三角形的五心向量结论证明
完整版三角形的五心向量结论证明

三角形的五心向量结论证明1. O是RP2R的重心UJU uuir umr rOp OP, OP3 0(其中a,b,c 是PP2P3 三边)P2 PP3uu uur uur r证明:充分性:OR OF2 OP30 O是PP2F3的重心uuu uir uur r uur uur uur uuur uur若OR OP,OP3 0 ,则O R OP2 OR,以OR,OF2OP1P3 ' P2,设OP3与RP2交于点P3,则F3为RF2的中点,有即O,R, P,p四点共线,故PP2P3的中线,同理,uur uuuOP3 OP3 ,为邻边作平行四边形uurOP1uur uuur,OP2OP3,得PO, P2O亦为PP2P3的中线,所以,O为的重心。
2•在ABC中,给uurADuur uuuAB AC ,等于已知AD是ABC 中BC边的中线;————uur* △ ABC中AB AC 一定过BC的中点,通过△ABC的重心luuAPuuBP*PUG1 uuu(AB31 uuu-(BA31 uur -(PAuurAC),uurBC),P为VABC的重心uur uirPB PC)uuu uu uur uur uur urir uur uur uur uur uuu uuu uuu uurPG PA AG PB BG PC CG 3PG (AG BG CG) (PA PB PC)-G是厶ABC的重心uur uuu uuu r UU uur uuu r 亦uur uuu uuu uuu-GA GB GC = 0 AG BG CG : =0,即3PG PA PB PCG ABC的重心(P是平面上任意点).证明(反之亦然(证略))uurPBuirPC).uur 1 uur 由此可得PG (PA3S*若O是ABC的重心,则BOC S AOC S AOB1SS ABC3uuu umrAPgBC 0 2. uuu uuirBPgAC 0则0是厶ABC 的垂心证明:由 OA '\BC 3 = 003 +CA J ,得 -0?)3 = OB \COC -OA )2 ,所以.■ .' ■''"。
三角形五心的向量表示

三角形五心的向量表示J DZ 小飞在空间中,如果一个向量所在直线平行于一个平面或在一个平面内,则称这个向量平行于该平面.我们把平行于同一平面的一组向量称为共面向量,不平行于同一平面的一组向量称为不共面向量.定理1(平面向量基本定理):如果向量,a b 不共线,那么向量r 与向量,a b 共面的充要条件是λµ=+r a b ,(1)其中,λµ是被向量,a b 和r 唯一确定的数量.推论1:三个向量a b c 、、共面的充要条件是存在三个不全为零....的实数λµν、、,使λµν++=a b c 0.(2)推论2:三个向量a b c 、、其中无二者共线,则共面的充要条件是存在三个全不为零....的实数λµν、、,使λµν++=a b c 0.(3)推论3:如果三个不共面向量a b c 、、满足:λµν++=a b c 0,其中,,R λµν∈,那么0λµν===.推论4:平面O 、A 、B 三点不共线,则点C 在平面OAB 上的充要条件是OC OA OB λµ=+������������,(4)其中,λµ是被向量OA ����,OB ����和OC ����唯一确定的数量.【注意】《共面向量·推论4》与《共线向量·推论4》是有区别的。
《共线向量·推论4》:平面O 、A 、B 三点不共线,则点C 在直线AB 上的充要条件是OC OA OB λµ=+������������,其中,λµ是被向量OA ����,OB ����和OC ����唯一确定的数量,且1λµ+=.定理2(平面向量基本定理的面积表示):已知ABC ∆,则点M 在平面ABC 上的充要条件是.AMC ABMABC ABCS S AM AB AC S S ∆∆∆∆=+�������������i i (5)其中ABM S ∆、AMC S ∆和ABC S ∆是有向面积。
初中的几何三角形五心及定理性质

初中几何三角形五心定律及性质三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。
三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称重心定理三角形的三条边的中线交于一点。
该点叫做三角形的重心。
三中线交于一点可用燕尾定理证明,十分简单。
(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。
即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。
5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。
外心定理三角形外接圆的圆心,叫做三角形的外心。
外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。
2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
5、外心到三顶点的距离相等垂心定理图1 图2三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。
(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。
4、垂心分每条高线的两部分乘积相等。
推论:1. 若D 、E 、F 分别是△ABC 三边的高的垂足,则∠1 = ∠2 。
完整版三角形的五心向量结论证明

三角形的五心向量结论证明1. O是RP2R的重心UJU uuir umr rOp OP, OP3 0(其中a,b,c 是PP2P3 三边)P2 PP3uu uur uur r证明:充分性:OR OF2 OP30 O是PP2F3的重心uuu uir uur r uur uur uur uuur uur若OR OP,OP3 0 ,则O R OP2 OR,以OR,OF2OP1P3 ' P2,设OP3与RP2交于点P3,则F3为RF2的中点,有即O,R, P,p四点共线,故PP2P3的中线,同理,uur uuuOP3 OP3 ,为邻边作平行四边形uurOP1uur uuur,OP2OP3,得PO, P2O亦为PP2P3的中线,所以,O为的重心。
2•在ABC中,给uurADuur uuuAB AC ,等于已知AD是ABC 中BC边的中线;————uur* △ ABC中AB AC 一定过BC的中点,通过△ABC的重心luuAPuuBP*PUG1 uuu(AB31 uuu-(BA31 uur -(PAuurAC),uurBC),P为VABC的重心uur uirPB PC)uuu uu uur uur uur urir uur uur uur uur uuu uuu uuu uurPG PA AG PB BG PC CG 3PG (AG BG CG) (PA PB PC)-G是厶ABC的重心uur uuu uuu r UU uur uuu r 亦uur uuu uuu uuu-GA GB GC = 0 AG BG CG : =0,即3PG PA PB PCG ABC的重心(P是平面上任意点).证明(反之亦然(证略))uurPBuirPC).uur 1 uur 由此可得PG (PA3S*若O是ABC的重心,则BOC S AOC S AOB1SS ABC3uuu umrAPgBC 0 2. uuu uuirBPgAC 0则0是厶ABC 的垂心证明:由 OA '\BC 3 = 003 +CA J ,得 -0?)3 = OB \COC -OA )2 ,所以.■ .' ■''"。
三角形五心(外心内心重心旁心)相关结论与应用汇总(精品)

(h
a)
b
(h
b)
a
h
(b
a)
0.
(h b) a 0
AH BC.
垂心
又∵点D在AH的延长线上,∴AD、BE、CF相交于一点.
例2.已知O为⊿ABC所在平面内一点,且满足:
证明外心定理
证明: 设AB、BC的中垂线交于点O,
则有OA=OB=OC,
A
故O也在AC的中垂线上, 因为O到三顶点的距离相等,
A
故点O是ΔABC外接圆的圆心.
O
因而称为外心.
O
B
C
B
C
若 O 为 ABC内一点,OA OB OC
则 O 是 ABC 的( B )
A.内心 B.外心 C.垂心 D.重心
可以大显神通了.
思考练习 3. AB 为半圆 O 的直径,其弦 AF、BE 相交于 Q, 过 E、F 分别作半圆的切线得交点 P,求证:PQ⊥AB.
3答案
思考练习 3. AB 为半圆 O 的直径,其弦 AF、BE 相交于 Q, 过 E、F 分别作半圆的切线得交点 P,求证:PQ⊥AB. 分析:延长 EP 到 K,使 PK=PE,连 KF、AE、EF、BF, 直线 PQ 交 AB 于 H.因∠EQF=∠AQB =( 90 -∠1)+( 90 +∠2) =∠ABF+∠BAE=∠QFP+∠QEP, 又由 PK=PE=PF 知∠K=∠PFK, ∴∠EQF+∠K=∠QFK+∠QEK= 180 , 从而 E、Q、F、K 四点共圆. 由 PK=PF=PE 知,P 为△EFK 的外心,显然 PQ=PE=PF.于 是∠1+∠AQH=∠1+PQF=∠1+∠PFQ=∠1+∠AFP=∠1+∠ ABF=90º .由此知 QH⊥AH,即 PQ⊥AB.
三角形各个心的有关向量结论

三角形各个心的有关向量结论三角形是初中数学的重点之一,它们在几何的许多领域都有应用。
除了三条边之外,三角形还有很多其他有趣的属性和结论。
今天,我们将重点关注与三角形各个心的有关向量结论。
首先,让我们来介绍一下三角形的“心”。
一个三角形的“心”是它的重心、外心、内心、垂心和费马点。
这五个点都具有特殊的几何意义,它们与三角形的性质密切相关。
现在,我们来看一些关于这五个“心”的向量结论。
这些结论包括:1. 重心:三角形的三条中线的交点是三角形的重心。
向量表示为$$\overrightarrow{G}=\frac{1}{3}(\overrightarrow{A}+\overrigh tarrow{B}+\overrightarrow{C})$$其中,A、B、C分别是三角形的三个顶点的向量表示。
2. 外心:三角形外接圆的圆心是三角形的外心。
向量表示为$$\overrightarrow{O}=\frac{\overrightarrow{a}\times\overright arrow{b}+\overrightarrow{a}\times\overrightarrow{c}+\overrigh tarrow{b}\times\overrightarrow{c}}{2\overrightarrow{a}\cdot\o verrightarrow{b}\times\overrightarrow{c}}$$其中,a、b、c分别是三角形的三个边的向量表示。
3. 内心:三角形内切圆的圆心是三角形的内心。
向量表示为$$\overrightarrow{I}=\frac{a\overrightarrow{A}+b\overrightarr ow{B}+c\overrightarrow{C}}{a+b+c}$$其中,a、b、c分别是三角形的三个边的长度;A、B、C分别是三角形的三个顶点的向量表示。
4. 垂心:三角形的三条高线交于垂心,它与对应的顶点相连的线段垂直。
三角形的五心在向量的结论

三角形的五心在向量的结论三角形的五心是指三角形的外心、内心、垂心、重心和旁心。
这五个特殊的点在三角形中有着重要的几何性质和向量关系。
本文将通过向量的角度来探讨这五个特殊点之间的关系。
我们先来介绍一下五个特殊点。
外心是通过三角形三个顶点的垂直平分线的交点,它到三角形三个顶点的距离都相等。
内心是通过三角形三个边的角平分线的交点,它到三角形三个边的距离都相等。
垂心是通过三角形三个顶点与对边垂直的高的交点,它到三角形三个顶点的距离满足垂心定理。
重心是通过三角形三个顶点的中线的交点,它到三角形三个顶点的距离满足重心定理。
旁心是通过三角形的一条边的垂直平分线的延长线与对边的交点,它到三角形的一条边的距离相等。
现在,我们来探讨这五个特殊点之间的向量关系。
我们可以将三角形的顶点表示为向量A、B、C,那么外心O可以表示为向量O=(A+B+C)/3,内心I可以表示为向量I=(aA+bB+cC)/(a+b+c),垂心H可以表示为向量H=A+B+C,重心G可以表示为向量G=(A+B+C)/3,旁心J可以表示为向量J=(2A+B+C)/4。
根据向量的定义,我们可以得到以下结论:1. 外心O到三个顶点的向量和为零,即AO+BO+CO=0。
这是因为外心是通过三个顶点的垂直平分线的交点,所以它到三个顶点的距离相等,即向量AO=向量BO=向量CO,因此它们的和为零。
2. 内心I到三个边的向量和为零,即aIA+bIB+cIC=0。
这是因为内心是通过三个边的角平分线的交点,所以它到三个边的距离相等,即向量IA=向量IB=向量IC,因此它们的和为零。
3. 垂心H到三个顶点的向量和为零,即AH+BH+CH=0。
这是因为垂心是通过三个顶点与对边垂直的高的交点,所以它到三个顶点的距离满足垂心定理,即向量AH=向量BH=向量CH,因此它们的和为零。
4. 重心G到三个顶点的向量和为零,即AG+BG+CG=0。
这是因为重心是通过三个顶点的中线的交点,所以它到三个顶点的距离满足重心定理,即向量AG=向量BG=向量CG,因此它们的和为零。
平面向量基本定理中关于三角形五“心”的向量性质及推论

AP PO
| |
2 1
,由定理知
x
y
=
| |
AP AO
| |
2 3
;
(2)若 P为 ABC 的内心,由文[2]中性质2的
证明过程知
| |
PO AP
| |
sin
sin B
A sin
C
,故
x
y
| |
AP AO
| |
sin
sin A
B sin
sin C B sin
C
;
(3)若 P为 ABC 的外心,由文[2]中性质1的
(1)若
P
为
ABC
的重心,则
4 3
;
(2)若 P 为 ABC 的内心,
则
2sin A sin B sin C sin A sin B sin C
;
(3)若 P 为 ABC 的外心,
则
2sin 2A sin 2B sin 2C sin 2A sin 2B sin 2C
;
(4)若 P 为非直角 ABC 的垂心,
一个关于方差不等式的再加强
王恒亮 李一淳 广东省珠海市实验中学高中部(519090)
对于数组 x1 ,x2 ,,xn ,记 M max{x1 ,x2 ,,xn} ,
m
min{x1
,x2
,,xn} ,R
M
m , 2
1 n
n
(xj
j 1
x)2
,
其中
x
1 n
n
xj
j 1
,则关于方差有如下的一个加强型不
A P
B OC 图1
A F PE BDC 图2Fra bibliotekA P
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形的五心向量结论证明1. O 是123PP P ∆的重心⇔1230OP OP OP ++=(其中,,a b c 是123PP P ∆三边)证明:充分性: 1230OP OP OP ++=⇒O 是123PP P ∆的重心若1230OP OP OP ++=,则123OP OP OP +=-,以1OP,2OP 为邻边作平行四边形132'OPP P ,设3OP 与12PP 交于点3P ',则3P '为12PP 的中点,有'123OPOP OP +=,得'33OP OP =-,即'33,,,O P P P 四点共线,故3P P 为123PP P ∆的中线,同理,12,PO P O 亦为123PP P ∆的中线,所以,O 为的重心。
* △ABC 中AC AB +一定过BC 的中点,通过△ABC 的重心1(),31()3AP AB AC P ABC BP BA BC ⎧=+⎪⎪⇒⎨⎪=+⎪⎩为的重心, *1()3PG PA PB PC =++⇔G 为△ABC 的重心(P 是平面上任意点).证明 PG PA AG PB BG PC CG =+=+=+⇒3()()PG AG BG CG PA PB PC =+++++∵G 是△ABC 的重心∴GA GB GC ++=0⇒AG BG CG ++=0,即3PG PA PB PC =++P 1 2PP 3OPABC∆()1,2AD AB AC =+ABC ∆2.在 中,给等于已知AD 是中BC 边的中线;由此可得1()3PG PA PB PC =++.(反之亦然(证略))*若O 是ABC ∆的重心,则ABC AOB AOC BOC S 31S S S ∆∆∆∆===2. 0AP BC P ABC BP AC ⎧=⎪⇒⎨=⎪⎩为的垂心 * 点O 是123PP P ∆的垂心⇔122331OPOP OP OP OP OP ⋅=⋅=⋅ 证明:O 是123PP P ∆的垂心⇔312OPPP ⊥, 31232132310()0OP PP OP OP OP OP OP OP OP ⋅=⇔⋅-=⇔⋅=⋅同理123OP P P ⊥⇔3112OP OP OP OP ⋅=⋅ 故当且仅当122331OP OP OP OP OP OP ⋅=⋅=⋅.* O 是△ABC 所在平面内一点222222→→→→→→+=+=+ACOB BA OC BC OA则O 是△ABC 的垂心 证明:由,得,所以。
同理可证。
容易得到由以上结论知O 为△ABC 的垂心。
* 设()+∞∈,0λ,则向量cos cos (CAC BAB +λ必垂直于边BC ,该向量必通过△ABC 的垂心[)+∞∈⎪⎪⎪⎪⎭⎫ ⎝⎛+=→→→→→,0,cos cos λλC AC AC B AB AB AP()||cos ||cos ||cos ||cos AB AC BC AB BC ACBC AB B AC C AB B AC C⋅⋅⋅+=+||||cos()||||cos ||||0||cos ||cos BC AB B BC AC CBC BC AB BAC Cπ⋅-⋅=+=-+=* 若H 是△ABC(非直角三角形)的垂心, 则S △BHC :S △AHC :S △AHB =tanA :tanB :tanC故tanA ·HA +tanB ·HB +tanC ·HC =03.点O 是123PP P ∆的外心⇔23OP OP OP ==. 证明:O 是△ABC 的外心⇔|OA |=|OB |=|OC |(或OA 2=OB 2=OC 2)(点O 到三边距离相等)⇔(OA +OB )·AB =(OB +OC )·BC =(OC +OA )·CA =0(O 为三边垂直平分线的交点)*若点O 为△ABC 所在的平面内一点,满足,则点O 为△ABC 的外心。
证明:因为,所以同理得由题意得,所以,得。
故点O 为△ABC 的外心。
*D E 、两点分别是ABC 的边BC CA 、上的中点,且()||cos ||cos AB AC BC AB B AC C ⊥+ABCDODP PB DP PCP ABC EP PC EP PA⎧=⎪⇒⎨=⎪⎩为的外心 若O 是△ABC 的外心,则S △BOC :S △AOC :S △AOB =sin ∠BOC :sin ∠AOC :sin ∠AOB=sin ∠2A :sin ∠2B :sin ∠2C 故sin ∠2A ·OA +sin ∠2B ·OB +sin ∠2C ·OC =● 证明:设O 点在ABC ∆内部,由向量基本定理,有()+∈=++R r n m OCr OB n OA m ,,0,则r n m S S S AOB COA BOC ::::=∆∆设:OF OC r OE OB n OD OA m ===,,,则点O 为△DEF 的重心, 又EOF BOC S nr S ∆∆=1,DOF AOC S mr S ∆∆=1,DOE AOB S mnS ∆∆=1,∴r n m S S S AOB COA BOC ::::=∆∆● 若O 是△ABC 的外心,则S △BOC :S △AOC :S △AOB =sin ∠BOC :sin ∠AOC :sin∠AOB =sin ∠2A :sin ∠2B :sin ∠2C故sin ∠2A ·OA +sin ∠2B ·OB +sin ∠2C ·OC =04.O 是123PP P ∆的内心⇔1230a OP b OP c OP ⋅+⋅+⋅=。
(其中,,a b c 是123PP P ∆三边)证明:充分性: 1230⋅+⋅+⋅=a OP b OP c OP ⇒O 是123PP P ∆的内心1231112113()()a OP b OP c OP a OP b OP PP c OP PP ⋅+⋅+⋅=⋅+⋅++⋅+=11213()0++⋅+⋅+⋅=a b c OP b PP c PP所以13121()PP PP bc PO a b c c b =+++,而12P Pc ,13P P b分别是12PP ,13PP 方向上的单位向量,所以向量1312PP PP c b+平分213P P P ∠,即1PO 平分213P P P ∠,同理2P O 平分123PP P ∠,得到点O 是123PP P ∆的内心。
*O 为ABC ∆的内心0aOA bOB cOC ⇔++=. 内心(角平分线交点)证明:b c 、分别为方向上的单位向量,∴b c +平分BAC ∠, (λ=∴b ACc AB +), 同理:()BC BABO u a c=+ 11(()[()]())BC BA u AB AO OB u AB AC a c c a c AB AC u bc a b λλλ=+=+++--++=11()10u c a cu a bλλ⎧++=⎪⎪⎨⎪-=⎪⎩得a u b λ=代入11()1u c a c λ++=解得c b a bc ++=λ, ∴c b a bc ++=(bc +) 化简得0)(=++++AC c AB b OA c ba ,∴0=++OC c OB b OA a* 设()+∞∈,0λ,则向量+λ必平分∠BAC ,该向量必通过△ABC 的内心;* 设()+∞∈,0λ,则向量-λ必平分∠BAC 的邻补角*(),0()0AB ACAP AB AC P ABC BA BC BP t t BA BC λλ⎧=+>⎪⎪⎪⇒⎨⎪=+>⎪⎪⎩为的内心,*O 是△ABC 的内心充要条件是()()()0||||||||||||AB ACBA BCCA CBOA OB OC AB AC BA BC CA CB •-=•-=•-=*若O 是△ABC 的内心,则S △BOC :S △AOC :S △AOB =a :b :c故a ·OA +b ·OB +c ·OC =0或sinA ·OA +sinB ·OB +sinC ·OC =0;*设O 为△ABC 所在平面内任意一点,I 为△ABC 的内心,* cb a OCc OB b OA a ++++=内心I (aX A + bX B + cX C a+b+c ,ay A + by B + cy Ca+b+c)证明:由I 是ABC ∆的内心⇔0a IA b IB c IC ⋅+⋅+⋅=。
(其中,,a b c 是ABC ∆三边)(见内心的充要条件的证明)OI OA AI OB BI OC CI =+=+=+()()()()a b c OI a OA AI b OB BI c OC CI ++=+++++=()aOA bOB cOC aAI bBI cCI aOA bOB cOC +++++=++cb ac b a OI ++++=, ∴I (aX A + bX B + cX C a+b+c ,ay A + by B + cy C a+b+c ).O 是123PP P ∆的内心⇔1230a OP b OP c OP ⋅+⋅+⋅=。
(其中,,a b c 是123PP P ∆三边)5.若o 为三角形的旁心,则a →OA =b →OB +c →OC (abc 是三边)*已知O 为△ABC 的外心,求证:sin sin sin 0OA BOC OB AOC OC AOB ++=.分析 构造坐标系证明.如图3,以A 为坐标原点,B 在x 轴的正半轴,C 在x 轴的上方.2012AOB S x y =△,直线BC 的方程是32323()0y x x x y x y +--=,由于点A 与点O 必在直线BC 的同侧,且230x y -<,因此有033020230x y x y x y x y -+-<,得302303201()2BOC S x y x y x y x y =+--△.直线AC 的方程是330y x x y -=,由于点(1,0)与点O 必在直线AC 的同侧,且33100y x ⨯-⨯>,因此有03300x y x y ->,得03301()2AOC S x y x y =-△. 于是,容易验证,0BOC AOC AOB OA S OB S OC S ⨯+⨯+⨯=△△△, 又1||||sin 2BOC S OB OC BOC =△,1||||sin 2BOA S OB OA AOB =△,yA00(,)O x yx 22(,)B x y图333(,)C x y1||||sin 2AOC S OA OC AOC =△, 又||||||OA OB OC ==, 则所证成立. 与三角形“四心”相关的向量结论随着新课程对平面几何推理与证明的引入,三角形的相关问题在高考中的比重有所增加。