三年级下数学说课稿-图形的运动轴对称(一)-北师大版
三年级下册数学期末复习专题讲义(知识点归纳典例讲解同步测试)-2.图形的运动(1)

北师大版三年级下册数学期末复习专题讲义-2.图形的运动【知识点归纳】1.轴对称图形:对折后两边能完全重合的图形是轴对称图形。
2.对称轴:对折后能使两边重合的线叫做对称轴。
3.轴对称图形特点:对称轴是一条直线,对称轴两侧的对应点到对称轴两侧的距离相等,沿对称轴将它对折,左右两边完全重合。
4.轴对称图形有:角、五角星、等腰三角形、等边三角形、等腰梯形、正方形、长方形、圆和正多边形等都是轴对称图形。
轴对称图形至少有一条对称轴。
圆有无数条对称轴,每条圆的直径所在的直线都是圆的对称轴。
正方形有4条对称轴,长方形有2条对称轴。
5.平移:物体或图形,沿着直线运动的现象,叫做平移。
平移不改变图形的形状和大小。
图形经过平移,对应线段相等,对应角相等,对应点所连的线段相等。
6.平移特征:图形平移前后的形状和大小无变化,只是位置发生变化。
7.旋转:物体或图形,绕一个点或一个轴转动一个角度的现象叫做旋转。
8.旋转的特征:围绕中心转动。
9.平移和旋转:①相同点:平移和旋转都是物体或图形的位置发生变化,而形状、大小不变。
②不同点:平移是物体沿着直线运动,本身的方向不变;旋转是物体绕着一个点或一个轴转动,本身的方向发生改变。
10.汽车行驶,车身在平移,车轮、方向盘在旋转。
【典例讲解】例1.把一张长方形纸对折一次后剪成,展开后的图形不可能是()A.B.C.D.【分析】由于只对折一次,所以对折的折痕就是图形的对称轴,根据轴对称图形的特征选择即可.【解答】解:一张长方形纸对折后剪成,把它展开后可能得到,不可能是,因为没有体现右上角的一道剪口.故选:D.【点评】解答此题的关键是轴对称图形的意义及特征.如果一个图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,折痕所在的直线叫做对称轴.例2.把一张纸对折再剪一剪,展开后的图形可能是②.【分析】被剪下的部分上面是三角形的一半,下面是长方形的一半,所以打开后上面是三角形,下面是长方形.它的展开图可能是②.【解答】解:把一张纸对折再剪一剪,展开后的图形可能是②.故答案为:②.【点评】此题考查了轴对称的性质.即对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等.例3.线段不是轴对称图形.×(判断对错)【分析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这条直线叫做对称轴,这样的图形叫做轴对称图形,据此即可进行解答.【解答】解:线段是轴对称图形,经过它的中点的垂线就是它的对称轴;所以原题说法错误.故答案为:×.【点评】此题主要考查轴对称图形意义的灵活运用.例4.我会做.拿一张长纸条,将它一反一正折叠起来,并画出字母E.用小刀把画出的字母E挖去,拉开就可以得到一条以字母E为图案的花边,如图.(1)在得到的花边中,相邻的两个图案是什么关系?相间的两个图案可以通过什么得到?(2)观察整条花边,左起和右起的三个图案各为一组,这两组图案有什么关系?【分析】(1)因为是在折叠好的纸上画出字母E,所以相邻两个图案成轴对称,相间的两个图案全等且是可以通过平移得到的;(2)根据轴对称的定义可知三个图案为一组也成轴对称关系.【解答】解:(1)相邻两个图案成轴对称,相间的两个图案全等且是可以通过平移得到的;(2)三个图案为一组也成轴对称关系.【点评】主要考查了轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.例5.小红将几张正方形纸对折两次后(如图),在不同的位置剪出一个圆孔,每种剪法各对应哪幅图?连一连.【分析】第一种剪法在右上角打孔,左右展开第一道是,再上下展开第二道就是;第二种剪法在右下角打孔,左右展开第一道是再上下展开第二道就是;第三种剪法在左上角打孔,左右展开第一道是,再上下展开第二道就是;第四种剪法在中间打孔,左右展开第一道是,再上下展开第二道就是,据此连线即可.【解答】解:【点评】解答此题的关键是想象出各种剪法的展开图,时间充裕时也可以剪小纸片来观察.【同步测试】一.选择题(共6小题)1.在下面图形中,()不是轴对称图形.A.B.C.2.下列图形中,对称轴条数最少的是()A.圆B.半圆C.等边三角形D.长方形3.如图有()条对称轴.A.1B.2C.3D.44.下列图形对称轴最多的是()A.等边三角形B.半圆C.等腰梯形D.长方形5.下列图形中,一定是轴对称图形的是()A.三角形B.平行四边形C.梯形D.正方形6.一张长方形纸对折后剪成,把它展开后不可能得到的是()A.B.C.二.填空题(共6小题)7.如图共有条对称轴.8.在这些图形中,是轴对称图形的有个,分别是(填序号).9.☆有条对称轴.10.将图形沿着一条直线对折,如果直线两侧的部分能够完全重合,这样的图形叫做,折痕所在的直线叫做它的.11.明明和亮亮合作画一张轴对称图形,明明画出了轴对称图形的左半边(如图),亮亮要沿着虚线画出轴对称图形的右半边,应是数字.12.在A、W、N、S、X、M、Z这些字母中,可以看作轴对称图形.三.判断题(共5小题)13.用两个大小不同的〇组成的图形,一定是轴对称图形.(判断对错)14.这幅照片上的图案是对称的.(判断对错)15.田、子、中这三个汉字都是对称的.(判断对错)16.“H”是轴对称图形.(判断对错)17.该汽车图标是轴对称图形.(判断对错)四.应用题(共4小题)18.下面哪种剪法不会剪出半个人形图案?请在()里画“〇”.再剪一剪,验证一下你的想法是否正确.19.将一张纸对折后剪去两个圆,展开后是哪一个?画“√”.20.拿一张长纸条,将它一反一正折叠起来,并画出字母E.用小刀把画出的字母E挖去,拉开就可以得到一条以字母E为图案的花边,如图.观察整条花边,左起和右起的三个图案各为一组,这两组图案有什么关系?21.下图中的三角形是从哪张对折后的纸上剪下来的?在()里填上序号.五.操作题(共4小题)22.连一连,下面的图案分别是从哪张对折后的纸上剪下来的?23.画出如图的所有对称轴.(有几条就画几条)24.下面图形中,是轴对称图形的画“√”.25.要求:添加一个正方形,形成一个轴对称图形,并给出3种方案,画出对称轴.六.解答题(共3小题)26.认真想一想,在轴对称图形右边的里画“√”.27.请你用三种不同的方法分别图中添画一个小正方形,使它成为一个轴对称图形.28.下面的图形各有几条对称轴?画一画、数一数、填一填.参考答案与试题解析一.选择题(共6小题)1.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:在下面图形中,不是轴对称图形;故选:C.【点评】掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,由此即可确定这个图形的对称轴的条数及位置.【解答】解:圆有无数条对称轴,半圆有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,所以半圆的对称轴的条数最少;故选:B.【点评】此题考查了利用轴对称图形的定义判断轴对称图形的对称轴条数及位置的灵活应用.3.【分析】依据轴对称图形的意义,即在同一个平面内,一个图形沿某条直线对折,对折后的两部分都能完全重合,则这个图形就是轴对称图形,这条直线就是其对称轴,从而找出它们的对称轴.【解答】解:有2条对称轴.故选:B.【点评】此题主要考查如何确定轴对称图形的对称轴条数及位置.4.【分析】根据轴对称图形的定义:一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形就是轴对称图形,这条直线就是它的一条对称轴,据此分别确定出选项中各个图形中对称轴的条数,然后选择即可.【解答】解:等边三角形有3条对称轴,半圆有1条对称轴,等腰梯形有1条对称轴,长方形有2条对称轴;故选:A.【点评】本题主要考查了图形的对称性,对于常见图形的对称性的理解是解决本题的关键.5.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.【解答】解:根据轴对称图形的意义可知:三角形,平行四边形、梯形不一定是轴对称图形,只有正方形一定是轴对称图形;故选:D.【点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.6.【分析】由于只对折一次,所以对折的折痕就是图形的对称轴,根据轴对称图形的特征,可知以不同的对称轴对称出来的图形也不同,但不可能没有右上角的一道剪口所形成的图形,据此选择即可.【解答】解:一张长方形纸对折后剪成,把它展开后可能得到:、、不可能是:.故选:B.【点评】解答此题的关键是轴对称图形的意义及特征.如果一个图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,折痕所在的直线叫做对称轴.二.填空题(共6小题)7.【分析】根据轴对称图形的定义:一个图形沿一条直线对折,直线两旁的部分能够完全重合,则这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,据此即可解答.【解答】解:如图共有4条对称轴.故答案为:4.【点评】此题主要考查如何确定轴对称图形的对称轴条数及位置.8.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:在这些图形中,是轴对称图形的有4个,分别是①③④⑤;故答案为:4,①③④⑤.【点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.9.【分析】把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线就是它的对称轴,据此解答即可.【解答】解:☆有5条对称轴;故答案为:5.【点评】此题考查了轴对称图形的定义,要求学生能够正确找出轴对称图形的对称轴.10.【分析】依据轴对称图形的定义即可作答.【解答】解:将图形沿着一条直线对折,如果直线两侧的部分能够完全重合,这样的图形叫做轴对称图形,折痕所在的直线叫做它的对称轴.故答案为:轴对称图形、对称轴.【点评】此题主要考查轴对称图形的定义.11.【分析】把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,称这两个图形为轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点,依次即可求解.【解答】解:亮亮要沿着虚线画出轴对称图形的右半边,应是数字2019.故答案为:2019.【点评】考查了轴对称,性质:(1)成轴对称的两个图形全等;(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线.12.【分析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,据此即可进行解答.【解答】解:在A、W、N、S、X、M、Z这些字母中,A、X、W、M可以看作轴对称图形;故答案为:A、X、W、M.【点评】此题主要考查轴对称图形的意义.三.判断题(共5小题)13.【分析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这条直线叫做对称轴,这样的图形叫做轴对称图形,据此即可进行解答.【解答】解:用两个大小不同的〇组成的图形,一定是轴对称图形,因为经过它们的圆心的直线就是它们的对称轴;所以原题说法正确.故答案为:√.【点评】此题主要考查轴对称图形意义的灵活运用.14.【分析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这条直线叫做对称轴,这样的图形叫做轴对称图形,据此即可进行解答.【解答】解:这幅照片上的图案不是对称的,因为对折后两部分不能完全重合,所以原题说法错误.故答案为:×.【点评】此题主要考查轴对称图形意义的灵活运用.15.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:“田、中”,都是对称的,“子”不是对称的,所以本题说法错误;故答案为:×.【点评】掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.16.【分析】轴对称图形的概念:如果一个图形沿着一条直线对折,直线两边的图形能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:“H”沿着对称轴对折两边的图形能够完全重合,所以“H”是轴对称图形,所以原题说法正确;故答案为:√.【点评】此题主要考查轴对称图形的定义.17.【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,据此即可解答.【解答】解:该汽车图标是轴对称图形,有3条对称轴,故原题说法正确;故答案为:√.【点评】本题主要考查了轴对称图形的对称轴条数,比较简单.四.应用题(共4小题)18.【分析】根据轴对称图形的定义可知,折痕就是展开后相邻的两个图形的对称轴,据此判断即可.【解答】解:折痕就是展开后相邻的两个图形的对称轴,第一种剪法会剪出整个人形图案,第二种剪法会剪出半个人形图案.故答案为:【点评】本题主要考查学生的动手能力及空间想象能力,正确理解对称轴的定义是解题的关键.19.【分析】由于该图是把一张纸对折后剪出的,剪出的图形是轴对称图形,折痕就是剪成的图形的对称轴,据此解答.【解答】解:将一张纸对折后剪去两个圆(如图),展开后是,【点评】本题考查了轴对称图形,对称轴左边的图形要与该图的左边部分相吻合.20.【分析】根据轴对称图形的定义可知,左起和右起的三个图案各为一组,这两组图案成轴对称.【解答】解:左起和右起的三个图案各为一组,这两组图案成轴对称关系.【点评】主要考查了轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.21.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.因为①的对称轴在折痕,所以如果按①剪下来,得到的是等腰三角形,符合要求.【解答】解:根据轴对称图形可知,图中的三角形是①对折后的纸上剪下来的.故答案为:①.【点评】本题考查了轴对称图形的意义.解题的关键是掌握轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.五.操作题(共4小题)22.【分析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这条直线叫做对称轴,这样的图形叫做轴对称图形,据此即可进行解答.【解答】解:根据分析可得,【点评】此题主要考查轴对称图形意义的灵活运用.23.【分析】一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是这个图形的对称轴.根据轴对称图形的定义,找出并画出轴对称图形的对称轴即可.【解答】解:如图所示,即为所要画的对称轴;【点评】此题考查了根据轴对称图形定义画出轴对称图形的对称轴的方法.24.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.【解答】解:根据轴对称图形的意义可知:【点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.25.【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,从而可以画出轴对称图形.【解答】解:根据分析可得,【点评】解答此题的主要依据是:轴对称图形的概念及特征.六.解答题(共3小题)26.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:【点评】掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.27.【分析】依据轴对称图形的含义,即在平面内,如果一个图形沿一条直线对折,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此即可完成作图.【解答】解:如图所示,即为所要求的画图:【点评】解答此题的主要依据是:轴对称图形的意义及特征.28.【分析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,据此即可进行解答.【解答】解:【点评】此题主要考查轴对称图形的意义及其对称轴的条数.。
轴对称(说课稿)

背景分析
知识与 技能
通过欣赏、感知、折叠等活动认识 轴对称图形的共同特征,能识别简 单的轴对称图形及对称轴,通过实 践操作,理解轴对称图形和两个图 形成轴对称的联系与区别。 经过剪纸、折叠等活动,发展学生 的形象思维和空间观念,积累数学 活动的经验,在动手实践中学会与 人合作、彼此交流。 初步获得动手的乐趣和成就感,欣 赏并体会对称美,感受轴对称的价 值,培养学生热爱生活、热爱祖国 的情感。
(三) 分”对称 提升认识 轴对称图形与两个图形成轴对称这两个概念 之间的联系和区别:
轴对称图形
区别 联系 一个图形
两个图形成轴对称
两个图形
1、沿着某条直线对折后,直线两旁的部分都能 互相重合; 2、都有对称轴(至少一条) 3、如果把一个轴对称图形沿对称轴分成两个图 形,那么这两个图形关于这条直线对称;如果把 两个成轴对称的图形看成一个图形,那么这个图 形就是轴对称图形。
课堂结构设计
教法学法分析
教学方法:问题教学法 、引导探究法
学习方法:动手实践、自主探索与合作交流
教学用具: 剪刀、 正方形纸片、 多媒体课件
课堂结构设计
教学过程设计
“玩”对称,激趣引 入 1、千手观音
教学过程设计
“玩”对称,激趣引 入
教学过程设计
“玩”对称,激趣引 入
教学过程设计
展开,则所得的图形大致是( B
)
设问4:把四个选 项的图形按题目
从下往上折
从左往右折
沿虚线剪下
的折叠顺序做轴 对称,最后得到 的图形是什么样 的?
(A )
(B)
(C )
(D )
(四) “做”对称,拓展延 伸
北师大版数学五年级上册《轴对称再认识(一)》说课稿3

北师大版数学五年级上册《轴对称再认识(一)》说课稿3一. 教材分析《轴对称再认识(一)》是人教版小学五年级数学上册的教学内容。
这部分内容是在学生已经掌握了轴对称的基本概念和性质的基础上进行教学的。
教材通过引入生活中的实例,让学生进一步理解和掌握轴对称的性质,提高学生运用轴对称解决实际问题的能力。
教材还注重培养学生的观察、思考、动手操作和小组合作能力。
二. 学情分析五年级的学生已经具备了一定的观察、思考和动手操作能力,他们对于轴对称的概念和性质已经有了一定的了解。
但是,学生在应用轴对称解决实际问题方面还存在一定的困难。
因此,在教学过程中,我需要关注学生的认知水平,通过生活中的实例,让学生更好地理解和运用轴对称的知识。
三. 说教学目标1.知识与技能:通过观察和操作,进一步理解轴对称的性质,能运用轴对称的知识解决实际问题。
2.过程与方法:培养学生的观察能力、思考能力和动手操作能力,提高小组合作能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的创新意识和实践能力。
四. 说教学重难点1.重点:进一步理解轴对称的性质,能运用轴对称的知识解决实际问题。
2.难点:运用轴对称的知识解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动、实例引导、小组合作、动手操作的教学方法。
2.教学手段:利用多媒体课件、实物模型、学习单等教学手段,提高教学效果。
六. 说教学过程1.导入:通过展示生活中的轴对称实例,引导学生回顾轴对称的概念和性质,激发学生的学习兴趣。
2.新课导入:引导学生观察和分析实例,发现轴对称的性质,进一步理解轴对称的概念。
3.小组合作:让学生分组讨论,运用轴对称的知识解决实际问题,培养学生的动手操作和小组合作能力。
4.总结提升:引导学生总结轴对称的性质,明确轴对称在实际生活中的应用。
5.练习巩固:设计有针对性的练习题,让学生巩固所学知识,提高运用轴对称解决实际问题的能力。
6.课堂小结:对本节课的内容进行总结,强调轴对称的性质和应用。
北师版轴对称说课稿三年级下8篇

北师版轴对称说课稿三年级下8篇北师版轴对称说课稿三年级下8篇说课稿还需要注重教学资源利用和创意创新,包括利用多媒体技术和其他资源,尝试新授课方法、模型和场景等,以达到教学的有效性、创新性和可持续性。
通过不断的实践和反馈,激发学生的学习兴趣和创造力。
现在随着小编一起往下看看北师版轴对称说课稿三年级下,希望你喜欢。
北师版轴对称说课稿三年级下篇1一、教材分析1、教材的地位及作用对称是数学中一个非常重要的概念,教科书分为轴对称和中心对称两部分讲述。
“轴对称和轴对称图形”这一节是在学生学过等腰三角形的性质,以及线段垂直平分线的性质定理,及逆定理的基础上安排的一节内容。
它是前面所学知识在生活中的应用,也是后面学习中心对称的重要的基础知识。
本节课是在学习了“轴对称定义及性质”的基础上进行的。
通过本节课的教学,主要是训练学生初步的审美能力和初步的图案设计操作技能,拓展学生的空间想象能力。
因此,这一节课无论在知识上,还是对学生观察能力的培养上,都起着十分重要的作用。
2、教学目标根据学生已有的认知基础及本课教材的地位、作用依据教学大纲确定本课的教学目标为:(1)通过对现实生活中的有关图形的观察和联想,丰富学生的生活经验,促进学生理解轴对称图形的概念,会画轴对称图形的对称轴,并能用适当的图形和语言表达自己的思考结果。
(2)通过观察、比较、实践操作等活动,能正确区分轴对称和轴对称图形,会利用所学知识画轴对称图形。
(3)培养学生动手、动脑,探究问题、发现问题、解决问题的能力。
(4)培养学生良好的情感、态度和主动参与、合作交流的意识,提高学生的审美情趣、发展创新意识。
3、教学重点与难点我认为本节课的教学重点是让学生识别轴对称图形与画轴对称图形的对称轴,这是因为:(1)《九年义务教育初中学数学教学大纲》中明确要求学生理解轴对称、轴对称图形的概念,了解轴对称的性质,会画已知图形关于某直线的轴对称图形。
(2)学习知识的目的在于应用,轴对称图形在现实生活中应用非常广泛。
《轴对称图形》说课稿12篇

《轴对称图形》说课稿12篇《轴对称图形》说课稿1一、教材分析本节内容是苏科版数学八年级上册第一章第一节第1课时,本节立足于学生已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度认识轴对称的特征;同时与图形的三种运动(平移、翻折、旋转)之一的“翻折”有着不可分割的联系,通过对这一节课的学习,既可以让学生感受图形的三种基本运动中“翻折”在几何知识中的作用,又为学生后继学习对称变换、中心对称和中心对称图形及平行四边形的相关知识等做好充分准备;同时这一节也是联系数学与生活的桥梁。
二、教学目标:根据上述教材分析,考虑到学生已有的认知结构和心理特征,制定如下教学目标:1、通过具体实例理解轴对称与轴对称图形的概念;能够认识轴对称和轴对称图形,并能找出对称轴;知道轴对称与轴对称图形的区别和联系。
2、经历观察生活中的轴对称现象和轴对称图形,探索它们的共同特征的活动过程,发展学生的空间观念和抽象概括能力。
3、在欣赏现实生活中的轴对称图形之美时,体会轴对称在现实生活中的广泛运用和它的丰富的文化价值;激发学生学习欲望,主动参与数学学习活动。
三、教学重点、难点:依据教学目标,我认为本节课的重点是:轴对称与轴对称图形概念的区别与简单运用。
难点是:轴对称与轴对称图形之间的联系和区别.四、教法、学法为突出重点、突破难点,使学生能达到本节设定的教学目标,本节课我将引导学生经历观察、操作等活动过程,在活动过程中给学生充分的自主探究交流的空间,让学生进行充分的讨论、交流、合作、大胆表述,让学生真正成为学习的主人。
五、教学过程:根据以上分析,下面我具体谈一谈本节课的教学过程.探究活动(一):轴对称图形1、激趣导入、感受生活(用多媒体演示生活中的有关画面)图片欣赏(课件):考考你的观察力,这一醒目的标题,激起学生的好胜心,让学生边观察边思考:这些图片有什么共同特征?这一设计遵循教学要贴近生活实际的原则,学生仔细观察后,能发现这些图形都是对称。
轴对称图形说课稿优秀9篇

轴对称图形说课稿优秀9篇轴对称图形说课稿篇一一、游戏引入,激发兴趣尊敬的各位评委,老师们下午好:看!我给大家带来了什么?我们都玩过纸飞机吧!今天让我们再来玩一次(飞出一架好的)!现在,谁想上来和我一起做飞行表演?来,起飞了!(谢谢)诶,为什么我的飞机飞得又平又稳,而他的却飞不起来呢?仔细观察两架飞机。
这,其中的奥秘,又在哪里呢?(出示另一张PPT),这就是我《轴对称图形》一课的导入。
(同时出示标题彩色打印)二、说教材对称,是一种最基本的图形变换,对于培养学生的空间想象能力非常重要。
之前,学生已经学过长方形、正方形、三角形等平面图形的特征,形成了一定的空间观念。
本节课,主要是帮助学生认识轴对称图形的特征。
为今后学习正方体、圆柱等空间立体图形特征打下基础。
根据新课标要求和三年级学生的认知规律。
我确定如下课程目标:三、课程目标1、知识技能:经历认识轴对称图形的过程,体会轴对称图形的特征。
2、数学思考:学生在参与观察、猜想、操作、验证等实践活动中,进一步建立了空间观念。
3、问题解决:学会从数学的角度,进一步感受轴对称图形在生活中的广泛应用。
4、情感态度:通过开展学生亲身经历,积极探索的实践过程,激发学生学数学、爱数学的情感。
四、教学过程为实现这些课程目标,我是这样组织教学过程的。
1、感知特征,步步深入由于纸飞机是学生身边比较熟悉的玩具,这样的导入一下激发了他们的兴趣,学生开始激烈地讨论起来。
细心的学生已经观察到,左面飞机的一边缺了一个角,右面飞机的左右两边却完全一样。
顺着学生的思路,我顺势推出,像这种两边形状完全相同的现象,称之为“对称”。
本环节设计,抓住了孩子们好动爱玩的年龄特点,让学生在玩中不知不觉地进入学习状态,初步感知到对称物体的特征。
接着,我由体到面,又依次出示了以下图形,(课件和实物同时展示,彩色打印剪纸)。
并让他们拿出课前发下去的图片,按照一定的规律进行分类。
很快,学生排出了这样的两类图形,并说这一行是对称的,而这一个则不是。
《轴对称图形》说课稿北师大版数学三级下册

北师大版数学三年级下册《轴对称图形》说课稿一、教材分析1.教材的地位与作用《轴对称图形》是北师大版三年级下册第二单元《对称、平移和旋转》中第一课时的教案内容。
本节课是在认识常见立体图形和平面图形的基础上学习的。
对称是一种最基本的图形变换,对于帮助学生建立空间观念,培养学生空间想象力有着重要的作用。
轴对称图形的学习为今后学习平移、旋转、图形变换等知识打好基础。
所以,本课不仅为学生做好知识铺垫,也做好能力的过渡。
2. 教案目标根据“新课标”要求和教材的内容,本节课确定如下教案目标:(1)知识与技能感知现实生活中普遍存在的轴对称现象,体会轴对称图形特征,能够准确判断哪些图形是轴对称图形并找出对称轴,能够在方格纸上画出简单的轴对称图形。
(2)过程与方法通过图形分类、折纸、画图、剪纸等操作活动来认识和制作轴对称图形,体会数学分类思想和对应思想,从而运用轴对称图形的知识来解决实际问题。
(3)情感、态度与价值观发展学生的空间观念,培养学生热爱美、创造美的意识。
3、教案重难点由于教材并没有给出轴对称图形准确的定义,主要是通过直观演示,动手操作使学生感知并了解轴对称图形的基本特征,因此“初步认识轴对称图形的特征”就成为本节课的教案重点;在图形对称轴的判断和画图中,依靠是感知概念与特征来完成,因此“判断轴对称图形和掌握画轴对称图形的方法”是本节课的难点。
重点:认识轴对称图形特征。
难点:能正确判断和画出简单的轴对称图形。
二、学情分析学生年龄小,好动,好奇,思维活跃,并具有一定的数学思考能力。
感性认识强于理性认识,形象而直观的教案容易被他们接受。
三、教案方法分析如何更好地突出重点,突破难点,完成上述教案目标呢?根据教材与学生的特点教法分析:本节课我将采用多媒体辅助教案,加以引导、直观演示。
以独立思考、探究合作、交流与展示、竞赛活动为主要方式进行教案。
激发学生学习的积极性,让学生主动参与学习的全过程。
学法分析:我力争营造一个民主、平等、和谐、愉悦的学习气氛,充分发挥学生的主体性,通过学生初步观察、动手折纸、画图、剪纸等学习活动,用自己的思维方式主动探究,发现特征,学以致用。
三年级下册数学教案2.2图形的运动——轴对称(二)北师大版

三年级下册数学教案 2.2图形的运动——轴对称(二)北师大版教案:三年级下册数学教案 2.2图形的运动——轴对称(二)北师大版一、教学内容今天我们要学习的是北师大版三年级下册的数学教案,第二章的第二个部分,即图形的运动——轴对称(二)。
这部分的主要内容是让学生进一步理解轴对称的概念,能够识别和画出简单的轴对称图形,并理解轴对称图形的性质。
二、教学目标1. 能够识别和画出简单的轴对称图形;2. 理解轴对称图形的性质;3. 培养学生的观察能力和动手能力。
三、教学难点与重点本节课的重点是让学生能够识别和画出轴对称图形,理解轴对称图形的性质。
难点是让学生能够理解并运用轴对称的概念。
四、教具与学具准备1. 教具:我会使用一些轴对称的图形,如正方形、矩形、圆形等,以及一些非轴对称的图形,如三角形、五边形等,来进行演示。
2. 学具:每个学生都会发一份含有各种图形的卡片,让他们进行观察和操作。
五、教学过程1. 引入:我会通过一个简单的游戏来引入今天的课题。
我会展示一个轴对称的图形,让学生们尝试找出它的对称轴,并画出来。
3. 练习:然后,我会让学生们自己观察和分析一些轴对称的图形,让他们找出对称轴,并画出来。
4. 应用:接着,我会让学生们自己尝试画出一些轴对称的图形,并找出它们的对称轴。
六、板书设计1. 轴对称的定义;2. 轴对称的性质;3. 轴对称图形的例子。
七、作业设计作业题目:请学生们自己画出一个轴对称的图形,并找出它的对称轴,然后用文字描述一下轴对称的性质。
答案:略八、课后反思及拓展延伸课后,我会反思今天的教学效果,看看学生们是否掌握了轴对称的概念和性质。
如果发现有学生还没有完全理解,我会考虑进行一些额外的辅导。
同时,我也会鼓励学生们在课后进行一些拓展延伸的活动,如寻找生活中的轴对称现象,以此来加深他们对轴对称的理解。
重点和难点解析在上述教案中,有几个重要的细节是需要重点关注的。
学生对于轴对称概念的理解和运用是本节课的核心目标,因此,如何设计教学活动和辅导学生理解这一概念是关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三年级下数学说课稿-图形的运动轴对称(一)-北师大版
一、课程背景
本节课为三年级下学期数学课程中的一节,主要内容关于图形的运动轴对称。
在本次教学中我们将结合具体的图形和实物进行生动形象的讲解,通过互动、游戏等方式让学生通过动手实践增强老师所讲内容的理解与记忆。
二、教学目标
1.了解图形的运动和轴对称的概念及其性质;
2.能够通过实物模拟轴对称的过程,理解轴对称的规律;
3.实践练习运用轴对称的方法解决简单的图形对称问题。
三、教学重难点
教学重点
1.图形的运动概念及其性质;
2.轴对称的概念及其性质。
教学难点
学生对轴对称概念的理解和轴对称性质的灵活应用。
四、教学步骤
1. 导入新知识(5分钟)
教师呈现一个颜色斑斓的图案,询问学生们是否发现了其中的规律。
引出“运动”和“轴对称”概念,并通过演示互动,让学生感受图形的“运动”。
2. 概念讲解(10分钟)
通过课件展示各种图形的运动和轴对称,以简单易懂的方式让学生理解运动的概念和轴对称的性质与特点。
3. 轴对称的示范教学(20分钟)
教师通过教学实物进行轴对称的示范,让学生通过实际操作模拟出轴对称的过程,帮助学生更好的理解轴对称,并在实践操作中加深对轴对称的记忆印象。
4. 轴对称的练习(15分钟)
教师发放练习册,让学生在册子上完成轴对称的题目,帮助学生在实践中掌握轴对称的技巧和方法。
5. 总结反思(5分钟)
通过问答的方式进行总结回顾,并引导学生思考:在日常生活中有哪些事物具有轴对称的性质?轴对称在哪些领域中有应用?
五、教学心得
通过本次轴对称的教学,让我深刻认识到学生的学习需要通过丰富生动的教学手段进行引导,让学生通过体验和实践,来不断加深对知识的理解和记忆。
在授课过程中,我会更多的运用互动、游戏等丰富的方式来引导学生,让学生真正理解和掌握知识,并通过运用将知识变成能力。