a的正整数解的个数为C^+n .%1定位问题:从n个不同元素中每次取出k个不同元素作排列规定某r个元素都包含在内,并且都排在某r 个指定位置则有例如:从n个不同元素中,每次取出m个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?固定在某一位置上:A::;;不在某一位置上:A':—A';;]:或&岩+&」.&;:(一类是不取出特殊元素a, 有A”. 一类是取特殊元素a,有从m-1个位置取一个位置,然后再从n-1个元素中取m-1,这与用插空法解决是一样的)%1指定元素排列组合问题.i.从n个不同元素中每次取出k个不同的元素作排列(或组合),规定某r个元素都包含在内。
排列2

2. 排列数公式
从 n 个不同元素中取出 m (m≤n) 个元素的所有排列的个数, 叫做从 n 个不同元素中取出 m 个
元素的排列数,用符号 表A示mn 。
“一个排列”与“排列数”的区别
“一个排列”所指的是“从n个不同元素中, 任取m个元素按照一定的顺序排成一列”, 是排列问题中的一种具体情况,而不是数 量;
练 习1
化简:(1)5 4!,(2)(5 4)! (3)42 5!,(4)(n m)(n m 1)!
(5) 1 1 1 n! (n 1)! (n 1)!
例1 计算:
答:(1)5! (2)20! (3)7! (4)(n m)!
(5) n2 2n (n 1)!
(1) A3 ; 16
8
A (2)
Ank
Amk nk
(k m n)
(3) (n 1)! n! (n k 1) n!
k! (k 1)!
k!
你能用学过的方法,举一实际的例子说 明(1)、(2)吗?
例如:(1) A54 5 A43; (2) A54 A52 A32
例2 某年全国足球甲级(A组)联赛共有 14队参加,每队都要与其余各队在主客场 分别比赛一次,问一共进行多少场比赛?
A124 1413 182(场)
练习3
有5名男生,4名女生排队。
(1)从中选出3人排成一排,有多少
种排法? A93 98 7 504.
(2)全部排成一排,有多少种
排法?
A99
(3)排成两排,前排4人,后排5人,
有多少种排法? A94 • 5! A99 注:与(2)同解
五年级奥数.计数综合.排列组合(ABC级)

五年级奥数.计数综合.排列组合(ABC级)⼀、排列问题在实际⽣活中经常会遇到这样的问题,就是要把⼀些事物排在⼀起,构成⼀列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,⽽且与各事物所在的先后顺序有关.⼀般地,从n 个不同的元素中取出m (m n ≤)个元素,按照⼀定的顺序排成⼀列,叫做从n 个不同元素中取出m 个元素的⼀个排列.根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列.排列的基本问题是计算排列的总个数.从n 个不同的元素中取出m (m n ≤)个元素的所有排列的个数,叫做从n 个不同的元素的排列中取出m 个元素的排列数,我们把它记做m n P .根据排列的定义,做⼀个m 元素的排列由m 个步骤完成:步骤1:从n 个不同的元素中任取⼀个元素排在第⼀位,有n 种⽅法;步骤2:从剩下的(1n -)个元素中任取⼀个元素排在第⼆位,有(1n -)种⽅法; ……步骤m :从剩下的[(1)]n m --个元素中任取⼀个元素排在第m 个位置,有11n m n m --=-+()(种)⽅法;由乘法原理,从n 个不同元素中取出m 个元素的排列数是121n n n n m ?-?-??-+()()(),即121m n P n n n n m =---+()()(),这⾥,m n ≤,且等号右边从n 开始,后⾯每个因数⽐前⼀个因数⼩1,共有m 个因数相乘.⼆、排列数⼀般地,对于m n =的情况,排列数公式变为12321n n P n n n =?-?-()().表⽰从n 个不同元素中取n 个元素排成⼀列所构成排列的排列数.这种n 个排列全部取出的排列,叫做n 个不同元素的全排列.式⼦右边是从n 开始,后⾯每⼀个因数⽐前⼀个因数⼩1,⼀直乘到1的乘积,知识结构排列组合记为!n ,读做n 的阶乘,则n n P 还可以写为:!n n P n =,其中!12321n n n n =?-?-()() .在排列问题中,有时候会要求某些物体或元素必须相邻;求某些物体必须相邻的⽅法数量,可以将这些物体当作⼀个整体捆绑在⼀起进⾏计算.三、组合问题⽇常⽣活中有很多“分组”问题.如在体育⽐赛中,把参赛队分为⼏个组,从全班同学中选出⼏⼈参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这⾥,我们将着重研究有多少种分组⽅法的问题.⼀般地,从n 个不同元素中取出m 个(m n ≤)元素组成⼀组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的⼀个组合.从排列和组合的定义可以知道,排列与元素的顺序有关,⽽组合与顺序⽆关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作mn C .⼀般地,求从n 个不同元素中取出的m 个元素的排列数m n P 可分成以下两步:第⼀步:从n 个不同元素中取出m 个元素组成⼀组,共有mn C 种⽅法;第⼆步:将每⼀个组合中的m 个元素进⾏全排列,共有mm P 种排法.根据乘法原理,得到m m mn n m P C P =?.因此,组合数12)112321mmn nm mP n n n n m C m m m P ?-?-??-+==--()(()()().这个公式就是组合数公式.四、组合数的重要性质⼀般地,组合数有下⾯的重要性质:m n mn n C C -=(m n ≤)这个公式的直观意义是:m n C 表⽰从n 个元素中取出m 个元素组成⼀组的所有分组⽅法.n mn C -表⽰从n 个元素中取出(n m -)个元素组成⼀组的所有分组⽅法.显然,从n 个元素中选出m 个元素的分组⽅法恰是从n 个元素中选m 个元素剩下的(n m -)个元素的分组⽅法.例如,从5⼈中选3⼈开会的⽅法和从5⼈中选出2⼈不去开会的⽅法是⼀样多的,即3255C C =.规定1n nC =,01n C =.五、插板法⼀般⽤来解决求分解⼀定数量的⽆差别物体的⽅法的总数,使⽤插板法⼀般有三个要求:①所要分解的物体⼀般是相同的:②所要分解的物体必须全部分完:③参与分物体的组⾄少都分到1个物体,不能有没分到物体的组出现.在有些题⽬中,已知条件与上⾯的三个要求并不⼀定完全相符,对此应当对已知条件进⾏适当的变形,使得它与⼀般的要求相符,再适⽤插板法.六、使⽤插板法⼀般有如下三种类型:⑴ m 个⼈分n 个东西,要求每个⼈⾄少有⼀个.这个时候我们只需要把所有的东西排成⼀排,在其中的(1)n -个空隙中放上(1)m -个插板,所以分法的数⽬为11m n C --.⑵ m 个⼈分n 个东西,要求每个⼈⾄少有a 个.这个时候,我们先发给每个⼈(1)a -个,还剩下[(1)]n m a --个东西,这个时候,我们把剩下的东西按照类型⑴来处理就可以了.所以分法的数⽬为1(1)1m n m a C ----.⑶ m 个⼈分n 个东西,允许有⼈没有分到.这个时候,我们不妨先借来m 个东西,每个⼈多发1个,这样就和类型⑴⼀样了,不过这时候物品总数变成了()n m +个,因此分法的数⽬为11m n m C -+-.⼀.可重复的排列求幂法:重复排列问题要区分两类元素:⼀类可以重复,另⼀类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使⽤住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学⽣报名参加数学、物理、化学竞赛,每⼈限报⼀科,有多少种不同的报名⽅法?(2)有4名学⽣参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投⼊4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34 (3)34【例2】把6名实习⽣分配到7个车间实习共有多少种不同⽅法?【解析】:完成此事共分6步,第⼀步;将第⼀名实习⽣分配到车间有7种不同⽅案,第⼆步:将第⼆名实习⽣分配到车间也有7种不同⽅案,依次类推,由分步计数原理知共有67种不同⽅案.【例3】 8名同学争夺3项冠军,获得冠军的可能性有()A 、38 B 、83 C 、38A D 、38C【解析】:冠军不能重复,但同⼀个学⽣可获得多项冠军,把8名学⽣看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意⼀家“店”,每个“客”有8种可能,因此共有38种不同的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P
பைடு நூலகம்
n
另外,我们规定 0!=1
例2、某铁路沿线有10个车站,共有 多少种普通客票?
例3、由1,2,3,4,5五个数字,可 以组成多少个 ①没有重复数字的五位数? ②没有重复的四位偶数?
例4、从红、黄、蓝三种颜色的旗子中 任选一面、两面或三面按不同的顺序 挂在旗杆上表示信号,共可组成多少 种不同的信号? 例5、由0到9这十个数字,可以组成 多少个没有重复数字的三位数?
n个不同元素全部取出的一个排列,叫 做n个元素的一个全排列,这时公式中的 m=n,即有 n P n n(n 1) 2 1 就是说,n个不同元素全部取出的 排列数,等于正整数1到n的连乘积, 正整数1到n的连乘积,叫做n的阶乘, 用n!表示,所以n个不同元素的全排列 n 数公式可以写成 n!
注意:两个排列相同,当且仅当这两
个排列中的元素完全相同,而且元素 的排列顺序也完全相同。
排列数:从n个不同的元素中取出 m(m≤n)个元素的所有不同排列 的个数叫做从n个不同元素中取出 m个元素的排列数。
用符号
P
m n 表示。
注意区别排列和排列数的不同:
“一个排列”是指:从n个不同元素中, 任取m个元素,按照一定的顺序排成一列. 不是数.
组合 排列(二)
排列:一般地,从n个不同的 元素中取出m(m≤n)个元素, 按照一定的顺序排成一列, 叫做 从n个不同元素中取出m个元素的 一个排列。
m<n时的排列叫选排列, m=n时的排列叫全排列。
你能归纳一下排列的特征吗?
排列的特征
1、元素不能重复。 2、“按一定顺序”就是与位置有 关,这是判断一个问题是否是排列问题 的关键。
练习: 1、有8名毕业生约定每人互赠照片 一张,他们共需要准备多少张照片?
2、有10本不同的书,3名同学去借阅, 每人限借一本,可以有多少种不同的 借法?
3、3个不同颜色的乒乓球,投入5个 容器,每个容器只能容纳一个乒乓球, 有多少种不同的投法?
4、按5粒不同弹子排列顺序制造弹子锁, 问能生产多少不同的锁?
“排列数”是指:从n个不同的元素中, 任取m个元素的所有排列的个数,是 一个数,而不表示具体的排列。
m n, n, m N *
Pmn=n(n-1)(n-2)……(n-m+1)
这个公式的特点是:
1、公式右边第一个因数是n;
2、后面每个因数都比前面一个因数少1; 3、总共有m个因数相乘;
4、最后一个因数是n-m+1.
课堂小结
1、排列与排列数的定义 2、排列数公式
3、全排列的定义和公式
5、由12,3,4,5,6,7这七个数字可以组成 多少个没有重复数字的四位数?可以组 成多少个没有重复数字的四位奇数?
6、北京、南京、上海三个民航站之 间的直达航线共有多少种不同的飞 机票? 7、写出a,b,c,d四个元素中任取两个 元素的所有排列,并指出共有多少种?
8、由2,3,5三个数可组成多少个没 有重复数字的三位数?