数学建模 模糊综合评价法
数学建模-模糊综合评判

在综合评判中起主导作用时,建议采用模型1; 当模型1失效时可采用模型2,模型3.
模型4 M(●,+)----加权平均模型
n
bj ai • rij
j 1,2,, m
i 1
模型4对所有因素依权重大小均衡兼顾,
适用于考虑各因素起作用的情况
注:有关合成算子以及权值确定可以查阅相关 资料,根据实际情况选择。
值就是 x0对A 的隶属度值。这种方法较直观地反映了 模糊概念中的隶属程度,但其计算量相当大。
(2)专家经验法: 专家经验法是根据专家的实际经验给出模
糊信息的处理算式或相应权系数值来确定隶属 函数的一种方法。在许多情况下,经常是初步 确定粗略的隶属函数,然后再通过“学习”和 实践检验逐步修改和完善,而实际效果正是检 验和调整隶属函数的依据。
例
设论域X=[0,100],模糊子集A表示“年老”,B 表示“年轻”。Zadeh给出的A、B的隶属度函数 分别为:
0
Ax
1
x
50 5
2
1
1
Bx
1
x
25 5
2
1
0 x 50; 50 x 100.
0 x 25; 25 x 100.
μ(x) 1
年轻
0
25
50
根据定义,我们不难算出 B(30)=0.5,
R=(rij)n×m∈F(X×Y)。
n
(4)确定各因素权重 A=(a1,a2,…,an), ai 1, ai 0 i 1
(5)做综合评判 B A R
注:
(1) 为了更好地理解、解释评判结果,可 以将评判结果归一化。令
B' (b1',b2 ',, bm ')
模糊综合评价法(终版)

0.12
0.09
0.06
0.2 0.2 0.3 0.2
b1
max 0.15, 0.09,
1i3
0.06
0.15
19
(3)M, 算子(模型三):
bj min 1,
m
min
ai , rij
,
j
1, 2,
,n
i1
0.5 0.3 0.2 0
0.3
0.3
0.3
0.3
0.4
0.2
0.1 0.8
6
粗略地说,在一个模糊集合中,某些元素是否属于这个模糊集合并不 是非此即彼的,说得更明确些就是:既不能认为这些元素完全属于这个 集合,也不能认为它们完全不属于这个集合,而是处于一种亦此亦彼、 模棱两可的状态。
7
例如,张三身高1.70m,即不能说他绝对是个“高个子”。也不能说 他绝对不是个“高个子”。那么,怎样确定一个元素对某个模糊集合 的隶属关系呢?方法很简单,就是用单位闭区间[0,1]中的某个数字 来界定该元素隶属这个模糊集合的一种程度,称之为隶属度。如上文 的张三属于“高个子”这个模糊集的隶属度可根据常识与经验确定为 0.7。我们知道,集合是现代数学的基础,现在既然有了模糊集合,那 么以模糊集合代替原来的分明集合,把经典数学模糊化,便产生了以 模糊集合为基础的崭新的数学——模糊数学。
3
(一)模糊综合判定法的思想和原理
4
1.关于模糊数学 著名理论数学家波莱尔研究了一个古典的希腊悖论:一粒种子肯定不
构成一堆,两粒也不能,……,但另一方面,人们自然同意一亿粒种子 肯定构成一堆,那么这个适当的界限在哪里呢?是不是可以说372658粒 种子不是一堆,而325679粒种子就构成一堆呢?又如,什么年龄的人是 “年青人”,什么样的人是“大胖子”、是“高个子”?天气现象中什 么样的雨是“大雨”、“中雨”、“小雨”、“绵绵细雨”?等等,这 类问题都不可能对它们找到明确的划分界限。
模糊综合评价法的步骤

模糊综合评价法的步骤
模糊综合评价法是一种基于模糊数学的多因素评价方法,它通过
模糊集合理论和模糊逻辑推理,对多个因素进行综合评价。
模糊综合
评价法的主要步骤如下:
1. 确定评价因素和评价等级:首先需要确定评价对象的因素和评
价等级,因素可以是多个,评价等级可以是定性的或定量的。
2. 建立模糊关系矩阵:根据评价因素和评价等级之间的关系,建
立模糊关系矩阵。
模糊关系矩阵是一个二维矩阵,其中每行表示一个
因素,每列表示一个评价等级。
3. 确定权重向量:根据各个因素的重要性,确定每个因素的权
重。
权重向量是一个一维向量,其中每个元素表示一个因素的权重。
4. 进行模糊合成:根据模糊关系矩阵和权重向量,进行模糊合成
得到综合评价结果。
模糊合成可以采用不同的方法,如模糊加权平均法、模糊综合评判法等。
5. 进行综合评价:根据模糊合成的结果,进行综合评价。
综合评
价结果可以是一个数值或一个模糊集合。
需要注意的是,模糊综合评价法的应用需要结合具体的问题和数据进行分析和处理,同时需要对模糊数学的基本理论和方法有一定的了解。
模糊综合评价法及例题

指标
很好
好
一般
差
疗效
治愈
显效
好转
无效
住院日
≤15
16~20
21~25
>25
费用(元) ≤1400 1400~1800 1800~2200 >2200
表2 两年病人按医疗质量等级的频数分配表
指标
很好 质量好 等级一般 差
疗效 住院日 费用
01年 02年
01年 02年
01年 02年
160 170
180 200
•模糊概念 秃子悖论: 天下所有的人都是秃子
设头发根数n n=1 显然 若n=k 为秃子 n=k+1 亦为秃子
模糊概念:从属于该概念到不属于该概念之间 无明显分界线
年轻、重、热、美、厚、薄、快、慢、大、小、 高、低、长、短、贵、贱、强、弱、软、硬、 阴天、多云、暴雨、清晨、礼品。
共同特点:模糊概念的外延不清楚。 模糊概念导致模糊现象 模糊数学就是用数学方法研究模糊现象。
模糊综合评价
▪ 假设评价科研成果,评价指标集合U={学术水 平,社会效益,经济效益}其各因素权重设为
W {0.3,0.3,0.4}
模糊综合评价
▪ 请该领域专家若干位,分别对此项成果每一因素进行单因素 评价(one-way evaluation),例如对学术水平,有50%的 专家认为“很好”,30%的专家认为“好”,20%的专家认为 “一般”,由此得出学术水平的单因素评价结果为
• 术语来源 Fuzzy: 毛绒绒的,边界不清楚的 模糊,不分明,弗齐,弗晰,勿晰
模糊数学的产生与基本思想
•产生 1965年,L.A. Zadeh(扎德) 发表了文章《模糊集 》
(Fuzzy Sets,Information and Control, 8, 338-353 )
模煳综合评判法

bj (ai pij )( j 1,2m)
例1:对某品牌电视机进行综合模糊 评价
❖ 设评价指标集合: U={图像,声音,价格};
评语集合: V={很好,很好,一般,不好};
首先对图像进行评价: 假设有30%旳人以为很好,50%旳人以为很好
,20%旳人以为一般,没有人以为不好,这么 得到图像旳评价成果为
(1)建立模糊综合评判矩阵
设ci j (i 1,2,3,4; j 1,2,,20)表示第j个制药厂的 第j个因素的值, 令
ri j
ci j
20
(i 1,2,3,4; j 1,2,,20)
cik
k 1
即rij表达第j个制药厂旳第i个原因旳值在20家 制药厂旳同意原因值旳总和中所占旳百分比,
1.80 1.93 0.87 1.12 1.21 0.87 0.89 2.52 0.81 0.82 1.01
u4
1.67 1.50 1.25 1.71 1.44 1.31 1.52 1.32 2.59 1.89 2.02 1.48 1.47 1.91 1.52 1.40 1.80 1.45 1.83 1.89
0.0231,0.02000,0.0393,0.0287,0.0306,0.0224,0.0223
0.0290,0.0231,0.0212,0.0273,0.0220,0.0278,0.0287)
按从小到大旳顺序排序,这20家制药厂旳经济效 益旳好坏顺序为:9,11,14,10,20,19,17, 4,1,15,7,2,12,13,18,5,16,8,6,3
三个科研成果旳有关情况表
设评价指标集合: U={科技水平,实现可能性,经济效益}
数学建模模糊综合评判

某同学想购买一台电脑,他关心电脑的以下几个指标: “运算功能(数值、图形等)”;“存储容量(内、外 存)”;“运行速度(CPU、主板等)”;“外设配置(网 卡、多媒体部件等)”;”价格”。
于是请同宿舍几个同学一起去买电脑。
为了数学处理简单,先令
u1 =“运算功能(数值、图形等)”;
0.1 0.3 0.5 0.1
(0.1
0.1
0.3
0.15
0.35)
0.0
0.4
0.5
0.1
0.0 0.1 0.6 0.3
0.5
0.3
0.2
0.0
((0.1 0.2) (0.1 0.1) (0.3 0.0) (0.15 0.0) (0.35 0.5),
(0.1 0.5) (0.1 0.3) (0.3 0.4) (0.15 0.1) (0.35 0.3),
u2 =“存储容量(内、外存)”; u3 =“运行速度(CPU、主板等)”; u4 =“外设配置(网卡、调制调解器、多媒体部件等)”; u5 =“价格”。
称 U {u1, u2 , u3, u4 , u5} 因素集。
评语集 V {v1, v2 , v3, v4} 其中
v1 =“很受欢迎”; v2 =“较受欢迎”;v3 =“不太受欢迎”; v4 =“不受欢迎”;
0.0 0.1 0.6 0.3
0.5
0.3
0.2
0.0
运算功能 存储容量 运行速度 外设配置 价格
对微机的要求是:工作速度快,外设配置较齐全,价格便 宜,而பைடு நூலகம்运算和存储量则要求不高。于是得各因素的权重 分配向量:A (0.1,0.1,0.3,0.15,0.35)
数学建模模糊综合评价法

数学建模模糊综合评价法哎呀,今天小智就来给大家聊聊一个有趣的话题——数学建模模糊综合评价法。
这个方法可是在解决各种实际问题时,给我们提供了很多便利哦!那我们就一起来看看吧,这个方法到底是怎么工作的呢?我们要明白,模糊综合评价法是一种处理不确定性信息的方法。
在现实生活中,我们经常会遇到一些难以量化的因素,比如一个人的品质、一个产品的性能等等。
这些因素都是相互关联、相互影响的,很难用一个简单的分数或者数值来表示。
而模糊综合评价法则是通过对这些因素进行模糊化处理,然后通过一定的计算方法,得出一个综合评价结果。
那么,这个方法是怎么实现的呢?其实,我们可以把它分成两个部分来看:一是模糊化处理,二是综合评价。
1. 模糊化处理我们需要对那些难以量化的因素进行模糊化处理。
这就像是把一张照片变成一幅水墨画一样,让我们能够看到事物的本质,而不是仅仅看到表面现象。
模糊化处理的方法有很多,比如德尔菲法、层次分析法等等。
这些方法都是通过对因素进行分类、划分等级,然后根据一定的权重来进行模糊化处理。
2. 综合评价接下来,我们要对模糊化处理后的结果进行综合评价。
这个过程就像是我们在选美比赛中,要根据选手的外貌、才艺、气质等多方面因素来评选出最终的冠军。
综合评价的方法也有很多,比如加权平均法、主成分分析法等等。
这些方法都是通过对模糊化处理后的结果进行加权求和或者提取主要成分,从而得到一个综合评价结果。
好了,现在我们已经知道了模糊综合评价法的基本原理。
那么,它在实际生活中有哪些应用呢?其实,这个方法在各个领域都有广泛的应用。
比如在企业管理中,我们可以通过模糊综合评价法来评估员工的工作绩效;在城市规划中,我们可以通过模糊综合评价法来评估一个区域的发展潜力;在教育评价中,我们可以通过模糊综合评价法来评估一个学生的能力等等。
当然啦,这个方法也有它的局限性。
比如在某些情况下,模糊综合评价法可能会受到数据量的影响;另外,这个方法也不能完全消除不确定性信息的干扰。
专题3-1_模糊综合评价方法

r11 r 21 R rn1
23
r12 r22 rn 2
... ... ...
r1m r2 m rnm
三、模糊综合评价的数学模型
例7中,对科学性(u1)一个因素来评定该教材,若采用民意测验的方 法,结果16%的人说“很好”,42%的人说“好”, 19%的人说 描述 “一般”, 23%的人说“差”,则评价结果可用模糊集 B 1
5
二、模糊数学基础
1、论域
所谓论域就是指我们所涉及到的对象的全体,
是一个普通的集合。
X = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 }
什么是经典数学中的子集?
6
二、模糊数学基础
2、模糊子集(简称模糊集)
定义:所谓论域X上的一个模糊子集 ,它是集合 ( x ), x | x X A
[a , a , ... , a ] 简记为n维向量形式 A 1 2 n
其中 ai 为U中相应元素的隶属度,且 ai [0,1], ai 1 。
i 1 n
27
三、模糊综合评价的数学模型
例7中,科学性(u1)、实践性(u2) 、适应性(u3) 、先进性(u4) 、 专业性(u5)等方面分别占的比重为 0.25 、0.20、0.15、0.25、 0.15。
A
100
0
A ( x) x
0 x 25 25 x 80 x 80
1, x 25 2 1 A ) ] , ( x ) [1 ( 5 0,
二、模糊数学基础
3、模糊子集的运算 (1 ( x )) / x (1)补集 A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学科评价模型(模糊综合评价法)摘要:该模型研究的是某高校学科的评价的问题,基于所给的学科统计数据作出综合分析。
基于此对未来学科的发展提供理论上的依据。
对于问题1、采用层次分析法,通过建立对比矩阵,得出影响评价值各因素的所占的权重。
然后将各因素值进行标准化。
在可共度的基础上求出所对应学科的评价值,最后确定学科的综合排名。
(将问题1中的部分结果进行阐述)(或者是先对二级评价因素运用层次分析法得出其对应的各因素的权重(只选取一组代表性的即可),然后再次运用层次分析法或者是模糊层次分析法对每一学科进行计算,得出其权重系数)。
通过利用matlab确定的各二级评价因素的比较矩阵的特征根分别为:、2、、、、、、1对于问题2、基于问题一中已经获得的对学科的评价值,为了更加明了的展现各一级因素的作用,采用求解相关性系数的显著性,找出对学科评价有显著性作用的一级评价因素。
同时鉴于从文献中已经有的获得的已经有的权重分配,对比通过模型求得的数值,来验证所建模型和求解过程是否合理。
对于问题3、主成份分析法,由于在此种情况下考虑的是科研型或者教学型的高校,因此在评价因素中势必会有很大的差别和区分。
所以在求解评价值的时候不能够等同问题1中的方法和结果,需要重新建立模型,消除或者忽略某些因素的影响和作用(将问题三的部分结果进行阐述)。
一、问题重述学科的水平、地位是评价高等学校层次的一个重要指标,而学科间水平的评价对于学科本身的发展有着极其重要的作用。
而一个显著的方面就是在录取学生方面,通常情况下一个好的专业可以录取到相对起点较高的学生,而且它还可以使得各学科能更加深入的了解到本学科的地位和不足之处,可以更好的促进该学科的发展。
学科的评价是为了恰当的学科竞争,而学科间的竞争是高等教育发展的动力,所以合理评价学科的竞争力有着极其重要的作用。
鉴于学科评价的两种方法:因素分析法和内涵解析法。
本模型基于某大学(科研与教学并重型高校)的13个学科在某一时期内的调查数据,包括各种建设成效数据和前期投入的数据。
通过计算每一级、每一个评价因素所占的权重,确定某一学科在评价是各因素所占的比重,构建评价等级所对应的函数。
通过数值分析得出学科的评价值。
需要解决一下几个问题:根据已给数据建立学科评价模型,要求必要的数据分析及建模过程。
模型分析,给出建立模型的适用性、合理性分析。
假设数据来自于某科研型祸教学型高校,请给出相应的学科评价模型。
二、符号说明与基本假设符号说明符号说明S——评价数(评价所依据的最终数值)X——影响评价数值的一级因素所构成的矩阵x——一级因素的平均值x——一级因素n表示每一学科所含的一级评价因素m表示每一以及评价因素所包含的二级评价因素Y——二级因素矩阵y——二级因素平均值y——二级因素的平均值α——第三题中科研性因素的权重值β——第三题中教学性因素的权重值X[i,j]——二级评价因素δ二级评价因素的权重X[i]一级评价因素λ一级评价因素的权重ω学科评价对二级评价因素的权重iR(m)表示第三题中的一级评价因素基本假设:1、所有数据均是对相同的时间段统计得到的2、不考虑随外界环境或者时间改变而发生的同一条件影响力的变化3、忽略社会需求等对评价因素的影响,单纯的考虑学科自身的实力。
4、在进行适用性验证时,学科等级因素不发生改变。
5、假设每个学科的二级因素权重值都相等。
不存在二级权重值的差异6、假设该大学为综合性大学,没有明显意义上的学科偏重7、由于科研评价要易于教学评价,所以科研评价因素应该高于教学评价因素。
8.、假设各方面影响因素都是在鉴于对学科实力的基础上进行的,不存在随意性9.不考虑已经获得的称号或者是荣誉,比如“985”、“211”等。
10.为了能够更好的促进专业的发展,应该适当增加有发展潜力的评价因素的权重值11.问题三中为使模型简单,把包含“科研”二字的归为科研型因素,把所有不包含“科研”二字的归为教学型因素。
不存在相互的交叉和包含现象1综合评价模型所研究问题中涉及到的递阶层次结构图如下⑴其中的①为下图 ①中字符涵义为b1国务院学位委员会委员 b2国务院学位委员会学科评议组成员 b3长江学者特聘教授 b4国家杰出青年基金获得者 b5国家教学名师奖获得者 b5国家有突出贡献的中青年专家b7国家“973”项目首席科学家 b8教育部新世纪(原跨世纪)优秀人才 ②图为二级评价因素的权重以及一级评价因素值的确定 近年来,层次分析法在评价类的问题解决中扮演着十分重要的角色。
层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。
它把复杂问题分解成组成因素,并按支配关系形成层次结构,然后用两两比较的方法确定决策方案的相对重要性。
在学科评价中,首先通过选取一组或者几组二级评价因素的数据,应用层次分析法确定某以及评价因素下二级评价因素所占的权重,并在假设条件下,各学科的二级评价因素所对应的权重保持相同。
计算出各自的一级评价因素值。
再次对每一学科利用层次分析法,确定一级评价因素所占的权重比例,根据各值,求出学科最终的评价值。
(1) 其中的i X 表示一级评价因素,i ω表示所对应的一级评价因素的权重。
采用0-9比例标度方法构建两两比较判断矩阵()ij n n a ⨯ 解决特征根问题max A ωλω= (2)得到比较矩阵,其中对于学科建设的比较矩阵为比较矩阵的建立依赖于九点标度法,能够比较准确的表达出评价因素之间的相互关系。
利用matlab 求解,然后对特征向量进行归一化变换,得到向量81i ii S X ω==∑1457114441113541111743M ⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪=⎨⎬⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭其所对应的特征值为 根据计算一致性指标公式(3)随机一致性指标的分布如下图所示:通过以上公式求得1..0.09110.1C R =<,所以认为原比较矩阵一致性良好同样方法对X2、X3、X4、X5、X6、X7、X8可求出相应的归一化条件下的特征向量,即获得相应的二级评价因素的权重值。
利用公式3、4进行相应的一致性检验。
如一致性检验不能通过则修改比较矩阵。
2.由上述得到的二级评价因素权重值利用公式由此式通过matlab 程序计算得到各一级评价值为114546895123 3221876 0 1481234 4051345987 0.59020.24670.10720.0560⎧⎫⎪⎪⎪⎪⎨⎬⎪⎪⎪⎪⎩⎭1(,)mi j X X i j δ==∑max ..1nC I n λ-=-......C I C R R I =(4)(5)1070 792 450 35 360 0 362 370 2 460鉴于不同的数据有着不同的取值以及范围,给共同处理带来了问题,所以在求解学科评价值的时候对一级评价因素值实行数据的标准化处理,以达到公度化数据的要求和目的其中所有数据标准化后如下表所示:得到标准化以后的数据,利用公式求得各学科的评价值。
在一定的时代背景下,对于一所综合性大学,由于教学的评价没有确定的标准(评价主观性比较强),所以在整个专业的评价中,科研所占的权重应该高于教学的权重,以增加模型的适用性。
通过下式计算每个学科最终的评价值:(6)11,)n i i X X i n σ===∀∑(7),(1,2,38)i i X X M i σ-==(8)i i S X ω=⨯总81()n S M i δ==∑(9)再综合上述公式得到一个总公式构建一级评价因素的比较矩阵通过matlab 程序解得特征根max λ= ,特征向量为将该向量进行标准化得出向量ni 11(,)((,))S mn mX i j X i j δδ=-=∑∑∑∑总0.51550.18190.30690.3037 0.43520.38010.38640.1774⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭ 0.1919 0.0677 0.1142 0.1130 0.1620⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎬⎪⎪(10)进行一致性检验得出该向量一致性良好经过计算最终获得了与十三门学科相对应的评价系数指标此矩阵表达的意思是学科等级次序为:a7>a1>a2>a8>a9>a5>a12>a13>a4>a10>a3>a11>a6 至此问题一获得了解决问题二:学科评价S ——对专业的评价分解为三个层次X={X1,X2,X3,X4,X5,X6,X7,X8},其中学科建设X1={A1,A2,A3,A4}, 获教学奖X2={B1,B2},所获科研经费X3={C1,C2,C3,C4},所获科研成果奖项X4={D1,D22,D3,D4},队伍建设X5={E1,E2,E3,E4,E5,E6,E7,E8,E9,E10}, 科研成果X6{F1,F2,F3,F4,F5,F6,F7}, 人才培养X7{G1,G2,G3},前期投入资金X8{H1}为评价指标。
对学科评价各因素值组成的矩阵的A ,进行相关系数显著性分析,得到矩阵B0.94890.9431-0.5442-0.4986-0.1363-0.7144S= 1.25890.31120.1851-0.5243-0.5718-0.2563-0.4013⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭一般认为两个变量的相关系数只有超过时才具有显著的线性关系。
由上面的结果知道,与S 相关关系显著的只有X3和X5(相关系数为>),所以X3和X5对学科评价的影响是显著的。
所以通常情况下X3值和X5值高的学科,学科的整体评价结果也会比较高的。
此时将X3评价因素和X5评价因素的值单独拿出,经计算得到一个向量由此向量对学科进行排名得出:a7>a1>a2>a3>a5>a8>a9>a6>a4>a12>a10>a13>a11将此结果与问题一种的结果进行对比得知此结果与问题一种结果除少部分外大部分都相似或者相近。
1.0000 0.3105 0.5290 0.1653 0.6851 -0.0902 0.5703 0.0280 0.3105 1.0000 0.3009 0.0961 0.2922 0.1279 0.3513 0.1018 0.5290 0.3009 1.0000 -0.2024 B=0.9562 0.7222 0.4463 0.7293 0.1653 0.0961 -0.2024 1.0000 -0.1186 -0.1806 0.4835 -0.1728 0.6851 0.2922 0.9562 -0.1186 1.0000 0.5839 0.5920 0.5974 -0.0902 0.1279 0.7222 -0.1806 0.5839 1.0000 0.2437 0.8222 0.5703 0.3513 0.4463 0.4835 0.5920 0.2437 1.0000 0.3497 0.0280 0.1018 0.7293 -0.1728 0.5974 0.8222 0.3497 1.0000⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭0.46240.2897-0.0259-0.1800-0.0271-0.1269 0.6014-0.0638-0.0999-0.2011-0.2251-0.1998-0.2038⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭依据问题一的结果,对照上述图片,一级指标的对应比较吻合,所以问题一所建立的模型是合理和适用的。