数学史复习整理
数学简史知识点总结归纳

数学简史知识点总结归纳1. 古代数学古代数学是从古埃及、古希腊、古印度和古中国等地区开始发展起来的。
在古埃及,人们利用几何学解决了土地测量的难题,同时古埃及人还发明了一些数学符号和计算方法。
古希腊的数学以几何学为主,数学家毕达哥拉斯提出了著名的毕达哥拉斯定理,创立了毕达哥拉斯学派。
古印度数学的发展与宗教信仰和日常生活密不可分,古印度数学家为了解决宗教仪式和天文观测问题,开创了代数、几何等数学概念。
古中国数学的发展主要体现在算术和几何方面,古代数学家刘徽撰写《九章算术》,成为中国古代数学的经典著作。
2. 中世纪数学中世纪数学是指从公元5世纪到15世纪的欧洲数学发展历程。
在这一时期,数学主要受到宗教和神学的影响,在天文学、几何学和代数学等方面取得了一些进展。
文艺复兴时期,数学得到了较大的发展,文艺复兴学者对古代数学知识进行了整理和研究,同时大航海时代的到来也促进了数学的发展,航海家和地图制作者需要对航海和天文进行精确的数学计算。
伽利略、开普勒等科学家的研究成果为数学的发展注入了新的活力。
3. 近代数学近代数学的发展可以追溯到17世纪的科学革命,牛顿和莱布尼兹的微积分学的发明是近代数学的里程碑。
微积分学为物理学和天文学等自然科学领域的发展提供了重要的数学工具,同时也推动了数学的发展。
18世纪,欧拉、拉普拉斯、拉格朗日等数学家对微积分学、分析学、代数学等领域进行了深入研究,为数学建立了新的理论体系。
19世纪,高斯、黎曼、阿贝尔等数学家的工作推动了代数、几何和数论等领域的发展,同时复数、矩阵、群论等数学概念的提出也为数学提供了新的发展方向。
4. 现代数学现代数学的发展可以追溯到20世纪初,20世纪是数学发展的黄金时期,数学家们对几何学、拓扑学、数论、逻辑学、概率论、统计学等各个领域进行了深入研究。
在这一时期,勒贝格、卡尔曼、冯·诺伊曼等数学家提出了测度论、控制论、算法等数学理论,为现代数学的建立和发展做出了重要贡献。
数学史复习资料

一、单项选择题1.关于古埃及数学的知识,主要来源于( )。
A.埃及纸草书和苏格兰纸草书B.兰德纸草书和莫斯科纸草书C.莫斯科纸草书和希腊纸草书D. 兰德纸草书和尼罗河纸草书2.以“万物皆数”为信条的古希腊数学学派是( )。
A.爱奥尼亚学派B.伊利亚学派C.诡辩学派D.毕达哥拉斯学派3.最早记载勾股定理的我国古代名著是( )。
A.《九章算术》B.《孙子算经》C.《周髀算经》D.《缀术》4.首先使用符号“0”来表示零的国家或民族是( )。
A.中国B.印度C.阿拉伯D.古希腊5.欧洲中世纪漫长的黑暗时期过后,第一位有影响的数学家是( )。
A.斐波那契B.卡尔丹C.塔塔利亚D.费罗6.对微积分的诞生具有重要意义的“行星运行三大定律”,其发现者是( )。
A.伽利略B.哥白尼C.开普勒D.牛顿7.对古代埃及数学成就的了解主要来源于( )A.纸草书B.羊皮书C.泥版D.金字塔内的石刻8.公元前4世纪,数学家梅内赫莫斯在研究下面的哪个问题时发现了圆锥曲线?( )A.不可公度数B.化圆为方C.倍立方体D.三等分角9.《九章算术》中的“阳马”是指一种特殊的( )A.棱柱B.棱锥C.棱台D.楔形体10.印度古代数学著作《计算方法纲要》的作者是( )A.阿耶波多B.婆罗摩笈多C.马哈维拉D.婆什迦罗11.射影几何产生于文艺复兴时期的( )A.音乐演奏B.服装设计C.雕刻艺术D.绘画艺术12.微分符号“d”、积分符号“”的首先使用者是( )A.牛顿B.莱布尼茨C.开普勒D.卡瓦列里13.作为“非欧几何”理论建立者之一的年轻数学家波尔约是( )A.俄国人B.德国人C.葡萄牙人D.匈牙利人14.最早证明了有理数集是可数集的数学家是( )A.康托尔B.欧拉C.魏尔斯特拉斯D.柯西15.在1900年巴黎国际数学家大会上提出了23个著名的数学问题的数学家( )A.希尔伯特B.庞加莱C.罗素D.克莱因16.《周髀算经》和()是我国古代两部重要的数学著作。
大学数学史考试知识点

大学数学史考试知识点数学史是研究数学科学发生发展及其规律的科学,它不仅追溯数学内容、思想和方法的演变、发展过程,而且还探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。
以下是大学数学史考试中常见的一些知识点:一、古代数学1、古埃及数学古埃及人在数学方面有着重要的贡献。
他们发明了象形数字,并能够进行简单的四则运算。
在几何方面,他们能够计算三角形、矩形和梯形的面积,还知道圆的面积近似计算公式。
古埃及人在建筑和测量中应用了这些数学知识。
2、古巴比伦数学古巴比伦数学使用六十进制,他们的数学成果主要记录在泥板上。
他们能够解一元二次方程,并且有了较完整的乘法表和平方表。
在几何方面,他们能够计算各种图形的面积和体积。
3、古希腊数学古希腊数学是古代数学的巅峰之一。
毕达哥拉斯学派提出了毕达哥拉斯定理(勾股定理),并对整数的性质进行了研究。
欧几里得的《几何原本》是古希腊数学的重要著作,它建立了严密的几何体系,通过公理化方法,从少数几个公理出发,推导出众多的几何定理。
阿基米德在计算几何图形的面积和体积方面有杰出贡献,他还通过穷竭法求出了一些曲线图形的面积和体积。
二、中世纪数学1、印度数学印度数学在中世纪取得了重要进展。
他们发明了十进制数字系统,并将其传播到了阿拉伯地区,最终传遍了全世界。
印度数学家还研究了不定方程和三角学。
2、阿拉伯数学阿拉伯数学家在吸收了古希腊、印度等数学成果的基础上,做出了自己的贡献。
花拉子米的《代数学》是阿拉伯数学的重要著作,书中首次给出了一元二次方程的一般解法。
三、近代数学1、解析几何的创立笛卡尔和费马分别独立地创立了解析几何。
解析几何的出现将代数方法引入几何研究,实现了数与形的结合,为微积分的创立奠定了基础。
2、微积分的创立牛顿和莱布尼茨几乎同时创立了微积分。
微积分的创立是数学史上的一次重大飞跃,它极大地推动了数学和科学的发展。
3、概率论的发展概率论在近代逐渐发展起来。
数学史(考试重点及答案总结

数学史(考试重点及答案总结数学史(考试重点及答案总结1.简述数学史的定义及数学史课程的内容。
答:数学史研究数学概念、数学方法和数学思想的起源与发展及其与社会政治经济和一般文化的联系。
数学史课程的功能可以概括成以下四部分: (1)掌握历史知识:通过学习关于数学的专门知识,更好的从整体上把握数学。
(2)复习已有知识:按学科讲述学过的数学知识,系统的提高对该学科的理解。
(3)了解新的知识:通过学习数学各学科的发展,了解没有学过的学科的内容。
(4)受到思想教育:通过了解数学家为数学而奋斗的高尚品质,陶冶数学情操。
2.简述数学内涵的历史发展。
答:数学的内涵随时代的变化而变化,一般可分为四个阶段。
A数学是量的科学:公元前4世纪。
B数学是研究现实世界空间形式与数量关系的科学;19世纪。
C数学研究各种量之间的关系与联系:20世纪50年代。
D数学是作为模式的科学:20世纪80年代。
1.简述河谷文明及其数学。
答:历史学家往往把四大文明古国的文明称之为“河谷文明”,因为这些国家是在河流的入海口建立的。
尼罗河孕育了埃及文明;底格里斯河、幼发拉底河孕育了巴比伦文明;黄河和长江孕育了中国文明;印度河和恒河孕育了印度文明。
埃及、美索不达米亚的数学产生较早,纪元前已经衰微,而印度、中国的数学崛起较晚,却延续至中世纪。
2.简述纸草书与泥板文书中的数学。
答:古埃及人在一种纸莎草压制成的叶片上书写,幸存至今,被称为纸草书。
莱茵德纸草书(现存于伦敦大英博物馆)中有84个数学题目;莫斯科纸草书(现存于俄国普希金精细艺术博物馆)中有25个数学题目;还有其他纸草书。
纸草书中的数学知识包括:(1)算术,包括加法运算、单位分数、十进制计数、位置法;(2)几何,包括面积、体积计算和四棱台体积公式。
美索不达米亚人用尖芦管在湿泥板上写字,然后将湿泥板晒干或烘干,幸存至今,被称之为泥板文书。
出土50万块其中数学文献300块。
泥板文书中的数学包括:(1)记数,包括形文、60制、位值原理;(2)程序化算法,包括1.;(3)数表;(4)某p某q=0,某=a,某+某=a(5) 几何,测量、面积、体积公式、相似形、勾股数值。
数学史复习

一是线性方程组与行列式的理论
6.印度数学的主要成就
印度数码的历史和传播 7.阿拉伯数学的主要成就
花拉子米与他的 《还原与对消计算概要》(即 《代数学》) 8.近代数学的兴起 三、四次方程求解 意大利数学家斐波那契 法国数学家韦达 法国数学家笛卡儿与费尔马 数学符号系统化 三角学、射影几何、计算技术与对数 解析几何的诞生
三等分任意角 分一个给定的任意角为三个相等的 部分。
雅典学院(柏拉图学派)
哲学家柏拉图 (公元前427— 前347 ) 在雅典创办 著名的柏拉图学园,培养了一大批数学家,成为 早期毕氏学派和后来长期活跃的亚历山大学派之 间联系的纽带。欧多克斯是该学园最著名的人物 之一,他创立了同时适用于可通约量及不可通约 量的比例理论。柏拉图的学生亚里士多德是形式 主义的奠基者,其逻辑思想为日后将几何学整理 在严密的逻辑体系之中开辟了道路.
分析、代数与几何并列成为数学的三大学科.
●微积分的发展
18世纪微积分最重大的进步是由欧拉作出的. 他 在1748年出版的 《无限小分析引论》 以及随后 发表的《微分学》和《积分学》是微积分史上里 程碑式的著作。
在18世纪, 推进微积分及其应用, 贡献卓著的欧 洲大陆数学家中还特别要提到法国学派, 其代表 人物有克莱洛、 达朗贝尔、拉格朗日、蒙日、 拉普拉斯和勒让德等.他们都在微积分发展史上 功不可没.
《算经十书》
《周髀算经》《九章算术》《海岛算经》《孙子 算经》《夏侯阳算经》《张丘建算 经》《缀术》 《五曹算经》、《五经算 术》《缉古算经》
宋元数学
中国传统数学的发展在宋元时代形成了高峰 宋元四大家 秦九韶、杨辉、李冶、朱世杰 .
宋元数学的主要成就:
1)高次方程的数值解法 贾宪三角与增乘开方法 秦九韶的正负开方术
数学史 复习资料

数学史复习资料一、选择题1、对古代埃及数学成就的了解主要来源于(A)A纸草书 B羊皮书 C泥版 D金字塔内的石刻2、对古代巴比伦数学成就的了解主要来源于(C)A纸草书 B羊皮书 C泥版 D金字塔内的石刻3、《九章算术》中的“阳马”是指一种特殊的(B)A棱柱 B棱锥 C棱台 D楔形体4、射影几何产生于文艺复兴时期的(C)A音乐演奏 B服装设计 C绘画艺术 D雕刻艺术5、欧洲中世纪漫长的黑暗时期过后第一位有影响的数学家是(A)。
A斐波那契 B卡尔丹 C塔塔利亚 D费罗6、被称作“第一位数学家和论证几何学的鼻祖”的数学家是(B)A欧几里得 B泰勒斯 C毕达哥拉斯 D阿波罗尼奥斯7、被称作“非欧几何之父”的数学家是(D)A波利亚 B高斯 C魏尔斯特拉斯 D罗巴切夫斯基8、对微积分的诞生具有重要意义的“行星运行三大定律”其发现者是(C)A伽利略 B哥白尼 C开普勒 D牛顿9、公元前世纪数学家梅内赫莫斯在研究下面的哪个问题时发现了圆锥曲线?(C) A不可公度数 B化圆为方 C倍立方体 D三等分角10、印度古代数学著作《计算方法纲要》的作者是(C)A阿耶波多 B婆罗摩笈多 C马哈维拉 D婆什迦罗11、最早证明了有理数集是可数集的数学家是(A)A康托尔 B欧拉 C魏尔斯特拉斯 D柯西12、下列哪一位数学家不属于“悉檀多”时期的印度数学家?(C)A阿耶波多 B马哈维拉 C奥马海亚姆 D婆罗摩笈多13、在1900年巴黎国际数学家大会上提出了23个著名的数学问题的数学家是(A) A希尔伯特 B庞加莱 C罗素 D F克莱因14、与祖暅原理本质上一致的是(D)A德沙格原理 B中值定理 C泰勒定理 D卡瓦列里原理.15、我国元代数学著作《四元玉鉴》的作者是(C)A秦九韶 B杨辉 C朱世杰 D贾宪.16、就微分学与积分学的起源而言(A)A积分学早于微分学 B微分学早于积分学 C积分学与微分学同期 D不确定.17、在现存的中国古代数学著作中最早的一部是(D)A《孙子算经》 B《墨经》 C《算数书》 D《周髀算经》.18、中国古典数学发展的顶峰时期是(D)A两汉时期 B隋唐时期 C魏晋南北朝时期 D宋元时期.19、大数学家欧拉出生于(A)A瑞士 B奥地利 C德国 D法国.20、首先获得四次方程一般解法的数学家是(D)A塔塔利亚 B卡当 C费罗 D费拉利.21、世界上讲述方程最早的著作是( A)A.中国的《九章算术》B.阿拉伯花拉子米的《代数学》C.卡尔丹的《大法》D.牛顿的《普遍算术》22.《数学汇编》是一部荟萃总结前人成果的典型著作,它被认为是古希腊数学的安魂曲,其作者为(BA.托勒玫B.帕波斯C.阿波罗尼奥斯D.丢番图23.美索不达米亚是最早采用位值制记数的民族,他们主要用的是(AA.六十进制B.十进制C.五进制D.二十进制24."一尺之棰,日取其半,万世不竭"出自我国古代名著(B)。
大学课本每册数学史资料整理

大学课本每册数学史资料整理1. 引言本文档旨在对大学教材中每册关于数学史方面的资料进行整理和归纳。
通过对这些资料的梳理,学生可以更好地理解数学的历史背景和发展过程,增强对数学的兴趣和理解能力。
2. 第一册2.1 数学史概述- 介绍数学史的定义和研究范围- 引导学生了解数学史的重要性和价值- 简要介绍数学史的主要发展时期和学派2.2 古代数学- 对古希腊、古埃及、古巴比伦等古代文明的数学成就进行概述- 介绍古代数学家如欧几里得、阿基米德等的贡献和成就- 探讨古代数学的应用领域和作用2.3 中世纪数学- 简要阐述中世纪欧洲数学的发展情况- 介绍中世纪数学家如勒让德、斐波那契等人的研究成果- 讨论中世纪数学与宗教、哲学等其他学科的关系3. 第二册3.1 文艺复兴数学- 介绍文艺复兴时期欧洲数学的兴起和发展- 引导学生了解文艺复兴数学家对数学思维的重要贡献- 分析文艺复兴数学对科学革命的影响和推动作用3.2 近代数学- 介绍近代数学的起源和发展背景- 探讨近代数学家如牛顿、莱布尼兹等的创新成果- 分析近代数学和科学革命、工业革命的相互关系3.3 现代数学- 对现代数学的重大突破和发展进行概述- 介绍现代数学家如高斯、欧拉等的影响力和贡献- 探讨现代数学的应用领域和对其他学科的影响4. 结论通过对大学课本中每册数学史资料的整理,学生能够系统地了解数学史的发展脉络和重要人物,加深对数学的认识和理解。
数学史能够激发学生的兴趣和好奇心,帮助他们更好地应用数学知识解决实际问题,促进数学思维的形成和发展。
以上是对大学课本每册数学史资料整理的简要概述,希望能对广大学生有所帮助和启发。
数学史总复习

(5)《论劈锥曲面和旋转椭球》
(6)《引理集》
(7)《处理力学问题的方法》
(8)《论平面图形的平衡或其重心》
(9)《论浮体》 (10)《沙粒计数》 (11)《牛群问题》
十、 阿波罗尼奥斯最重要的数学成就是什
么?P58
答:阿波罗尼奥斯最重要的数学成就是创
立了相当完美的圆锥曲线理论。
第三章 中世纪的中国数学
一、中国数学史上何时何人何种方法最先完成勾 股定理证明? 二、《九章算术》中各章名称是什么?这些章节 中谈论算术、代数、几何方面的内容为哪些章节? 三、刘徽的数学成就中最突出是什么? 四、 贾宪增乘开方法能否适用于开任意高次方? 五、为什么说一次同余组求解的剩余定理常常被 称为“中国剩余定理”?
4、19世纪恩格斯这样来论述数学:“纯数
学的对象是现实世界的空间形式与数量关 系”。根据恩格斯的论述,数学可以定义为: “数学是研究现实世界的空间形式与数量关 系的科学。” 5 、 19 世 纪 晚 期 , 集 合 论 的 创 始 人 康 托 尔 (1845—1918)曾经提出: “数学是绝对自由 发展的学科,它只服从明显的思维,就是说 它的概念必须摆脱自相矛盾,并且必须通过 定义而确定地、有秩序地与先前已经建立和 存在的概念相联系”。
美索不达米亚人的记数制远胜埃及 象形数字之处主要表现在哪些方面? P23--25 答:1、六十进制为主德楔形文记数系统, 2、巧妙地将位值原理应用到整数以外 的分数。 3、计算程序化 4、数表计算
第二章
古代希腊数学
一、希腊数学一般是指什么时期,活动于
什么地方的数学家创造的数学? 二、什么使泰勒斯获得了第一位数学家和 论证几何学鼻祖的美名? 三、毕达哥拉斯学派认为宇宙万物皆依赖 于整数的信条由于什么发现而受到动摇? 这个“第一次数学危机”是由于什么人提 出的新比例理论而暂时消除,这个新比例 理论当今的语言可怎么叙述? 四、希腊数学学派主要有哪些学派?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学史是研究数学的产生、发展过程和发展规律的学科。
数学是研究现实世界的空间形式与数量关系的科学。
数学史的特点:1、数学以抽象的形式,追求高度精确、可靠的知识.2、与抽象性相联系的数学的另一个特点是在对宇宙世界和人类社会的探索追求最大限度的一般性模式特别是一般性算法的倾向。
3、数学作为一种创造性活动,还具有艺术的特征,这就是对美的追求。
学习数学史的意义:1、树立正确的世界观和数学观2、丰富数学专业必备的知识3、把握数学科学发展的规律4、当代数学教育的需要为什么要从历史的角度谈谈“什么是数学史”数学本身是一个历史的概念,数学的内涵随着时代的变化而变化,给数学下一个一劳永逸的定义是不可能的。
公元前6世纪前,数学主要是关于“数”的研究。
亚里士多德:数学是量的科学。
公元前6世纪开始,希腊数学的兴起,突出了对“形”的研究。
公元前6世纪~17世纪,数学数学主要是关于数和形的研究.笛卡尔:数学是以研究顺序和度量为目的的学科。
17世纪数学主要是关于“数、形、运动和变化"的研究。
恩格斯:数学是研究现实世界的空间形式与数量关系的学科。
19世纪后期开始,数学成为研究数与形、运动与变化,以及研究数学自身的学问。
20世纪80年代开始,美国学者把数学定义为“模式”的科学,其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。
三次数学危机:第一次数学危机:(无理数悖论,希帕索斯悖论)直觉和经验并不可靠,推理证明才是可靠的。
第二次数学危机:(无穷小量悖论,贝克莱悖论)重建微积分基础:极限理论和实数论。
第三次数学危机(集合悖论,罗素悖论)公理化集合论,对数学基础的研究。
三种常见的早期计数方法:手指计数、刻痕计数、结绳计数.除了巴比伦楔形数字采用六十进制、玛雅数字采用二十进制外,其他均属十进制数。
几何学的希腊文意为测地中国最早的数学经典《周髀算经》事实上是一部讨论西周初年天文测量中所用数学方法(测日法)的著作.古埃及人在一种纸莎(suo)草压制成的草片上书写:莱茵德纸草书和莫斯科纸草书。
埃及人很早及发明了象形文字记号,这是一种以十进制为基础的系统,但却没有位值的概念。
单位分数的广泛使用成为埃及数学一个重要而有趣的特色。
古巴比伦的普林顿322泥书上记录了勾股数。
(毕达哥拉斯数)向理论数学的过渡,是大约公元前6世纪在地中海沿岸开始的,那是一个崭新的、更加开放的文明—历史学家成称“海洋文明”,带来了初等数学的第一个黄金时代—以论证几何为主的希腊数学时代.把零作为数引入运算,这是印度人的伟大贡献.用符号“0”表示零是印度的重要发明。
超越数:π和e。
最早的希腊数学家是泰勒斯。
他领导的爱奥尼亚学派据说开了希腊命题证明的先河。
(1)圆的直径将圆分为两个相等的部分。
(2)等腰三角形的两底角相等。
(3)两相交直线形成的对顶角相等.(4)两个三角形,有两个角和一条边对应相等则全等。
(5)内接于半圆的角必是直角。
泰勒斯获得了第一位数学家和论证几何学鼻祖的美名。
“哲学”和“数学"这两个词是毕达哥拉斯本人所创.毕达哥拉斯学派认为“万物皆数”,这里的数仅指整数.普鲁塔克的面积剖析法证明勾股定理。
P36毕达哥拉斯学派另一项几何成就是正多面体作图。
其中正四面体、正六面体、正八面体归功于毕达哥拉斯学派,正十二面体、正二十面体归功于蒂奥泰德。
正五边形的作图与著名的“黄金分割”问题有关。
整体与较长部分之比等于较长部分与较短部分之比,这就是所谓的“黄金分割”。
三大几何问题:(1)化圆为方,即作一个与给定的圆面积相等的正方形.(2)倍立方体,即作一立方体,使其面积等于已知立方体的两倍。
(3)三等分角,即分任意角为三等分。
这三大问题实际上是不可解的。
安提丰是古希腊“穷竭法”的始祖.芝诺四个著名的悖论:(1)两分法(2)阿基里斯(3)飞箭(4)运动场亚里士多德的哲学思想及对数学的贡献:(1)提出了物质第一性的认识论(2)创立了逻辑学,为数学的理论建构奠定了基础。
ﻭ提出了思维的三条规律:同一律、矛盾律、排中律.(3)提出了几种思维基本形式:概念、判断、推理。
(4)特别提出了作为严格推理形式的演绎三段论,为推理的规范化科学化奠定了基础。
据载,亚里士多德的逻辑学一直到19世纪无人能挑出它的毛病.(5)确定了数学中的公理化方法(6)将概念分为了不经定义的(基本)概念,和在此基础上定义的(派生)概念两类.(7)亚里士多德把数学命题也分为两类,基本原理和定理(引申出来的命题).ﻭ他不把基本原理看作是“明显的、无须证明的、大家公认的命题”,而是“无法论证的知识原理”。
(8)他把基本原理分为公理和公设,把公理作为一切科学公有的真理,而把公设作为某一门学科的第一性原理。
(9)并认为基本原理的数目应尽可能地少(不妨碍推出所有结论)。
(10)亚里士多德的形式逻辑被后人奉为演绎推理的圣经,在当时,则为欧几里得演绎几何体系的形成奠定了方法论的基础.欧几里得的《原本》公设:1、假定从任意一点到任意一点可作一直线.2、一条有限直线可无限延长。
3、以任意中心和直径可以画圆。
4、凡直角都彼此相等.5、若一直线落在两直线上所构成的同旁内角和小于两直角,那么把两直线无限延长,它们将在同旁内角和小于两直角的一侧相交。
公理:1、等于同量的量彼此相等。
2、等量加等量,和相等.3、等量减等量,差相等。
4、彼此重合的图形是全等的。
5、整体大于部分。
毕达哥拉斯的证明是用面积来证明勾股定理的。
P48欧几里得《原本》评价:是数学史上的第一座理论丰碑,它最大的功绩是在于数学中演绎范式的确立,这种范式要求一门学科中的每个命题必须是在它之前已经建立的一些命题的逻辑结论,而所有这样的推理链的共同出发点,是一些基本定义和被认为是不证自明的基本原理—公设或公理。
这就是后来所谓的公理化思想。
缺点:主要在于其逻辑结构不够严密和完整。
反映在两个方面:一是对某些概念的定义和运用不当,二是公设和公理不完善。
还有一类缺点是对一些需要分类讨论的命题只用特例或所给图形的特定位置作了论证.阿基米德将穷竭法应用于圆的周长和面积公式。
阿波罗尼斯第一次象现在这样,依靠改变截面的角度,从一个正圆锥或斜圆锥上得到三种圆锥曲线。
双曲线有两支也是他首先发现的。
ﻭ海伦的三角形面积公式:托勒玫定理:圆内接四边形中,两条对角线长的乘积等于两对对边长乘积之和.丢番图:代数之父.不定方程又称丢番图方程。
费马大定理:对于任意大于2的自然数n,不存在正整数x,y,z,满足xn+yn=zn。
丢番图《算术》的另一重要贡献是创用了一套缩写符号。
亚历山大女数学家希帕蒂娅是历史上第一位杰出的女数学家。
中国古代用算筹进行计算,称作“筹算”.纵式“个、百、万",横式“十、十万千”春秋战国时期:九九乘法口诀表家喻户晓,是从“九九八十一”开始的。
《墨经》中记载的几何概念平行:“平,同高也”直线:“直,参也”点:“端,体之无厚而最前者也"线段:“同长,以正相尽也”重合:“正相尽”体积:“厚,有所大也"圆:“圜,一中同长也”正方形:“方,柱隅四杂也”《周髀算经》主要成就是分数运算、勾股定理(最为突出)及其在天文测量中的应用。
《九章算术》出现标志中国古代数学形成了完整的体系,是中国古代第一部数学专著 .ﻭ《九章算术》采用问题集的形式,全书246个问题,分成九章。
依次为:方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股.九章算术的数学成就:(1) 算术方面:分数四则运算法则,比例算法,盈不足数。
(2)代数方面:方程术,正负术,开方术。
(3)几何方面:各种平面图形的面积、多面体体积公式,给出了“以盈补虚”的方法,体现了数形结合的思想。
刘徽数学成就中最突出的是“割圆术”和体积理论。
所谓“割圆术",是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。
ﻭ他从圆内接正六边形开始,每次把边数加倍,直至圆内接正96边形,算得圆周率为3。
14或157/50,后人称之为徽率.刘徽是中算史上第一位建立可靠的理论来推算圆周率的数学家。
《张邱建算经》:百鸡问题-—中国最早的不定方程祖冲之的代表性数学著作是《缀术》.3.1415926〈π<3。
1415927。
称为“密率”或“祖率”。
祖冲之还和儿子祖暅一起圆满地利用牟合方盖,得到正确的球体积公式.祖氏原理在西方文献中称为“卡瓦列里原理”。
算经十书:《周髀算经》《九章算术》刘徽《海岛算经》祖冲之父子《缀术》王孝通《缉古算经》《孙子算经》《张邱建算经》《夏侯阳算经》《五曹算经》《五经算术》宋元四大家:秦九韶、李冶、杨辉、朱世杰朱世杰数学代表作有《算学启蒙》和《四元玉鉴》。
《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。
《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创作有“四元术”(多元高次方程列式与消元解法)、“垛积法”(高阶等差数列求和)与“招差术”(高次内插法).高阶等差数列的研究在中国始于北宋的沈括。
首先阐述天元术的是李冶,朱世杰阐述了四元术。
中国传统数学衰落的原因:皇朝更迭的漫长封建社会,在晚期表现出日趋严重的停滞性与腐朽性,数学发展缺乏社会动力和思想刺激。
元代以后,科举考试制度中的《明算科》完全废除,唯以八股取士,数学家社会地位低下,研究数学没有出路,自由探讨受到束缚甚至遭禁锢。
同时,中国传统数学本身也存在着弱点。
算筹系统使用的十进位制记数制是对世界文明的一大贡献,但筹算本身却有很大的局限性.在筹算框架内发展起来的半符号代数“天元术”和“四元术”,就不能突破筹算的限制演进为彻底的符号代数.筹式方程运算不仅笨拙累赘,而且对有五个以上未知量的方程组无能为力。
另一方面,算法创造是数学进步的必要因素,但缺乏演绎论证的算法倾向于缺乏算法创造的演绎倾向同样难以升华为现代数学。
而无论是笔算数学还是演绎几何,在中国的传播都由于“天朝帝国"的妄大、自守而显得困难和缓慢。
婆罗摩笈多:零的运算法则:负数减去零是负数,正数减去零是正数,零减去零什么也没有;零乘负数、正数或零都是零……零除以零是空无一物,正数和负数除以零是一个以零为分母的分数。
提出了正负数的乘除法则,并给出了二次方程的求根公式给出了负数的概念和记号,还有运算法则,如“负负得正”还得到边长分别为a,b,c,d的圆的内接四边形的面积公式他最重要的数学成果是解下列不定方程马哈维拉指出:一个数乘零得零,除以一分数等于乘以此数的倒数。
一个数除以零为无穷大量.《计算方法纲要》婆什迦罗比例法证明勾股定理mnchabb:c=m:b a:c=n:a花拉子米《代数学》(代数方程求解),《印度计算法》系统地介绍了印度数码和10进制记数法,把阿拉伯数字推广到了全世界.阿耶波多:对希腊三角学的改进和一次不定方程的解法。