Prediction of Supersoft X-ray Phase during the 2006 Outburst of RS Ophiuchi

合集下载

Tektronix MDO3000 Series 数字多功能作业仪用户指南说明书

Tektronix MDO3000 Series 数字多功能作业仪用户指南说明书

19StandardMath ToolsDisplay up to four math function traces (F1-F4). The easy-to-use graphical interface simplifies setup of up to two operations on each function trace;and function traces can be chained together to perform math-on-math.absolute value integralaverage (summed)invert (negate)average (continuous)log (base e)custom (MATLAB) – limited points product (x)derivativeratio (/)deskew (resample)reciprocaldifference (–)rescale (with units)enhanced resolution (to 11 bits vertical)roof envelope (sinx)/x exp (base e)square exp (base 10)square root fft (power spectrum, magnitude, phase,sum (+)up to 50 kpts) trend (datalog) of 1000 events floorzoom (identity)histogram of 1000 eventsMeasure ToolsDisplay any 6 parameters together with statistics, including their average,high, low, and standard deviations. Histicons provide a fast, dynamic view of parameters and wave-shape characteristics.Pass/Fail TestingSimultaneously test multiple parameters against selectable parameter limits or pre-defined masks. Pass or fail conditions can initiate actions including document to local or networked files, e-mail the image of the failure, save waveforms, send a pulse out at the rear panel auxiliary BNC output, or (with the GPIB option) send a GPIB SRQ.Jitter and Timing Analysis Software Package (WRXi-JTA2)(Standard with MXi-A model oscilloscopes)•Jitter and timing parameters, with “Track”graphs of •Edge@lv parameter (counts edges)• Persistence histogram, persistence trace (mean, range, sigma)Software Options –Advanced Math and WaveShape AnalysisStatistics Package (WRXi-STAT)This package provides additional capability to statistically display measurement information and to analyze results:• Histograms expanded with 19 histogram parameters/up to 2 billion events.• Persistence Histogram• Persistence Trace (mean, range, sigma)Master Analysis Software Package (WRXi-XMAP)(Standard with MXi-A model oscilloscopes)This package provides maximum capability and flexibility, and includes all the functionality present in XMATH, XDEV, and JTA2.Advanced Math Software Package (WRXi-XMATH)(Standard with MXi-A model oscilloscopes)This package provides a comprehensive set of WaveShape Analysis tools providing insight into the wave shape of complex signals. Includes:•Parameter math – add, subtract, multiply, or divide two different parameters.Invert a parameter and rescale parameter values.•Histograms expanded with 19 histogram parameters/up to 2 billion events.•Trend (datalog) of up to 1 million events•Track graphs of any measurement parameter•FFT capability includes: power averaging, power density, real and imaginary components, frequency domain parameters, and FFT on up to 24 Mpts.•Narrow-band power measurements •Auto-correlation function •Sparse function• Cubic interpolation functionAdvanced Customization Software Package (WRXi-XDEV)(Standard with MXi-A model oscilloscopes)This package provides a set of tools to modify the scope and customize it to meet your unique needs. Additional capability provided by XDEV includes:•Creation of your own measurement parameter or math function, using third-party software packages, and display of the result in the scope. Supported third-party software packages include:– VBScript – MATLAB – Excel•CustomDSO – create your own user interface in a scope dialog box.• Addition of macro keys to run VBScript files •Support for plug-insValue Analysis Software Package (WRXi-XVAP)(Standard with MXi-A model oscilloscopes)Measurements:•Jitter and Timing parameters (period@level,width@level, edge@level,duty@level, time interval error@level, frequency@level, half period, setup, skew, Δ period@level, Δ width@level).Math:•Persistence histogram •Persistence trace (mean, sigma, range)•1 Mpts FFTs with power spectrum density, power averaging, real, imaginary, and real+imaginary settings)Statistical and Graphical Analysis•1 Mpts Trends and Histograms •19 histogram parameters •Track graphs of any measurement parameterIntermediate Math Software Package (WRXi-XWAV)Math:•1 Mpts FFTs with power spectrum density, power averaging, real, and imaginary componentsStatistical and Graphical Analysis •1 Mpts Trends and Histograms •19 histogram parameters•Track graphs of any measurement parameteramplitude area base cyclescustom (MATLAB,VBScript) –limited points delay Δdelay duration duty cyclefalltime (90–10%, 80–20%, @ level)firstfrequency lastlevel @ x maximum mean median minimumnumber of points +overshoot –overshoot peak-to-peak period phaserisetime (10–90%, 20–80%, @ level)rmsstd. deviation time @ level topΔ time @ levelΔ time @ level from triggerwidth (positive + negative)x@ max.x@ min.– Cycle-Cycle Jitter – N-Cycle– N-Cycle with start selection – Frequency– Period – Half Period – Width– Time Interval Error – Setup– Hold – Skew– Duty Cycle– Duty Cycle Error20WaveRunner WaveRunner WaveRunner WaveRunner WaveRunner 44Xi-A64Xi-A62Xi-A104Xi-A204Xi-AVertical System44MXi-A64MXi-A104MXi-A204MXi-ANominal Analog Bandwidth 400 MHz600 MHz600 MHz 1 GHz 2 GHz@ 50 Ω, 10 mV–1 V/divRise Time (Typical)875 ps500 ps500 ps300 ps180 psInput Channels44244Bandwidth Limiters20 MHz; 200 MHzInput Impedance 1 MΩ||16 pF or 50 Ω 1 MΩ||20 pF or 50 ΩInput Coupling50 Ω: DC, 1 MΩ: AC, DC, GNDMaximum Input Voltage50 Ω: 5 V rms, 1 MΩ: 400 V max.50 Ω: 5 V rms, 1 MΩ: 250 V max.(DC + Peak AC ≤ 5 kHz)(DC + Peak AC ≤ 10 kHz)Vertical Resolution8 bits; up to 11 with enhanced resolution (ERES)Sensitivity50 Ω: 2 mV/div–1 V/div fully variable; 1 MΩ: 2 mV–10 V/div fully variableDC Gain Accuracy±1.0% of full scale (typical); ±1.5% of full scale, ≥ 10 mV/div (warranted)Offset Range50 Ω: ±1 V @ 2–98 mV/div, ±10 V @ 100 mV/div–1 V/div; 50Ω:±400mV@2–4.95mV/div,±1V@5–99mv/div,1 M Ω: ±1 V @ 2–98 mV/div, ±10 V @ 100 mV/div–1 V/div,±10 V @ 100 mV–1 V/div±**********/div–10V/div 1 M Ω: ±400 mV @ 2–4.95 mV/div, ±1 V @5–99 mV/div, ±10 V @ 100 mV–1 V/div,±*********–10V/divInput Connector ProBus/BNCTimebase SystemTimebases Internal timebase common to all input channels; an external clock may be applied at the auxiliary inputTime/Division Range Real time: 200 ps/div–10 s/div, RIS mode: 200 ps/div to 10 ns/div, Roll mode: up to 1,000 s/divClock Accuracy≤ 5 ppm @ 25 °C (typical) (≤ 10 ppm @ 5–40 °C)Sample Rate and Delay Time Accuracy Equal to Clock AccuracyChannel to Channel Deskew Range±9 x time/div setting, 100 ms max., each channelExternal Sample Clock DC to 600 MHz; (DC to 1 GHz for 104Xi-A/104MXi-A and 204Xi-A/204MXi-A) 50 Ω, (limited BW in 1 MΩ),BNC input, limited to 2 Ch operation (1 Ch in 62Xi-A), (minimum rise time and amplitude requirements applyat low frequencies)Roll Mode User selectable at ≥ 500 ms/div and ≤100 kS/s44Xi-A64Xi-A62Xi-A104Xi-A204Xi-A Acquisition System44MXi-A64MXi-A104MXi-A204MXi-ASingle-Shot Sample Rate/Ch 5 GS/sInterleaved Sample Rate (2 Ch) 5 GS/s10 GS/s10 GS/s10 GS/s10 GS/sRandom Interleaved Sampling (RIS)200 GS/sRIS Mode User selectable from 200 ps/div to 10 ns/div User selectable from 100 ps/div to 10 ns/div Trigger Rate (Maximum) 1,250,000 waveforms/secondSequence Time Stamp Resolution 1 nsMinimum Time Between 800 nsSequential SegmentsAcquisition Memory Options Max. Acquisition Points (4 Ch/2 Ch, 2 Ch/1 Ch in 62Xi-A)Segments (Sequence Mode)Standard12.5M/25M10,00044Xi-A64Xi-A62Xi-A104Xi-A204Xi-A Acquisition Processing44MXi-A64MXi-A104MXi-A204MXi-ATime Resolution (min, Single-shot)200 ps (5 GS/s)100 ps (10 GS/s)100 ps (10 GS/s)100 ps (10 GS/s)100 ps (10 GS/s) Averaging Summed and continuous averaging to 1 million sweepsERES From 8.5 to 11 bits vertical resolutionEnvelope (Extrema)Envelope, floor, or roof for up to 1 million sweepsInterpolation Linear or (Sinx)/xTrigger SystemTrigger Modes Normal, Auto, Single, StopSources Any input channel, External, Ext/10, or Line; slope and level unique to each source, except LineTrigger Coupling DC, AC (typically 7.5 Hz), HF Reject, LF RejectPre-trigger Delay 0–100% of memory size (adjustable in 1% increments, or 100 ns)Post-trigger Delay Up to 10,000 divisions in real time mode, limited at slower time/div settings in roll modeHold-off 1 ns to 20 s or 1 to 1,000,000,000 events21WaveRunner WaveRunner WaveRunner WaveRunner WaveRunner 44Xi-A 64Xi-A 62Xi-A104Xi-A 204Xi-A Trigger System (cont’d)44MXi-A64MXi-A104MXi-A204MXi-AInternal Trigger Level Range ±4.1 div from center (typical)Trigger and Interpolator Jitter≤ 3 ps rms (typical)Trigger Sensitivity with Edge Trigger 2 div @ < 400 MHz 2 div @ < 600 MHz 2 div @ < 600 MHz 2 div @ < 1 GHz 2 div @ < 2 GHz (Ch 1–4 + external, DC, AC, and 1 div @ < 200 MHz 1 div @ < 200 MHz 1 div @ < 200 MHz 1 div @ < 200 MHz 1 div @ < 200 MHz LFrej coupling)Max. Trigger Frequency with400 MHz 600 MHz 600 MHz 1 GHz2 GHzSMART Trigger™ (Ch 1–4 + external)@ ≥ 10 mV@ ≥ 10 mV@ ≥ 10 mV@ ≥ 10 mV@ ≥ 10 mVExternal Trigger RangeEXT/10 ±4 V; EXT ±400 mVBasic TriggersEdgeTriggers when signal meets slope (positive, negative, either, or Window) and level conditionTV-Composite VideoT riggers NTSC or PAL with selectable line and field; HDTV (720p, 1080i, 1080p) with selectable frame rate (50 or 60 Hz)and Line; or CUSTOM with selectable Fields (1–8), Lines (up to 2000), Frame Rates (25, 30, 50, or 60 Hz), Interlacing (1:1, 2:1, 4:1, 8:1), or Synch Pulse Slope (Positive or Negative)SMART TriggersState or Edge Qualified Triggers on any input source only if a defined state or edge occurred on another input source.Delay between sources is selectable by time or eventsQualified First In Sequence acquisition mode, triggers repeatedly on event B only if a defined pattern, state, or edge (event A) is satisfied in the first segment of the acquisition. Delay between sources is selectable by time or events Dropout Triggers if signal drops out for longer than selected time between 1 ns and 20 s.PatternLogic combination (AND, NAND, OR, NOR) of 5 inputs (4 channels and external trigger input – 2 Ch+EXT on WaveRunner 62Xi-A). Each source can be high, low, or don’t care. The High and Low level can be selected independently. Triggers at start or end of the patternSMART Triggers with Exclusion TechnologyGlitch and Pulse Width Triggers on positive or negative glitches with widths selectable from 500 ps to 20 s or on intermittent faults (subject to bandwidth limit of oscilloscope)Signal or Pattern IntervalTriggers on intervals selectable between 1 ns and 20 sTimeout (State/Edge Qualified)Triggers on any source if a given state (or transition edge) has occurred on another source.Delay between sources is 1 ns to 20 s, or 1 to 99,999,999 eventsRuntTrigger on positive or negative runts defined by two voltage limits and two time limits. Select between 1 ns and 20 sSlew RateTrigger on edge rates. Select limits for dV, dt, and slope. Select edge limits between 1 ns and 20 s Exclusion TriggeringTrigger on intermittent faults by specifying the normal width or periodLeCroy WaveStream Fast Viewing ModeIntensity256 Intensity Levels, 1–100% adjustable via front panel control Number of Channels up to 4 simultaneouslyMax Sampling Rate5 GS/s (10 GS/s for WR 62Xi-A, 64Xi-A/64MXi-A,104Xi-A/104MXi-A, 204Xi-A/204MXi-A in interleaved mode)Waveforms/second (continuous)Up to 20,000 waveforms/secondOperationFront panel toggle between normal real-time mode and LeCroy WaveStream Fast Viewing modeAutomatic SetupAuto SetupAutomatically sets timebase, trigger, and sensitivity to display a wide range of repetitive signalsVertical Find ScaleAutomatically sets the vertical sensitivity and offset for the selected channels to display a waveform with maximum dynamic range44Xi-A 64Xi-A 62Xi-A104Xi-A 204Xi-A Probes44MXi-A 64MXi-A104MXi-A 204MXi-AProbesOne Passive probe per channel; Optional passive and active probes available Probe System; ProBus Automatically detects and supports a variety of compatible probes Scale FactorsAutomatically or manually selected, depending on probe usedColor Waveform DisplayTypeColor 10.4" flat-panel TFT-LCD with high resolution touch screenResolutionSVGA; 800 x 600 pixels; maximum external monitor output resolution of 2048 x 1536 pixelsNumber of Traces Display a maximum of 8 traces. Simultaneously display channel, zoom, memory, and math traces Grid StylesAuto, Single, Dual, Quad, Octal, XY , Single + XY , Dual + XY Waveform StylesSample dots joined or dots only in real-time mode22Zoom Expansion TracesDisplay up to 4 Zoom/Math traces with 16 bits/data pointInternal Waveform MemoryM1, M2, M3, M4 Internal Waveform Memory (store full-length waveform with 16 bits/data point) or store to any number of files limited only by data storage mediaSetup StorageFront Panel and Instrument StatusStore to the internal hard drive, over the network, or to a USB-connected peripheral deviceInterfaceRemote ControlVia Windows Automation, or via LeCroy Remote Command Set Network Communication Standard VXI-11 or VICP , LXI Class C Compliant GPIB Port (Accessory)Supports IEEE – 488.2Ethernet Port 10/100/1000Base-T Ethernet interface (RJ-45 connector)USB Ports5 USB 2.0 ports (one on front of instrument) supports Windows-compatible devices External Monitor Port Standard 15-pin D-Type SVGA-compatible DB-15; connect a second monitor to use extended desktop display mode with XGA resolution Serial PortDB-9 RS-232 port (not for remote oscilloscope control)44Xi-A 64Xi-A 62Xi-A104Xi-A 204Xi-A Auxiliary Input44MXi-A 64MXi-A104MXi-A 204MXi-ASignal Types Selected from External Trigger or External Clock input on front panel Coupling50 Ω: DC, 1 M Ω: AC, DC, GND Maximum Input Voltage50 Ω: 5 V rms , 1 M Ω: 400 V max.50 Ω: 5 V rms , 1 M Ω: 250 V max. (DC + Peak AC ≤ 5 kHz)(DC + Peak AC ≤ 10 kHz)Auxiliary OutputSignal TypeTrigger Enabled, Trigger Output. Pass/Fail, or Off Output Level TTL, ≈3.3 VConnector TypeBNC, located on rear panelGeneralAuto Calibration Ensures specified DC and timing accuracy is maintained for 1 year minimumCalibratorOutput available on front panel connector provides a variety of signals for probe calibration and compensationPower Requirements90–264 V rms at 50/60 Hz; 115 V rms (±10%) at 400 Hz, Automatic AC Voltage SelectionInstallation Category: 300 V CAT II; Max. Power Consumption: 340 VA/340 W; 290 VA/290 W for WaveRunner 62Xi-AEnvironmentalTemperature: Operating+5 °C to +40 °C Temperature: Non-Operating -20 °C to +60 °CHumidity: Operating Maximum relative humidity 80% for temperatures up to 31 °C decreasing linearly to 50% relative humidity at 40 °CHumidity: Non-Operating 5% to 95% RH (non-condensing) as tested per MIL-PRF-28800F Altitude: OperatingUp to 3,048 m (10,000 ft.) @ ≤ 25 °C Altitude: Non-OperatingUp to 12,190 m (40,000 ft.)PhysicalDimensions (HWD)260 mm x 340 mm x 152 mm Excluding accessories and projections (10.25" x 13.4" x 6")Net Weight7.26kg. (16.0lbs.)CertificationsCE Compliant, UL and cUL listed; Conforms to EN 61326, EN 61010-1, UL 61010-1 2nd Edition, and CSA C22.2 No. 61010-1-04Warranty and Service3-year warranty; calibration recommended annually. Optional service programs include extended warranty, upgrades, calibration, and customization services23Product DescriptionProduct CodeWaveRunner Xi-A Series Oscilloscopes2 GHz, 4 Ch, 5 GS/s, 12.5 Mpts/ChWaveRunner 204Xi-A(10 GS/s, 25 Mpts/Ch in interleaved mode)with 10.4" Color Touch Screen Display 1 GHz, 4 Ch, 5 GS/s, 12.5 Mpts/ChWaveRunner 104Xi-A(10 GS/s, 25 Mpts/Ch in interleaved mode)with 10.4" Color Touch Screen Display 600 MHz, 4 Ch, 5 GS/s, 12.5 Mpts/Ch WaveRunner 64Xi-A(10 GS/s, 25 Mpts/Ch in interleaved mode)with 10.4" Color Touch Screen Display 600 MHz, 2 Ch, 5 GS/s, 12.5 Mpts/Ch WaveRunner 62Xi-A(10 GS/s, 25 Mpts/Ch in interleaved mode)with 10.4" Color Touch Screen Display 400 MHz, 4 Ch, 5 GS/s, 12.5 Mpts/Ch WaveRunner 44Xi-A(25 Mpts/Ch in interleaved mode)with 10.4" Color Touch Screen DisplayWaveRunner MXi-A Series Oscilloscopes2 GHz, 4 Ch, 5 GS/s, 12.5 Mpts/ChWaveRunner 204MXi-A(10 GS/s, 25 Mpts/Ch in Interleaved Mode)with 10.4" Color Touch Screen Display 1 GHz, 4 Ch, 5 GS/s, 12.5 Mpts/ChWaveRunner 104MXi-A(10 GS/s, 25 Mpts/Ch in Interleaved Mode)with 10.4" Color Touch Screen Display 600 MHz, 4 Ch, 5 GS/s, 12.5 Mpts/Ch WaveRunner 64MXi-A(10 GS/s, 25 Mpts/Ch in Interleaved Mode)with 10.4" Color Touch Screen Display 400 MHz, 4 Ch, 5 GS/s, 12.5 Mpts/Ch WaveRunner 44MXi-A(25 Mpts/Ch in Interleaved Mode)with 10.4" Color Touch Screen DisplayIncluded with Standard Configuration÷10, 500 MHz, 10 M Ω Passive Probe (Total of 1 Per Channel)Standard Ports; 10/100/1000Base-T Ethernet, USB 2.0 (5), SVGA Video out, Audio in/out, RS-232Optical 3-button Wheel Mouse – USB 2.0Protective Front Cover Accessory PouchGetting Started Manual Quick Reference GuideAnti-virus Software (Trial Version)Commercial NIST Traceable Calibration with Certificate 3-year WarrantyGeneral Purpose Software OptionsStatistics Software Package WRXi-STAT Master Analysis Software Package WRXi-XMAP (Standard with MXi-A model oscilloscopes)Advanced Math Software Package WRXi-XMATH (Standard with MXi-A model oscilloscopes)Intermediate Math Software Package WRXi-XWAV (Standard with MXi-A model oscilloscopes)Value Analysis Software Package (Includes XWAV and JTA2) WRXi-XVAP (Standard with MXi-A model oscilloscopes)Advanced Customization Software Package WRXi-XDEV (Standard with MXi-A model oscilloscopes)Spectrum Analyzer and Advanced FFT Option WRXi-SPECTRUM Processing Web Editor Software Package WRXi-XWEBProduct Description Product CodeApplication Specific Software OptionsJitter and Timing Analysis Software Package WRXi-JTA2(Standard with MXi-A model oscilloscopes)Digital Filter Software PackageWRXi-DFP2Disk Drive Measurement Software Package WRXi-DDM2PowerMeasure Analysis Software Package WRXi-PMA2Serial Data Mask Software PackageWRXi-SDM QualiPHY Enabled Ethernet Software Option QPHY-ENET*QualiPHY Enabled USB 2.0 Software Option QPHY-USB †EMC Pulse Parameter Software Package WRXi-EMC Electrical Telecom Mask Test PackageET-PMT* TF-ENET-B required. †TF-USB-B required.Serial Data OptionsI 2C Trigger and Decode Option WRXi-I2Cbus TD SPI Trigger and Decode Option WRXi-SPIbus TD UART and RS-232 Trigger and Decode Option WRXi-UART-RS232bus TD LIN Trigger and Decode Option WRXi-LINbus TD CANbus TD Trigger and Decode Option CANbus TD CANbus TDM Trigger, Decode, and Measure/Graph Option CANbus TDM FlexRay Trigger and Decode Option WRXi-FlexRaybus TD FlexRay Trigger and Decode Physical Layer WRXi-FlexRaybus TDP Test OptionAudiobus Trigger and Decode Option WRXi-Audiobus TDfor I 2S , LJ, RJ, and TDMAudiobus Trigger, Decode, and Graph Option WRXi-Audiobus TDGfor I 2S LJ, RJ, and TDMMIL-STD-1553 Trigger and Decode Option WRXi-1553 TDA variety of Vehicle Bus Analyzers based on the WaveRunner Xi-A platform are available.These units are equipped with a Symbolic CAN trigger and decode.Mixed Signal Oscilloscope Options500 MHz, 18 Ch, 2 GS/s, 50 Mpts/Ch MS-500Mixed Signal Oscilloscope Option 250 MHz, 36 Ch, 1 GS/s, 25 Mpts/ChMS-500-36(500 MHz, 18 Ch, 2 GS/s, 50 Mpts/Ch Interleaved) Mixed Signal Oscilloscope Option 250 MHz, 18 Ch, 1 GS/s, 10 Mpts/Ch MS-250Mixed Signal Oscilloscope OptionProbes and Amplifiers*Set of 4 ZS1500, 1.5 GHz, 0.9 pF , 1 M ΩZS1500-QUADPAK High Impedance Active ProbeSet of 4 ZS1000, 1 GHz, 0.9 pF , 1 M ΩZS1000-QUADPAK High Impedance Active Probe 2.5 GHz, 0.7 pF Active Probe HFP25001 GHz Active Differential Probe (÷1, ÷10, ÷20)AP034500 MHz Active Differential Probe (x10, ÷1, ÷10, ÷100)AP03330 A; 100 MHz Current Probe – AC/DC; 30 A rms ; 50 A rms Pulse CP03130 A; 50 MHz Current Probe – AC/DC; 30 A rms ; 50 A rms Pulse CP03030 A; 50 MHz Current Probe – AC/DC; 30 A rms ; 50 A peak Pulse AP015150 A; 10 MHz Current Probe – AC/DC; 150 A rms ; 500 A peak Pulse CP150500 A; 2 MHz Current Probe – AC/DC; 500 A rms ; 700 A peak Pulse CP5001,400 V, 100 MHz High-Voltage Differential Probe ADP3051,400 V, 20 MHz High-Voltage Differential Probe ADP3001 Ch, 100 MHz Differential Amplifier DA1855A*A wide variety of other passive, active, and differential probes are also available.Consult LeCroy for more information.Product Description Product CodeHardware Accessories*10/100/1000Base-T Compliance Test Fixture TF-ENET-B †USB 2.0 Compliance Test Fixture TF-USB-B External GPIB Interface WS-GPIBSoft Carrying Case WRXi-SOFTCASE Hard Transit CaseWRXi-HARDCASE Mounting Stand – Desktop Clamp Style WRXi-MS-CLAMPRackmount Kit WRXi-RACK Mini KeyboardWRXi-KYBD Removable Hard Drive Package (Includes removeable WRXi-A-RHD hard drive kit and two hard drives)Additional Removable Hard DriveWRXi-A-RHD-02* A variety of local language front panel overlays are also available .† Includes ENET-2CAB-SMA018 and ENET-2ADA-BNCSMA.Customer ServiceLeCroy oscilloscopes and probes are designed, built, and tested to ensure high reliability. In the unlikely event you experience difficulties, our digital oscilloscopes are fully warranted for three years, and our probes are warranted for one year.This warranty includes:• No charge for return shipping • Long-term 7-year support• Upgrade to latest software at no chargeLocal sales offices are located throughout the world. Visit our website to find the most convenient location.© 2010 by LeCroy Corporation. All rights reserved. Specifications, prices, availability, and delivery subject to change without notice. Product or brand names are trademarks or requested trademarks of their respective holders.1-800-5-LeCroy WRXi-ADS-14Apr10PDF。

APS医学工程课程介绍部分

APS医学工程课程介绍部分

1 医学超声仪器原理Principle of Medical Ultrasound EquipmentQ1: What is the ultrasound?A1: Ultrasound is a kind of high frequency sound waves (more than 20k Hz), belongs to a kind of mechanical wave.Q2: How ultrasound combined with medicine?(How clinical application?)A2: By launching a set of ultrasound machines, ultrasound will be reflected back when encountered the body or tumor.Doctors on the basis of the reflected sound waves infer the size and the location of the lesion or the tumor.Q3: How the ultrasound equipment launching ultrasound? How to accept ultrasound? A3: piezoelectric sensor (silicon)As sound-wave launching components, converts electrical energy to the high frequency vibration振动;As sound-wave receiving components, vibration cause by reflected sound will be converted to electrical signals.Q4: Compared with other medical detection (treatment) technology, what advantage does ultrasonic have?A4: Ultrasonic detecting almost no harm to human body, although it displays the image is not very clear.Q5: Ultrasonic is how to solve the lesion / tumor / calculus?A5: By carrying energy, ultrasound can shatter the lesion / tumor / calculus.Q6: How many types do the ultrasound equipment/medical ultrasounography have? What are their features (function)?A6: There are three main kinds of ultrasonic instruments .The type-B ultrasonic, the type-M ultrasonic, and the Color Doppler Flow Imaging (CDFI).Type-B ultrasonic can display the two-dimensional figure, for the fetus.Type-M ultrasonic can display the movement of the heartCDFI can show blood velocity, flow and stability.Q7: What is the component of Ultrasound Equipment?A7: Both of sound-wave launching component and receiving component is the part of ultrasonic probe (detection). They use the same structure such as Electronic linear array ultrasonic probe. It contains six parts: switch controller, damping pad, matching component, linear array sensor, sound lens, and hull.Switch controller is designed for focused ultrasound by time-delay circuit.Time-delay circuit (inductance(inductor) and 3-8 decoder)【图】Q8: How did you segregate the launching component and receiving component?A8: segregate circuit.【图】(diode and audion)Q9: What is the principle of CDFI?A9: It is basis on Doppler Effect. △f=2f·cosθ·(v/c)The frequency shift △f of reflected sound can show the velocity;Red color means the direction of blood cell is face to the ultrasonic probe.Blue color means the direction of blood cell is reverse to the probe.Green color shows the stability of the blood. (turbulence flow)Q10: What is the effect of the matching component?A10: Between the sensor and the object to keep a necessary distance.Because the sound field attenuation rule is like this.【图】2放射治疗设备原理Principle of Radiation Therapy EquipmentQ1: What is the radiotherapy? What is the principle of radiotherapy?A1: Use of high-energy rays (such as x-ray,ionizing radiation) to treat tumor.Q2: What are commonly used in radiotherapy equipment?A2: Kilo-voltage X-Ray therapy apparatusCobalt 60 therapy apparatusMedical linear accelerator(electron ray)Q3: What is a medical linear accelerator? What is its function?A3: First,we input higher voltage,for magnetron can generate the high power microwaveSecondly,electronic injector control the number and the speed of electronic into the medical linear acceleratorThirdly, electronic get energy to accelerate from the microwave in accelerator,to be high-power electron beam.Finally, the high-power electron beam shoots the Anode target, to produce the ray that we need.Q5: What is the process(step)of radiation therapy ?A5: Firstly, confirm the location of the tumor, and choose the way to radiation exposure. (Simulate it) We need avoid other healthy organs.Secondly, use computer to optimize therapeutic schedule.Thirdly, Use radiation(ray)to kill tumor (cancer).3医用X线机系统Medical X-ray Machine SystemQ1: What is the medical X-ray?A1:When the Electronic energy level(state)change ,it will radiated a kind of energywave. That is x-ray.Q2: How does the x-ray generate?A2: Electronic impacts (shoot) anode target (tungsten) from the cathode. Let it generate ionization and bremsstrahlung radiation, thus radiating x-rays.Q3: What is the role of the x ray?A3: Through the body, found the position of the disease.Q4: What are x-ray features (function)?A4: The medical x-ray has two models with radiography and fluoroscopy. Both models have some harm to human body.Radiography is very fast, the film is more clearly, but it has more radiation. It is often used to check the lungs and intestines.Fluoroscopy is slowly than radiography. It is often used to intervene in operation and physical examination.Q5: What is the principle of x-ray detection (diagnosis).A5: Different density organ has different x-ray absorption.Through the body, the x-ray project in the film. And then, through the observation of film, doctor found the position of the disease. (dark region and bright region)Q6: What is the advantage of X-ray?A6: The x-rays have some harm to human body, but it’s far less than CT.And the x-ray machine is very cheap and simple.Q7: What are the names of these various x-ray machines? What are the different of clinical application?A7: Mammography is for breast. We need change the filter so that generate the x-ray which fit human breast.Dental X-ray unit gives the examination of the teeth. It can give a panoramic x-ray of all the teeth at once. It removes around your head at the section of your teeth. Angiography: Doctor injects contrast media in the blood vessel. This way can enhance the contrast between the blood vessel and background.Q8: What is CR? What is DR?A8: DR is digital radiography; CR is computed radiography.DR is base on A-Si (Amorphous Silicon), x-ray can be converted to electric signal. CR likes detector of CT.4 CT成像原理与技术(Computed tomography Principles)Q1: What is the basic of physical principles of CT?A1: Electronic impacts (shoot) anode target (tungsten) from the cathode. Let itgenerate ionization and bremsstrahlung radiation, thus radiating x-rays.Q2:What is the CT Components(part)?(How many stage does CT have?)A2: There are three section(stage):data acquisition, image reconstruction and image displayThe data acquisition contains a lot. There are mainly four parts: x-ray frame (tube), filter, collimator and detector.Q3: What is the Reconstruction algorithms(CT image Reconstruction)?A3: Detector gets different angles of projection, so that sinogram is formed.The algorithms that use sinogram to reconstruct object is called reconstruction algorithms.Reconstruction algorithms includes a lot,such as filtered back-projection(FBP), FT reconstruction and iterative reconstruction.【图】Iterative reconstruction is used for low dose reconstruction.Q4: What is the image artifact?A4: Artifacts are that reconstruction image appears something which does not exist in object.Q5: How to make the image clearer?A5: Improve SNR(signal to noise ratio),Eliminate artifacts, improve HCR(high contrast resolution), and so on.①Improve SNR: Improve the thickness of scan, because it will improve the signal that detector acquire. This way applies to get the image of smaller different of density. And we also can reduce noise by digital image processing.②Eliminate artifacts: If we find that there was a line but not cosine(sine), that need be eliminated. Because it will cause the ring artifacts.③Improve HCR: Reduce the thickness of scan, because it will improve the accuracy. This way applies to get the image of larger different of density, such as lungs and bones because they have high contrast. Reduce the size and interval of detectors. Reduce the size of focal spot of x-ray.Q6: How the detector to get projection? What is the structure of data acquisition?A6: The x-ray frame removes around human body, and the opposite detector receives the x-ray which through the human body. Thus how to detector get projection.Q7: What is the different between the FBP and FT?A7: FBP is used to star artifacts in back-projection. Before the back-projection, we need processing the projection of that angle with the help of filter. (star artifacts at the center of image)FT is using Fourier transform to reconstruct the object. 【图】【BP greatest common divisor at last】Q8: How is the collimator and detector work?A8: Collimator, eliminate scattered rays. And detector contains photomultiplier tube. The photons impact the cathode, let it produce a little electron. With the help of electric field to accelerate it, finally the anode of photomultiplier will produce lots of electrons. 【detector: CsI NaI They are chemical elements.】Q9: What is the function of filter?A9: Eliminate the frequency which we don’t need.5 MRI原理与技术(MRI principle and technology)Q1: What is the basic of physical principles of MRI? (NMR)A1: MRI is magnetic resonance imaging. The physical principle is called NMR. Firstly, some atoms (such as hydrogen atom) in the static magnetic field produce Larmor precession.Secondly, when we give it a radio frequency (RF) field, which conform to [formula], NMR will happen. (The spin of atom fall down; RF is a kind of excitation) Thirdly, when the radio frequency field stop, the atom will return to the Larmor precession state, called a relaxation process, it will produce some medical signals, such as T1, T2 and PDW (proton density weighting).Q2: What kind of image does the MRI produce?How to produce this image?A2: two-dimensional images at any angle of the plane, even three-dimensional images.Imaging objects are spatially encoded by gradient magnetic fields.Spatial encoding contains three steps: Slice gradient, Phase gradient and Readout gradient. They let different location of the atomic produce different signal.Signal receiving coil will decode signal in space k, and with the help of Fourier inverse transform presented in the end.【公式:y=Acos(ωx+φ)】Because of the slice gradient magnetic field, we can just let atoms in one plane to produce signal. And with the help of Phase and Readout gradient magnetic field, we can let different location of atoms of this plane generate different signal. In x-direction, different location atom has different ω;in y-direction, different location atom has differentφ. (ωincrease along the x-direction; φincrease along the y-direction)ωis the frequency of atom-spin; φis the phase-difference of atom-spin.Q3: What is the space k? How is it work? 【不问不提】A3: Space k stores the information of image. Near the outside of space k is the high frequency information that determines the HCR of image. The centre of the space k is the low frequency information that determines the SNR of the image.【追问再说】Actually the phase gradient field will repeat many times but through differentphase-difference gradient field.【图】Because high phase difference contributes to improve the HCR of image, and low phase-difference contributes to improve the SNR of image.Q4: What are the different between the MRI and CT?A4: MRI is based on the principle of NMR phenomenon; but CT is based on the characteristics of X-ray.MRI has excellent HCR (high contrast resolution).MRI of the harm to human body is less than CT.MRI is more expensive.MRI can get the two-dimensional images at any angle’s plane of body; while CT just can get cross sectional image.Q5: How to make image clearer? Eliminate artifacts?A5: If we use high intensity of phase gradient, that will improve the HCR of image.If we use low intensity of phase gradient, that will improve the SNR of image.About the movement artifacts, we can use Gating Technique, receive the signal just in calm period.6 现代检验医学仪器(Medical Laboratory Instruments)Q1: What kind of the clinical laboratory instrumentation?A1: hematology analyzer, flow cytometer (FCM), blood gas analyzer, urine analyzer, biochemical analyzerQ2: What are their purposes?A2:①Hematology analyzer: Classify blood cells and countingPrinciple: tiny particles through special holes can cause solution resistance of hole change②Flow cytometer: Fast measure the physical and chemical properties of cell【图】③Blood gas system: through testing the blood and breath gas, we can analyze the acid-base balance and oxygen state【图】④Urine analyzer:urine in the reagent with different color causes different light reflectivity,so as to determine the indicators of urine【图】⑤Biochemical analyzer:Analyze blood and other body fluids by using a set of automation equipments to determine various biochemical indicators【图】Principle:photoelectric colorimetric technique( Lambert-Beer's Law)【A=kbc; A→absorbance; k→constant; b→thickness; c→concentration】7 医用传感器medical sensorsQ1: What kind of medical sensors are thereA1: resistive sensor (capacitive sensor, inductive sensor), piezoelectric sensor,magnetic sensor, thermoelectric sensor, optical sensorsQ2: What is the principle of these sensorsA2:①Resistive sensor: When strain gauge changes shape, the resistance will change. This change will be obviously detected by resistive Wheatstone Bridge.capacitive sensor,inductive sensor:The resistance is replaced by capacitor or inductor and it can improve sensitivity.【图】②Piezoelectric sensor: Pressure can be converted to electrical signal and output by using piezoelectric sensor.(be used in ultrasound instrument)③Magnetic sensor: Using the hall element, magnetic field intensity can be converted to electrical signal output.④Thermoelectric sensor(thermocouple): Basis on Seebeck effect【图】,sensor can sense difference in temperature and Converted to electrical signal output.⑤Optical sensors: Using the photoelectric effect,the optical signal is converted into electrical signal output.8 现代医学电子仪器原理与设计Principle and Design of Medical Electronic InstrumentationQ1: What the principle should be followed when medical electronic instrumentation design?A1: High CMRR (common mode rejection ratio), such as amplify circuit.High sensitivity, such as emitter follower/Wheatstone BridgeLimit the noise (more important than amplifying signal), such as LPF/differential amplifier circuit (zero drift noise) or software processingEnsure it conform to EMC, energy dissipation circuitEnsure it conform to safety standards of human bodyQ2: What the different between the interference and noise.A2: Interference: From the outside of the test systemNoise: From the test system, from itselfQ3: What is the EMC? (Explain it)A3: EMC is Electro Magnetic Compatibility.On the one hand, it must restrain the interference from outside.On the other hand, it must restrain itself to interfere others equipment.Q4: How to design a medical electronic instrumentationA4:【图】Signal acquisition, signal preprocessing, signal processing, feedback/control, stimulation, signal calibration, records, data saveFor example: In the morning, engineer will use water phantom to check the CT. Signal preprocessing: such as detector of CT9 Linear Algebra 线性代数A:In this course, we mainly study what is matrix, how to operation it. Because matrix is the basis of image reconstruction in CT. By the way, we can also use Matlab for matrix operation. It is useful software.Matrix: be used to solve difficult equations.10 Complex function and integral transform 复变函数A: In this course, we have learnt Fourier transform; it is the basis of signal courses, such as DIP, DSP and so on.11 Probability Theory and Mathematical Statistics 概率论A: In this course, we mainly study probability distribution such as Gaussian distribution. It is the basis of DIP; especially reduce noise, because noise is random. 【看情况说】We also learnt histogram, with the help of histogram, we can processing the digital image very easy.10 病理学Pathology 生理学PhysiologyQ1: What is the different between the Physiology and Pathology?A1: They all introduce the human organs simply. But Physiology studies the healthy state of human organs while Pathology studies the unhealthy state, the pathological reaction of organ.Q2: Do you know what pathological reaction does the organ happen?A2: The cell will have adaptive changes when it is injured.But when it breakthrough the limitation, cells can appear damage, and eventually death.Finally, organs will be in the form of regeneration or fibrous repair to repair themselves.Q3: I notice your scores of Physiology and Pathology is lower, do you have any reasons about that?A3: Because the pathology and Introduction to Clinical Medicine involves knowledge is too complicated, and this course don’t have many relationships with my major (research direction).【prepare】肠道intestinal tract 胃stomach 肌肉muscle 心脏heart大脑brain 肺lungs乳房breast 胸腔chest 骨bones13 An Overview of clinical Medicine 临概systematic anatomy 系解Q1: What knowledge does An Overview of clinical Medicine introduce to you?A1: Simple to outline some of the human body system:Motor system, digestivesystem, respiratory system, blood circulatory system, nervous system, urinary system, reproductive system, endocrine systemQ2: What did you know from the systematic anatomy?A2: The name of bones and muscles. Outline the organs human have and function of them. Such as intestinal tract belongs to gas-containing organs, so we can use ultrasound instrument for diagnosis. And bone is a kind of high density organ, so we can use x-ray for diagnosis.14 The Recognition and Nursing of common clinical symptoms 临床症状识别Q1: If patient have some clinical symptoms, how to diagnose it? Use what medical facility?A1: If we want to recognize/diagnose clinical symptoms, firstly we need know the location of symptoms and what system it belongs to.【临概、系解也可套用】Such as headache, because it belongs to nervous system and our brain have many complex structures, so we need use CT or MRI. (The HCR of MRI is good than CT, but expensive)Such as cough, because it belongs to respiratory system and the density difference between the lungs and bone is high enough, so we can use x-ray. But if there maybe has a tumor, we have to use CT for diagnosis.Secondly, we need ensure the period of disease. Such as cancer, if it is early period, we just need use medical instrument to ensure the location and size of tumor and cut it by operation. But if it is later period, maybe we must use radiation therapy. 【病理也可套用】【prepare】Because it is optional course and do not have many relationship with my major, so we just need to know the outline of it. 【案例分析也可套用】15 Legal Analysis of Typical Case about medicalA: In Wuhan, there was a woman, be checked by CT and found a shadow behind breastbone. It was doubted a tumor and use radiation therapy for a long time. Finally, the hospital found it is misdiagnosed, it’s not tumor. And hospital has to refund to that patient. But doctor didn’t have fault although it’s misdiagnose. Because that shadow, nobody can insure it is a tumor or not, doctor just could say “maybe is a tumor, maybe not”. So as a biomedical engineer, we should make the medical instrument better for reducing the artifacts and make the image clearer.16 电子技术试验Electric Technology ExperimentQ1: What experimental/laboratory apparatus did you use?A1: Signal generator,Oscilloscope, Circuit element (resistance capacitor inductor diode audion)Q2: What experiment did you do?A2: Emitter follower, Differential amplifier, integrated operational amplifierQ3: What did you learn from these experiments?A3:①Emitter-follower: Let the output voltage follow the input voltage linear change in a wide range②Differential-amplifier: Amplify different-mode signal, restrain common-mode signal③Integrated operational amplifier: Use it to proportion, addition, subtraction, integral operation17 C Language Programming 面向对象程序设计object oriented programmingQ1: What is the different between the C language and C++?A1: c++ can run most of c code while c cannot run c++ code.C is function-driven while c++ is object-driven.In the case C, the program is formulated step by step, each step is processed into detail. While in c++, the base elements are first formulated which then are linked together to give result to larger system.Q2: Can you write a program?A2: If we want to compare figure a and b, and put out the maximun.If we use c language:#include<stdio.h>main (){int a,b,max;printf(“input 2 numbers :”);scanf(“%d%d”,&a&b);if (a>=b) max=a;else max=b;printf(“the maximum is :%d”,max);}If we use c++ language:#include<stdio.h>int max(int a,int b){if a>=b return a;else return b;}main(){cout<<“input 2 numbers:”;int a,b;cin>>a>>b;cout<<“the maximum is :”<<max(a,b);}附:%d is a kind of data typea b max is the name of where store the data.18 Quality System and Regulations of Medical DeviceA: According to Chinese law, the supervision for quality of the medical instruments in different stage is the responsibility of different government departments. The stages of registration and production are the responsibility of CFDA; the stages of installation and usage are the responsibility of MOH. The organization which tests the quality of the medical instruments must be accredited by the CNAS.About the classification of the medical instruments and laws, regulations (such as GB9706 and YY0505)are constantly updated by the government. So we just need log into the website of CFDA and MOH, and then we can get the latest information about the instrument.Q1: What is different between the Quality System and Testing Technology?A1: Quality System of Medical Deice pays attention to the law and regulations about medical device. While Testing Technology of Medical Equipment pays attention to how to test parameters and test what parameters of medical equipments.19 Testing Technology of Medical EquipmentA: There are common requirement and special requirement about the medical instruments. Under normal conditions, we consult handbook such as Security manual to test the medical equipment.About common requirement, for example“test in single fault condition”. Firstly, we need to make a failure (disconnect the protective earthing line or input a interference signal), and then testing instrument is still safe to human body.About special requirement, for example“the voltage of x-ray tube”, we usually use “Non-intrusive testing of the tube voltage”. Use different thickness of the filter and the radiation detector. Under the condition of different thickness of filter, record the corresponding radiation attenuation degree. Finally by corresponding relation, we can know the voltage of the X-ray tube.【prepare】“CT radiation dose testing” Pencil ionization chamberThrough CTDI to shows radiation dose of CT“HCR of CT” phantom of line pair“Testing the thickness of CT scan” phantom of sheetmetal20 Technical DrawingThree view drawing (top view, front view, side view) Cross-section viewDiameter Length Width Height。

金属掺杂锐钛矿相TiO2的第一性原理计算

金属掺杂锐钛矿相TiO2的第一性原理计算

金属掺杂锐钛矿相TiO2的第一性原理计算金属掺杂锐钛矿相TiO2的第一性原理计算/王海东等?129?金属掺杂锐钛矿相TiO2的第一性原理计算王海东,万巍(中南大学无机材料研究所,长沙410083)摘要采用基于密度泛函理论的从头算平面波超软赝势方法,计算了纯锐钛矿相TiU2及5种不同金属掺杂Ti()2的晶格常数,能带结构,态密度与光吸收系数.结果表明,掺杂后能级的变化主要是过渡金属Co3d,Fe3d,Zr4d,Zr4p,V3p,V3d,W5d及W5p轨道的贡献.随着co,Fe,V掺杂浓度的增加,禁带宽度呈减小趋势;Zr掺杂对能带结构几乎不产生影响;W掺杂能级远离禁带,只对价带构成产生了影响.金属掺杂使禁带宽度变化或出现新杂质能级,导致了Ti()2吸收边沿红移或在可见光区域出现新的吸收峰;其中Co,Fe掺杂的吸收边沿明显红移,而w掺杂时在可见光区域出现较强的吸收峰.'关键词第一性原理锐钛矿相TiOz金属掺杂中图分类号:TN302;O411文献标识码:A StudyontheMetalDopedAnataseTiO2byFirstPrinciplesW ANGHaidong,WANWei(InstituteofInorganicMaterials,CentralSouthUniversity,Changsha410083) AbstractThelatticeconstant,bandstructure,densityofstatesandopticalpropertiesofpurean dCo,Fe,Zr,V,WdopingTi02werecalculatedusingthefirst-principleplane-waveultrasoftpseudopotent ialmethodsbasedonthe densityfunctionaltheorNTheresultsindicatethattheformationofimpuritylevelismainlyco ntributedbymixingwithCO3d,Fe3d,Zr4p,Zr4d,V3p,V3d,W5p,W5dorbita1ofthetransitionmeta1.Thebandg apdecreaseswithincreasingCo,ice,Vconcentration.ThereisnoimpuritylevelpresentinthebandstructureofZ rdopingTi02.Impu—ritylevelofWdopingTi02leavesawayfromthebandgap,onlycausestheconstitutionofvalen ceban&amp;Thedoping withmetalliciconsisresponsibleforthechangesofbandgapornewappearanceofimpurityle vel,whichbringstheredshiftofTi02absorptionwavelengthortheappearanceofnewabsorptionpeakinthevisible 1ightregion.Thedo—pingofCo,FebringstheredshiftofTi02absorptionwavelengthobviouslyandW-dopingcaus esastrongabsorptionpeakinthevisiblelightregion.KeywordsFirst-principlecalculation,anatasetitaniumdioxide,metaldoped0引言作为光催化环境净化材料,Ti0因具有无毒,成本低,稳定性好等诸多优点而成为最具研发潜力的光催化剂.但由于TiO是宽禁带半导体氧化物,使其对太阳能的利用受到了限制.因此,如何通过改性手段提高其光谱响应范围是TiO光催化性能推广应用的关键.对TiOz的改性研究表明,金属离子掺杂改性是有效的方法之一理想的掺杂离子应在材料内形成合适的施主或受主能级,且这些能级位于距离导带或价带较理想的位置,既可以俘获载流子促进光生载流子的分离,又能快速释放载流子以避免成为载流子失活中心[1].在已开展的金属离子掺杂TiO光催化活性的实验研究中,Choi等采用Sol—gel法将与Ti半径接近的21种金属离子掺入到TiO中,结果表明,掺杂Fe",Mo",Ru什,Os抖,Re汁,V",Rh3均可明显提高TiO的氧化还原能力,而Li,M,Al",Ga什等S区及P区离子掺杂则降低了Ti0.的光催化活性.相对于实验研究,模拟计算技术具有可以克服实验中人为因素的影响,更易于深入分析离子掺杂改性机理的特点.从2O世纪9O年代开始应用第一性原理对Ti02纳米材料进行计算模拟的研究工作已逐渐展开r3].曹红红等_4]使用全电势线性缀加平面波法,对锐钛矿相TiO做了较系统的计算,优化后所得结果与实验值符合得很好.Umebayashi等]利用基于密度泛函理论的全电势线性缀加平面波法计算了3d过渡金属掺杂锐钛矿相TiO.的电子结构,结果表明掺杂物的t.态在禁带或价带中产生了一个杂质能级,并且随着掺杂原子序数的增大,杂质能级向低能级方向移动.为进一步系统地研究金属掺杂对锐钛矿相TiO光催化性能的影响机理,采用基于密度泛函理论的从头算平面波超软赝势方法,计算了纯锐钛矿相Ti()2及5种不同金属(Co,*教育部博士点基金(20100162110062)王海东:1963年生,博士,教授Tel:0731—8836963E-mail:***************】30?材料导报B:研究篇2O11年7月(下)第25卷第7期Fe,Zr,V,w)在多浓度掺杂下TiO.的晶格常数,能带结构,电子态密度及光吸收性质,研究了相应掺杂情况下各种掺杂对锐钛矿相()电子结构及光学性能的影响.1计算方法与结构优化通过在锐钛矿型Ti().超晶胞中掺杂一个原子替代,¨原子对掺杂效应进行模拟.建立的3个模型是:2×1xl,2x2×1,3×2×1的超晶胞,这些超晶胞分别包含24,48,72个原子,对的理论掺杂浓度(原子分数,下同)为4.17,2.08,1.3【{,标记为模型(b),((t),(d);作为参照也刈'未掺杂的Ti():单胞进行了讣算,标记为模型(a),如图1所示.相应的(a),(b),(c),(d)模型k—point取样Monkhorst—pack的格点分别选取为5×5×2,5×3×2,3×3x2,3×2×2.埘品体结构优化后,找到晶体结构的最稳定点,再完成能带结构, 态密度和光学性质的计算.图1替位掺杂锐钛矿型Ti02计算模型Fig.1ThecalculationmodelsforsubstitutionalanataseTi()2通过Accelrys公司开发的Materialsstudio中的CASTEP模块,采用基于密度泛函理论(Densityfunction theory,DFT)的平面波超软赝势方法进行计算.在掺杂前后的结构优化环节中交换关联函数均采用广义梯度近似(GGA,Generalizedgradientapproximation),赝势函数采用PBE(Perdew,BurkeandErnzerhof)梯度修正函数,并在此近似下进行了结构及性质计算.其它计算参数设置为:平面波截断~(Cutoff)340eV,自洽场收敛性标准(SCFtolerance)5×10eV/atom,两次迭代体系能量收敛精度5×10eV/ atom,原子最大受力收敛精度1×lOeV/A,最大应变收敛精度2×10GPa,原子最大位移收敛精度5×10A,计算的价态电子有Ti3s.3p3d4s.,O2s2p,Co3d4s,Fe3d.4s,Zr4s4p.4d5s,V3s.3p3d.4s,WSs.5p5d6s,所有计算均在倒易空间中进行.作为后续计算基础的未掺杂rri模型,表1为经优化后锐钛矿相Ti()晶胞结构参数的计算结果n,c,"(dap/c, dap是轴向Ti一()键长)与实验值及文献值的比较.从表1中可以看出,理论计算结果l7与实验数值_8接近, 表明计算精确度高,模型可靠.表l锐钛矿相TiO2结构参数比较Table1StructureparameterofanataseTiO22结果与讨论2.1能带结构分析根据掺杂模型计算所得能带结构,各模型的禁带宽度值9Ti●O●M(掺杂原子)如表2所示.从表2中可以看出,随着Co,Fe,V掺杂浓度的增加,禁带宽度呈现出明显减小的趋势;而掺杂时不同掺杂浓度下禁带宽度几乎一致;但w掺杂下禁带宽度反而增大,甚至比未掺杂TiO的禁带宽度更大.表2计算模型的带隙宽度值Table2Bandgapofcalculationmodels考查掺杂前后禁带宽度变化最大的模型,选取费米能级为零点,纯锐钛矿相TiO:及各金属元素4.17掺杂浓度下在沿布里渊区对称点上的能带结构如图2所示.据图2(a)可以看出锐钛矿型TiO.的导带最低点及价带最高点均在G点,据此判定其为直接能隙半导体,禁带宽度为2.23eV,小于实验值3.23eV,与Asahi等的计算结果相近.由于在广义梯度近似(GGA)计算下,交换关联函数不能完全反映真实的多电子相互作用,导致得到的禁带宽度要比真实的禁带宽度小.这种由于计算方法本身造成低估带隙的情况,文献[9,10]已进行过讨论.但作为一种有效的近似方法,其结果的相对值还是准确的,不影响对能带结构的分析.由图2(b)一(f)可知,Co,Fe,Zr,V和w掺杂TiO.的导带最低点分别在G,Z,G,G,G点,而价带最高点分别位于G, F,F,F,F点.这表明Co掺杂的电子为直接跃迁,禁带宽度为0.47eV;而Fe,Zr,V和w掺杂的电子为间接跃迁,禁带宽度分别为1.70eV,2.18eV,1.78eV,2.74eV.与TiO2的金属掺杂锐钛矿相TiOz的第一性原理计算/王海东等?131? 禁带宽度2.23eV相比,w掺杂后禁带宽度变宽,而co,Fe,Zr,V均有不同程度的减小,其中C()掺杂后TiO禁带宽度最小.根据半导体掺杂理论,杂质浓度较高时杂质原子相互间较接近,因此杂质原子之间的电子波函数发生重叠,使孤立的杂质扩展成为能带,即杂质能带[1.图2(b),(c)中,Co,Fe掺杂分别在禁带中上部产生了2条和3条新杂质能级,可在电子跃迁时起中问过渡作用,能有效减小所需的激发能量,从而拓宽了Co和Fe掺杂TiO.的光响应波长范围. 42净O器一2一4-6在图2(e)中,V掺杂能级位于接近导带底的位置,与Ti3d轨道形成复合导带底.由图2(d)可知,Zr掺杂在低浓度下产生的能级不明显,新能级与O2p轨道复合形成价带顶,但Zr 掺杂与V掺杂一样也没有引人中间能级,不会形成新的空穴俘获中心,因而亦可较有效地提高T[O的光催化活性.如图2(f)所示,w掺杂后只在靠近价带下方出现了新的能级, 使价带宽度增加,对禁带影响不明显,不会使光吸收边沿发生红移.42;≈一2一4—6GFqzGGFQZGGFQzG图2能带结构Fig.2Energybandstructure2.2电子态密度分析与能带结构分析相对应,选取4.17掺杂浓度,对不同金属元素Co,Fe,Zr,V和W掺杂Ti()2在沿布里渊区对称点上的总态密度(DOS)与纯Ti02总态密度进行了比较,如图3 所示.图3总态密度图Fig.3Totaldensityofstates从图3可知,与纯TiO.相比掺杂后体系的导带和价带的位置出现了负移,且掺杂后导带的宽度均有不同程度的减小,理论上将使掺杂后的TiO.具有更强的氧化还原能力.Zr掺杂TiOz后的态密度与未掺杂TiOz的态密度基本相似, 2O一2三醣≈一4口[一6-8GFQ没有明显的变化;Co,Fe掺杂后分别在禁带中间靠近导带和靠近价带方向出现了新的态密度.在V掺杂TiO靠近导带下方出现了一个"小肩峰",使导带向低能量方向偏移,有利于禁带宽度的减小;在W掺杂靠近TiOz价带下方也出现了新的态密度"肩峰",使得价带加宽;V和W掺杂TiO.的总态密度整体向能量最低的方向偏移.掺杂前后电子结构的变化可根据费米能级附近价带和导带的偏态密度(PDOS)作进一步分析,如图4所示.由图4(a)可以看出,锐钛矿型TiO在费米能级附近的价带和导带分别主要由.原子的2p轨道和rri原子的3d轨道组成,价带范围一5.26~0.77eV,宽度为6.03eV;导带范围1.61~5.49eV,宽度为3.88eV.如图4(b)所示,Co掺杂Ti02价带(一6.40~O.36eV)主要由02p轨道组成,昆合了Ti3d和Co3d轨道,宽度为6.76 eV,比未掺杂Ti02的价带宽度明显增加;导带(2.O9~3.94 eV)主要由Ti3d轨道组成,同时也混合了Co3d和02p轨道,宽度为1.85eV,比未掺杂TiO:的导带宽度明显减小.相对未掺杂的TiO.,Co掺杂后价带向下移动0.41eV,导带向上移动0.48eV.但在导带和价带之间形成了由Co3d和O2p轨道杂化的中间能带,从而有利于价电子从价带到导带的跃迁,表现出良好的光学性能.6420&gt;∞\∞金属掺杂锐钛矿相Ti()2的第一性原理计算/王海东等?133? 荷和更小的半径,取代后可能导致Ti什与O.卜距离变小,有利于光生电子的跃迁,而且具有更大的电荷半径比,以至于w对()一有较强的极化效应.另外一个原因是w的掺杂是高价掺杂.Kiriakidou等口认为掺杂离子的化合价高时会使费米能级和能带向上漂移,表面势垒变高,空间电荷区变窄,使光生电子和空穴在强场的作用能够得到有效的分离.图5掺杂TiO2的紫外一可见吸收光谱Fig.5UV-visabsorptionspectraofaopedTi023结论采用基于密度泛函理论的从头算平面波超软赝势方法研究了纯锐钛矿相TiO及5种不同金属掺杂TiO.的晶格常数,能带结构,电子态密度与光吸收系数.模拟计算表明:掺杂计算基础的未掺杂TiO模型,经优化后晶胞结构参数的计算结果与实验值偏差较小,参数设置合理,模型可靠. (1)掺杂后能级的变化主要是过渡金属Co3d,Fe3d,Zr4d,Zr4p,V3p,V3d,W5p,W5d轨道的贡献.随着3d过渡金属Co,Fe,V掺杂浓度的增加,禁带宽度呈减小趋势,且均在禁带中产生了明显的杂质能级;Zr掺杂前后所得结构几乎一致,与掺杂浓度无关;但w掺杂由于导带价带相对位置的变化使禁带宽度增大,并在原有价带以下产生了新的杂质能级.(2)掺杂导致禁带宽度变窄或出现新的杂质能级,在紫外一可见吸收光谱中表现为TiO吸收边沿的红移或出现新的吸收峰.其中Co,Fe掺杂的吸收边沿明显红移,而w掺杂在可见光区域出现了很强的新的吸收峰.致谢感谢q-南大学高性能计算q-心在模拟计算方面提供的技术支持与帮助.参考文献I张金龙,陈锋,何斌.光催化EM].上海:华东理工大学出版社,2004:712ChoiW,TerrainA.HoffmanMRTheroleofmetaliondopantsinquantum-sizedTiO2:Correlationbetweenphoto—reactivityandchargecarrierrecombinationdynamics[J].j PhysChem,1994,98(51):136693SegallMD,LindanJDP,ProbertMJ,eta1.First-princi—plessimulation:Ideas,illustrationsandtheCASTEPcodeLJ一].JPhys:CondensedMatter,2002,14(11):27174CaoHonghong(曹红红),HuangHaibo(黄海波),ChenQiang(陈强).AbinitiocalculationsofanataseTi()2(对锐钛矿相TiO2的第一原理计算KJ].JBeijingUniversityAero—nauticsAstronautics(北京航空航天大学),2005,31(2):2515AsalhiR,TagaY,MannstadtW,eta1.Electronicandop—ticalpropertiesofanataseTiO2口].PhysRevB,2000,61 (11):74596UmebayashiT,Y amakiT,ItohH,eta1.Analysisofelec—tronicstructuresof3dtransitionmetal—dopedTiO2basedon bandcalculations[J].JPhysChemSolids,2002,63(10):'19097TianFenghui(田风惠).Theorystudy0nnon-metallicele—mentdopedTiO2一basedphotocata1yst(非金属元素掺杂改性的Ti02基光催化剂的理论研究)[D].Shangdong(山东): ShangdongUniversity(山东大学),20068BurdettJK,HughbandksT,MillerGJ,eta1.Structural electronicrelationshipsininorganicsolids:Powderneutron diffractionstudiesoftherutileandanatasepolymorphsofti—taniumdioxideat15and295K[J].JAmChemSoc,1987,109(12):36399PerdewJP.PhysicalcontentoftheexactKohn-shamorbital energies:Bandgapsandderivativediscontinuities[J].Phys RevLett,1983,5l(20):188410V alentinCD,FinazziE,PaeehioniG,eta1.Densityfunc—tionaltheoryandelectronparamagneticresonancestudyon theeffectofN-FCo-dopingofTi()2[J].ChemMater,2008,20(11):3706l1谢希德,陆栋.固体能带理论EM].上海:复旦大学出版社, 1998:1012WengHongming,Y angXiaoping,DongJinming,eta1.E—lectronicstructureandopticalpropertiesoftheCo-doped anataseTi02studiedfromfirstprinciples[J].PhysRevB, 2004,69(12):12521913LiaoBin,ZhaoQinli,YingWuxian,eta1.Calculationofe—lectronicstructureofanataseTi02dopedwithtransition metalV,Cr,FeandCuatomsbythelinearizedaugmented planewavemethod[J].ChineseJStructuralChem,2009,28 (7):86914DuXiaosong,LiQunxiang,SuHaibin,eta1.Electronicand magneticpropertiesofV-dopedanataseTi02fromfirstprin—ciples[J].PhysRevB,2006,74(23):233201l5KiriakidouF,KondaridesDI,V erykiosXE.Theeffectof operationalparametersandTi02一dopingonthephotocataly- ticdegradationofazo-dyes[-J~.CatalToday,1999,54(1):119(责任编辑汪雁南)。

太阳帝国的原罪科技文件效果代码

太阳帝国的原罪科技文件效果代码

科技文件效果代码一、高亮效果uniqueOverlayBrush "RebellionResearchOverlay"二、浮点型效果researchFloatModifiers1.武器效果linkedWeaponClass ""包括:所有武器"Invalid"波动武器"WAVE"脉冲武器"PULSEGUN"射束武器"FLASHBEAM"自动火炮"AUTOCANNON"TEC激光"LASERTECH"PSI激光"LASERPSI"束流武器"BEAM"等离子武器"PLASMA"导弹"MISSILE"高斯炮"GAUSS"相位导弹"PHASEMISSILE"武器射程增加researchModifiermodifierType "WeaponRangeAdjustment"baseValue 0.000000perLevelValue 0.050000linkedWeaponClass "Invalid"武器伤害增加researchModifiermodifierType "WeaponDamageAdjustment"baseValue 0.000000perLevelValue 0.100000linkedWeaponClass "Invalid"武器开火几率增加researchModifiermodifierType "WeaponRateOfFireAdjustment"baseValue 0.000000perLevelValue 0.050000linkedWeaponClass "GAUSS"武器穿透护盾的几率researchModifiermodifierType "WeaponIgnoresShieldsAdjustment"baseValue 0.000000perLevelValue 0.050000linkedWeaponClass "PHASEMISSILE"2.舰船基础值改动外壳最大值增加researchModifiermodifierType "HullPointsMaxAdjustment"baseValue 0.000000perLevelValue 0.062500外壳恢复增加researchModifiermodifierType "HullPointsRegenAdjustment"baseValue 0.000000perLevelValue 0.025000反物质容量增加researchModifiermodifierType "AntimatterCapacityAdjustment"baseValue 0.000000perLevelValue 0.050000反物质恢复速度增加researchModifiermodifierType "AntimatterRegenAdjustment"baseValue 0.000000perLevelValue 0.050000护盾最大值增加researchModifiermodifierType "ShieldPointsMaxAdjustment"baseValue 0.000000perLevelValue 0.050000护盾恢复增加researchModifiermodifierType "ShieldPointsRegenAdjustment"baseValue 0.000000perLevelValue 0.050000最大护盾缓冲增加researchModifiermodifierType "ShieldMaxMitigationAdjustment"baseValue 0.000000perLevelValue 0.020000装甲点数增加researchModifiermodifierType "ArmorBaseAdjustment"baseValue 0.000000perLevelValue 3.000000舰船质量减少researchModifiermodifierType "MassReduction"baseValue 0.000000perLevelValue 0.1000003.相位跳跃科技效果相位引擎充能速率增加researchModifiermodifierType "HyperspaceChargeUpRateAdjustment"baseValue 0.000000perLevelValue 0.330000相位门跳跃速度增加researchModifiermodifierType "HyperspaceSpeedPhaseGateAdjustment"baseValue 0.000000perLevelValue 0.250000相位跳跃反物质消耗researchModifiermodifierType "HyperspaceAntimatterCostAdjustment"baseValue 0.000000perLevelValue -0.750000相位跳跃脱出距离researchModifiermodifierType "HyperspaceExitDistanceAdjustment"baseValue 0.000000perLevelValue -0.030000星系间远程跳跃速度增加researchModifiermodifierType "HyperspaceBetweenSystemSpeedAdjustment"baseValue 0.000000perLevelValue 1.000000星系内跳跃速度增加researchModifiermodifierType "HyperspaceInSystemSpeedAdjustment"baseValue 0.000000perLevelValue 0.5000004.几率效果被穿透护盾造成伤害几率researchModifiermodifierType "ChanceT oIgnoreShieldsAsDamageT arget"baseValue 0.000000perLevelValue -0.150000控制那些逃离本方重力井的敌对飞船的几率researchModifiermodifierType "ChanceT oConvertFrigatesHyperspacingFromPlanet"baseValue 0.000000perLevelValue 0.050000被摧毁飞船在首都复活的几率researchModifiermodifierType "ChanceT oRespawnFrigateAtHomeworldUponDeath"baseValue 0.000000perLevelValue 0.100000敌舰被摧毁时创造临时克隆的几率researchModifiermodifierType "ChanceT oT emporarilyCloneEnemyFrigateWhenKilled"baseValue 0.000000perLevelValue 0.100000敌舰被摧毁时创造临时克隆的持续时间researchModifiermodifierType"ChanceToTemporarilyCloneEnemyFrigateWhenKilledDuration"baseValue 0.000000perLevelValue 300.0000005.外交关系效果外交关系奖励researchModifiermodifierType "RelationshipBonus"baseValue 0.000000perLevelValue 0.100000自身关系奖励researchModifiermodifierType "SelfRelationshipBonus"baseValue 0.000000perLevelValue 0.600000提高在捐赠资源时候获得的最大关系度researchModifiermodifierType "TemporaryRelationshipFromGiveResourceMaxAdjustment"baseValue 0.000000perLevelValue 1.000000提高在捐赠水晶时候获得的关系度researchModifiermodifierType"TemporaryRelationshipFromGiveCrystalValueAdjustment"baseValue 0.000000perLevelValue 1.000000提高在捐赠金属时候获得的关系度researchModifiermodifierType "TemporaryRelationshipFromGiveMetalValueAdjustment"baseValue 0.000000perLevelValue 1.0000006.行星基础效果行星血量恢复速率增加researchModifiermodifierType "PlanetHealthRegenRateAdjustment"baseValue 0.000000perLevelValue 0.125000行星人口容量增加researchModifiermodifierType "PlanetPopulationCapAdjustment"baseValue 0.000000perLevelValue 0.120000linkedPlanetType "Barren""Barren""Desert""Ice""Iron""Oceanic""Terran""Volcanic""Moon""Greenhouse"行星人口增长率增加researchModifiermodifierType "PopulationGrowthRateAdjustment"baseValue 0.000000perLevelValue 0.600000行星人口税率增加researchModifiermodifierType "PopulationT axRateAdjustment"baseValue 0.000000perLevelValue 0.250000行星忠诚度上升速率增加researchModifiermodifierType "CultureEnemyAllegianceRateAdjustment"baseValue 0.000000perLevelValue 0.250000行星后勤槽增加researchModifiermodifierType "PlanetSlotsCivilianIncrease"baseValue 0.000000perLevelValue 4.000000行星战术槽增加researchModifiermodifierType "PlanetSlotsT acticalIncrease"baseValue 0.000000perLevelValue 4.000000行星升级花费降低researchModifiermodifierType "PlanetUpgradeCostAdjustment"baseValue 0.000000perLevelValue 0.075000linkedPlanetUpgradeType "CivilianModules"行星升级速率提升researchModifiermodifierType "PlanetUpgradeBuildRateAdjustment"baseValue 0.000000perLevelValue 0.250000linkedPlanetUpgradeType "Invalid"所有项目"Invalid"后勤项目"CivilianModules"考古项目"ArtifactLevel"基础设施"Infrastructure"7.轰炸敌方行星效果轰炸敌方行星冷却时间降低modifierType "BombingCooldownDecrease"baseValue 0.000000perLevelValue 0.100000轰炸敌方行星人口杀伤researchModifiermodifierType "BombingPopulationKilledAsDamageDealerAdjustment"baseValue 0.000000perLevelValue 0.100000轰炸敌方行星伤害增加researchModifiermodifierType "BombingDamageAsDamageDealerAdjustment"baseValue 0.000000perLevelValue 0.100000轰炸敌方行星伤害获得资金researchModifiermodifierType "CreditsGainedPerPointOfBombingDamageDealt"baseValue 0.000000perLevelValue 1.00000轰炸敌方行星时武器开火速率增加researchModifiermodifierType"WeaponRateOfFireAdjustmentWhenInGravityWellBeingBombed"baseValue 0.000000perLevelValue 0.150000linkedWeaponClass "Invalid"轰炸敌方行星时武器伤害增加researchModifiermodifierType "WeaponDamageAdjustmentWhenInGravityWellBeingBombed"baseValue 0.000000perLevelValue 0.150000linkedWeaponClass "Invalid"8.抵御行星轰炸效果遭受行星轰炸伤害降低modifierType "BombingDamageAsDamageT argetAdjustment"baseValue 0.000000perLevelValue -0.100000遭受行星轰炸人口减伤researchModifiermodifierType "BombingPopulationKilledPercAsDamageT arget"baseValue 0.000000perLevelValue 0.250000遭受行星轰炸距离降低researchModifiermodifierType "BombingRangeAdjustment"baseValue 0.000000perLevelValue 0.4500009.任务完成效果任务成功快乐值增加researchModifiermodifierType "QuestRewardHappinessAdjustment"baseValue 0.000000perLevelValue 0.100000任务失败快乐值减少researchModifiermodifierType "QuestFailureHappinessAdjustment"baseValue 0.000000perLevelValue -0.050000任务截止时间增加researchModifiermodifierType "QuestDeadlineAdjustment"baseValue 0.000000perLevelValue 0.30000010.贸易科技效果贸易商品价值增加researchModifiermodifierType "TradeGoodsValueAdjustment"baseValue 0.000000perLevelValue 0.250000无盟友的贸易货物价值增加researchModifiermodifierType "TradeGoodsValueAdjustmentWithNonAlliedPlayers"baseValue 0.000000perLevelValue -0.150000精炼船仓位增加researchModifiermodifierType "RefineryShipCapacityAdjustment"baseValue 0.000000perLevelValue 0.250000货船载货量提升researchModifiermodifierType "CargoShipCapacityAdjustment"baseValue 0.000000perLevelValue 0.500000进口衍生资金率researchModifiermodifierType "DerivativeCreditsFromPurchasesPercent"baseValue 0.000000perLevelValue 0.100000交易衍生资金率researchModifiermodifierType "DerivativeCreditsFromTradePercent"baseValue 0.000000perLevelValue 0.07500011.主力舰效果主力舰文化击退率researchModifiermodifierType "CapitalShipCultureProtectRateAdjustment"baseValue 0.000000perLevelValue 0.200000主力舰可购买升级数researchModifiermodifierType "CapitalShipMaxTrainableLevel"baseValue 2.000000(0表示一级,2表示3级)perLevelValue 1.000000主力舰税收researchModifiermodifierType "CapitalShipTaxIncome"baseValue 0.000000perLevelValue 2.000000主力舰加速度增加researchModifiermodifierType "CapitalShipAccelerationAdjustment"baseValue 0.000000perLevelValue 0.100000主力舰转向速度增加researchModifiermodifierType "CapitalShipAngularThrustAdjustment"baseValue 0.000000perLevelValue 0.150000主力舰对周围残骸的打捞百分比researchModifiermodifierType "SalvageWreckagePercent"baseValue 0.000000perLevelValue 0.050000主力舰军事实验室数量researchModifiermodifierType "MilitaryLabsPerCapitalShip"baseValue 0.000000perLevelValue 1.000000主力舰民用实验室数量researchModifiermodifierType "CivilianLabsPerCapitalShip"baseValue 0.000000perLevelValue 1.000000主力舰和泰坦转向速度增加researchModifiermodifierType "CapitalShipAndTitanAngularThrustAdjustment"baseValue 0.000000perLevelValue 0.150000主力舰和星基每个方向锁定目标数增加researchModifiermodifierType "WeaponTargetsPerBankAdjustmentCapitalShipsOrStarbases"baseValue 0.000000perLevelValue 1.00000012.星际基地效果星际外壳增加researchModifiermodifierType "StarBaseHullPointsMaxAdjustment"baseValue 0.000000perLevelValue 0.050000星基装甲增加researchModifiermodifierType "StarBaseArmorAdjustment"baseValue 0.000000perLevelValue 3.000000星基护盾增加researchModifiermodifierType "StarBaseShieldPointsMaxAdjustment"baseValue 0.000000perLevelValue 0.075000星基护盾恢复增加researchModifiermodifierType "StarBaseShieldPointsRegenAdjustment"baseValue 0.000000perLevelValue 0.075000星基锁定目标数量提高researchModifiermodifierType "StarBaseWeaponTargetPerBankAdjustment"baseValue 0.000000perLevelValue 1.000000星基武器伤害提高researchModifiermodifierType "StarBaseWeaponDamageAdjustment"baseValue 0.000000perLevelValue 0.100000星基数量每重力井增加researchModifiermodifierType "StarBasesPerGravityWellAdjustment"baseValue 0.000000perLevelValue 1.000000星际基地升级花费降低researchModifiermodifierType "StarBaseUpgradeCostAdjustment"baseValue 0.000000perLevelValue -0.200000星基建造速度提升(敌方重力井内)researchModifiermodifierType "StarBaseBuildRateAtEnemyOrbitBodyAdjustment"baseValue 0.000000perLevelValue 0.25000013.文化效果文化传播速度增加(从星球产生的)【神体星球】researchModifiermodifierType "CultureSpreadRateBaseAdjustment"baseValue 0.000000perLevelValue 0.500000文化传播速度增加researchModifiermodifierType "CultureSpreadRateAdjustment"baseValue 0.000000perLevelValue 0.300000文化抵抗增加researchModifiermodifierType "CultureResistPercent"baseValue 0.000000perLevelValue 0.200000文化传播延迟降低researchModifiermodifierType "CultureSpreadDecayAdjustment"baseValue 0.000000perLevelValue 0.250000文化内武器伤害增加researchModifiermodifierType "CultureWeaponDamageAdjustment"baseValue 0.000000perLevelValue 0.050000文化内护盾恢复增加researchModifiermodifierType "CultureShieldRegenAmount"baseValue 0.000000perLevelValue 0.500000文化内反物质恢复速率增加researchModifiermodifierType "CultureAntimatterRegenAmount"baseValue 0.000000perLevelValue 0.100000文化内忠诚度上限增加researchModifiermodifierType "AllegianceFromCultureMaxPerc"baseValue 0.000000perLevelValue 0.05000014.舰船容量效果主力舰容量最大值researchModifiermodifierType "CapitalShipMaxSlots"baseValue 1.000000perLevelValue 1.000000researchModifiermodifierType "CapitalShipMaxSlotLevel"baseValue 0.000000perLevelValue 1.000000舰船容量最大值researchModifiermodifierType "ShipMaxSlots"baseValue 100.000000perLevelValue 150.000000researchModifiermodifierType "ShipMaxSlotLevel"baseValue 0.000000perLevelValue 1.000000容量收入消耗百分比researchModifiermodifierType "IncomePercLost"baseValue 0.000000perLevelValue 0.093750舰队船只数量上限提升researchModifiermodifierType "PlanetSlotsShipsAdjustment"baseValue 0.000000perLevelValue 0.07500015.轨道大炮效果轨道大炮(死星火炮)槽位花费降低researchModifiermodifierType "OrbitalCannonSlotCostAdjustment"baseValue 0.000000perLevelValue -3.000000轨道大炮(死星火炮)建造成本降低researchModifiermodifierType "OrbitalCannonPriceAdjustment"baseValue 0.000000perLevelValue 0.250000轨道大炮(死星火炮)最大数量提升researchModifiermodifierType "OrbitalCannonMaxAdjustment"baseValue 0.000000perLevelValue 1.00000016.友方重力井效果友方重力井内武器伤害增加researchModifiermodifierType "WeaponDamageAdjustmentWhenInFriendlyGravityWell"baseValue 0.000000perLevelValue 0.150000linkedWeaponClass "Invalid"友方重力井内装甲增加researchModifiermodifierType "ArmorBaseAdjustmentWhenInFriendlyGravityWell"baseValue 0.000000perLevelValue 2.000000友方重力井内经验值奖励增加researchModifiermodifierType "ExperienceAwardedAdjustmentWhenInFriendlyGravityWell"baseValue 0.000000perLevelValue 0.100000跳往友方重力井反物质消耗降低researchModifiermodifierType"HyperspaceAntimatterCostAdjustmentWhenGoingT oFriendlyGravityWell"baseValue 0.000000perLevelValue -1.000000舰船伤害加成与当前重力场内的友方舰船数量成正比【人人为我】researchModifiermodifierType"WeaponDamageAdjustmentForEachAlliedPlayerInGravityWell"baseValue 0.000000perLevelValue 0.100000linkedWeaponClass "Invalid"17.敌方处于重力井内效果敌方处于重力井时舰船建造速率调整modifierType "ShipBuildRateAdjustmentWhenEnemyInGravityWell"baseValue 0.000000perLevelValue 0.500000敌方处于重力井时人口税率调整researchModifiermodifierType "PopulationT axRateAdjustmentWhenEnemyInGravityWell"baseValue 0.000000perLevelValue 0.25000018.敌对势力效果敌对势力叛乱强度researchModifiermodifierType "RebellionLevel"baseValue 0.000000perLevelValue 1.000000敌对势力舰船与建筑建造速率降低researchModifiermodifierType "CultureEnemyBuildRateAdjustment"baseValue 0.000000perLevelValue -0.50000019.黑市效果黑市购买价格降低researchModifiermodifierType "BlackMarketBuyPriceAdjustment"baseValue 0.000000perLevelValue 0.075000赏金购买增加(通过悬赏花费上获得更高回报)researchModifiermodifierType "BountyBoughtAdjustment"baseValue 0.000000perLevelValue 0.125000赏金收集增加(领取赏金时的数额增加)modifierType "BountyCollectedAdjustment"baseValue 0.000000perLevelValue 0.12500020.整体势力效果研究花费调整researchModifiermodifierType "ResearchCostAdjustment"baseValue 0.000000perLevelValue -0.250000研究速度增加researchModifiermodifierType "ResearchBuildRateAdjustment"baseValue 0.000000perLevelValue 0.150000舰船建造速率增加researchModifiermodifierType "ShipBuildRateAdjustment"baseValue 0.000000perLevelValue 0.300000建筑建造速率增加researchModifiermodifierType "ModuleBuildRateAdjustment"baseValue 0.000000perLevelValue 0.300000经验获得速率researchModifiermodifierType "ExperienceConstantGainRate"baseValue 0.000000perLevelValue 0.916666经验获得上限researchModifiermodifierType "ExperienceConstantGainLevelCap"baseValue 0.000000perLevelValue 2.000000经验奖励researchModifiermodifierType "ExperienceAwardedAdjustment"baseValue 0.000000perLevelValue 0.250000建筑与舰只的建造金钱成本降低researchModifiermodifierType "CreditCostAdjustment"baseValue 0.000000perLevelValue 0.040000建筑与舰只的建造晶体与金属成本降低researchModifiermodifierType "ResourceCostAdjustment"baseValue 0.000000perLevelValue 0.040000回收速率提升researchModifiermodifierType "ScuttleRateAdjustment"baseValue 0.000000perLevelValue 0.500000回收退款增加researchModifiermodifierType "ScuttleValueAdjustment"baseValue 0.000000perLevelValue 0.200000降低建造花费researchModifiermodifierType "ModuleCostForSimilarTypesAdjustment"baseValue 0.000000perLevelValue 0.20000021.行星建筑效果战术建筑装甲提高researchModifiermodifierType "TacticalStructureArmorAdjustment"baseValue 0.000000perLevelValue 2.000000战术建筑外壳提高researchModifiermodifierType "TacticalStructureHullPointsMaxAdjustment"baseValue 0.000000perLevelValue 0.300000战术建筑武器伤害提高researchModifiermodifierType "TacticalStructureWeaponDamageAdjustment"baseValue 0.000000perLevelValue 0.100000文化建筑的建造成本降低researchModifiermodifierType "CultureModuleCostAdjustment"baseValue 0.000000perLevelValue 0.40000022.结盟效果与其他相同派系结盟时获得的舰队容量加成researchModifiermodifierType "ShipMaxSlotsWhenOnlyAlliedWithSameRaceSameFactionPlayers"baseValue 0.000000perLevelValue 75.00000023.货船安全效果货船外壳增加researchModifiermodifierType "CargoShipHullPointsMaxAdjustment"baseValue 0.000000perLevelValue 0.100000货船装甲增加researchModifiermodifierType "CargoShipArmorBaseAdjustment"baseValue 0.000000perLevelValue 2.00000024.资源开采效果资源聚焦萃取率researchModifiermodifierType "ExtractionRateFromResourceFocus"baseValue 0.000000perLevelValue 0.083330金属萃取率researchModifiermodifierType "ExtractionRateMetalAdjustment"baseValue 0.000000perLevelValue 0.066667晶体萃取率researchModifiermodifierType "ExtractionRateCrystalAdjustment"baseValue 0.000000perLevelValue 0.06666725.飞行中队效果舰载战斗机中队增加researchModifiermodifierType "CarrierFightersPerSquadAdjustment"baseValue 0.000000perLevelValue 2.000000机库战斗机中队增加researchModifiermodifierType "HangarFightersPerSquadAdjustment"baseValue 0.000000perLevelValue 2.00000026.泰坦研究效果泰坦研究进度增加researchModifiermodifierType "TitanConstructionCap"baseValue 0.000000perLevelValue 0.25000027.海盗侵袭效果(废弃语句可能已失效)researchModifiermodifierType " PirateStrengthAgainstYouAdjustment"baseValue 0.000000perLevelValue 0.250000三、布尔型效果researchBoolModifiers1.星系航行效果允许星系间跳跃researchModifiermodifierType "AllowGalaxyTravel"相位跳跃抑制免疫researchModifiermodifierType "JumpBlockerImmune"允许虫洞航行researchModifiermodifierType "AllowWormHoleTravel"2.相位跳跃侦测允许侦测到进行跳跃至己方行星的敌方舰船researchModifiermodifierType "HyperspaceDetectionOneJump"允许侦测到进行二次跳跃至己方行星的敌方舰船researchModifiermodifierType "HyperspaceDetectionTwoJumps"允许侦测到任何船舰的相位跳跃情况researchModifiermodifierType "HyperspaceDetectionAnyJumps"3.文化效果允许你观察敌方文化在整个星系内的传播情况researchModifiermodifierType "CultureSpreadIsAlwaysVisible"允许你观察你的文化领域内的任何行星状况researchModifiermodifierType "PlanetsDetectedByCulture"4.行星殖民允许行星殖民researchModifiermodifierType "PlanetIsColonizable"linkedPlanetType "Greenhouse""Barren""Desert""Ice""Iron""Oceanic""Terran""Volcanic""Moon""Greenhouse"5.条约解锁解锁条约researchModifiermodifierType "AllowPacts"解锁某项条约researchModifiermodifierType "UnlockPact"allianceType "WeaponCooldownPact"pactUnlockEntityDefName"RESEARCHSUBJECT_PACTBONUS_WEAPONCOOLDOWN" "WeaponCooldownPact""TradeIncomePact""ThrusterPact""TacticalSlotsPact""SupplyPact""Invalid""ShieldPact""ResearchPact""PhaseJumpPact""PlanetBombingPact""MetalCrystalPact""MassReductionPact""MarketPact""EnergyWeaponCooldownPact""EfficiencyPact""CulturePact""BeamWeaponPact""ArmorPact""AntimatterPact"6.提议任务允许向其他势力提议任务researchModifiermodifierType "AllowMissionOffers"允许向海盗提供任务researchModifiermodifierType "AllowPirateMissions"允许向其他势力提供或要求金钱,金属和水晶researchModifiermodifierType "AllowResourceDemandAndGifts"7.特殊效果【敌对往来】移除因为种族差异获得的额外关系惩罚researchModifiermodifierType "RemoveRacialRelationPenalty"【跳跃稳定化】所有舰船忽略敌人的星际基地所产生的相位跳跃不稳定researchModifiermodifierType "DestabilizationProtection"【解放抵抗】盟军反叛势力时不时地会在你的首都集结researchModifiermodifierType "FriendlyInsurgentShipsSpawnedAtHomePlanetWhenEnemyPlanetLiberated"【移动王庭】researchModifiermodifierType "CapitalShipsTitansAndStarBasesCountAsPlanetForNoGameLoss"【共享相位网络】允许盟友使用相位门网络researchModifiermodifierType "AllowAlliesT oUsePhaseGates"【机动星际基地】允许星际基地通过相位节点进行跳跃researchModifiermodifierType "StarBasesCanHyperspaceOnlyToPhaseNodes"【核心榨取】(其中的资源效果)当废弃星球时榨取一个星球的所有资源researchModifiermodifierType "StripPlanetsOnScuttle"【与狼共舞】researchModifiermodifierType "FriendlyWithPiratesRebelNeutrals"【外侵仇视】降低一级海盗侵袭力度researchModifiermodifierType "PirateRaidsOneLevelLower"8.BUFF型效果新占领星球的内,短时间内提高该重力场内的武器伤害和人口增长率researchModifiermodifierType "ApplyBuffToPlanetAfterColonization"buffToApply "BuffAssimilatedPopulace"刚征服的星球内,舰船反物质效果提升researchModifiermodifierType "ApplyBuffToPlanetAfterPlayerDestroys"buffToApply "BuffCleanseAndRenew"当敌人最后的一艘舰船离开本方重力井或被摧毁,该星球获得税收奖励和文化奖励researchModifiermodifierType "ApplyBuffToOwnedPlanetAfterLastEnemyShipLeavesOrDies"buffToApply "BuffExpulsion"每当完成一次相位跳跃,你的船只和星际基地都会在短时间内获得一定伤害奖励researchModifiermodifierType "ApplyBuffToShipsAfterHyperspace"buffToApply "BuffPhasicStrike"废弃星球时炸毁星球researchModifiermodifierType "ApplyBuffToPlanetsAfterScuttle"buffToApply "BuffStrippedToTheCoreSelf"、当一个己方星球丢失,对抗侵略者时,提高己方武器伤害和开火速率researchModifiermodifierType "ApplyBuffToAllOwnedShipsWhenOwnedPlanetFalls"buffToApply "BuffPlanetForAPlanet"9.其他效果科研胜利researchModifiermodifierType "ResearchVictory"设置派系researchModifiermodifierType "SetFaction"factionNameID "IDS_PLAYERFACTIONNAME_LOYALIST"。

美国动能拦截弹红外成像导引头的发展分析

美国动能拦截弹红外成像导引头的发展分析

第38卷第1期红外与激光工程2009年2月Vol.38No.1Infrared and Laser Engineering Feb.2009美国动能拦截弹红外成像导引头的发展分析范晋祥(中国航天科技集团公司八院八部,上海200233)摘要:概述了美国弹道导弹防御系统的核心要求和红外制导型动能拦截弹在该系统中的重要地位。

介绍了美国正在部署、试验和研制的几种大气层外和大气层内弹道导弹防御动能拦截器的红外成像导引头的作战使命、拦截目标、任务特性、设计方案和发展现状,简要分析了美国正在和即将部署的动能拦截弹难以有效地对付不断发展的弹道导弹威胁的突防对抗措施的弱点,概述了近年来发展的满足多对多拦截需求的多拦截弹头(MKV)的红外成像导引头的发展现状,并介绍了近年来重点探索的旨在提高对小间距物体的区辨能力和对弹道导弹弹头的识别能力的新概念红外成像导引头,包括多波段红外成像导引头和主/被动红外成像导引头。

关键词:弹道导弹防御系统;动能拦截器;导引头;红外成像;激光雷达;焦平面阵列中图分类号:TN21文献标识码:A文章编号:1007-2276(2009)01-0001-06Development analysis of infrared imaging seekers ofkinetic kill vehicles in AmericaFAN Jin蛳xiang(The Eighth System Design Department of the Eighth Research Academy of CASC,Shanghai200233,China)Abstract:The core requirements for America′s Ballistic Missile Defense System(BMDS)and the importance of infrared guided kinetic kill vehicles(KKV)for BMDS were summarized.The fight missions, intercepting targets,task′s characteristics,programme characteristics and current status of several infrared seekers employed by America′s endo蛳atmospheric and exo蛳atmospheric KKV,which were being deployed, tested or developed currently,were introduced.The weaknesses of America′s KKV dealing with threat of ballistic missile ineffectively were analyzed.The current status of the infrared imaging seekers for Multiple Kill Vehicle(MKV),which could counter complex ballistic missile threats,were introduced.Moreover,new concept infrared imaging seekers aiming at improving the abilities of resolving multiple closely spaced objects(CSOs)and discrimination of ballistic missile warhead(including multi蛳bands infrared imaging seeker and dual蛳mode active/passive infrared imaging seekers)were introduced.Key words:Ballistic missile defense system;KKV;Seeker;Infrared imaging;Lidar;Focal plane array收稿日期:2008-07-15;修订日期:2008-09-20作者简介:范晋祥(1966-),男,山西太原人,研究员,硕士,主要研究方向为红外系统与应用技术研究。

ODE–热方程级联系统的事件触发控制

ODE–热方程级联系统的事件触发控制

第40卷第8期2023年8月控制理论与应用Control Theory&ApplicationsV ol.40No.8Aug.2023 ODE–热方程级联系统的事件触发控制杨辉1,宗西举1,2†,郑泽阳1,徐秀妮3(1.济南大学自动化与电气工程学院,山东济南250022;2.济南大学信息科学与工程学院,山东济南250022;3.陇东学院电气工程学院,甘肃庆阳745000)摘要:本文针对常微分方程(ODE)耦合偏微分方程(PDE)建模的分布式参数多智能体系统进行研究,针对一致性同步问题,提出了事件触发的网络化ODE–热方程级联系统多智能体一致性边界交互协议.本文考虑的热方程左边界为Neumann边界条件,并且与ODE系统耦合,右边界为绝热边界条件.假设网络化多智能体系统的连接方式为全联通有向拓扑图,给出ODE–热方程级联系统的多智能体的一致性控制协议.另外针对现有数字式控制器,设计了事件触发的一致性控制协议,并利用李雅普诺夫函数验证了在事件触发条件下ODE–热方程级联系统的稳定性.最后给出了由5个ODE–热方程级联的多智能体系统的仿真结果,验证了事件触发控制器的有效性.关键词:ODE–热方程级联系统;有向拓扑图;多智能体系统;李雅普诺夫函数;事件触发控制器引用格式:杨辉,宗西举,郑泽阳,等.ODE–热方程级联系统的事件触发控制.控制理论与应用,2023,40(8): 1349–1356DOI:10.7641/CTA.2022.20285Event-triggered control of ode-heat equation cascade systemYANG Hui1,ZONG Xi-ju1,2†,ZHENG Ze-yang1,XU Xiu-ni3(1.School of Electrical Engineering,University of Jinan,Jinan Shandong250022,China;2.School of Information Science and Engineering,University of Jinan,Jinan Shandong250022,China;3.School of Electrical Engineering,Longdong University,Qingyang Gansu745000,China)Abstract:In this paper,a distributed parameter multi-agent system modeled by the ordinary differential equation(ODE) coupled with the partial differential equation(PDE)is studied,and an event-triggered networked ODE-heat equation cas-cade system with multi-agent consensus boundary interaction protocol are proposed.The left boundary of the heat equation considered in this paper is the Neumann boundary condition,which is coupled with the ODE system,and the right bound-ary is the adiabatic boundary condition.It is assumed that the connection mode of the networked multi-agent system is fully connected and directed the topology diagram,the multi-agent consensus control protocol of the ODE-heat equation cascade system is given.In addition,for the existing digital controller,event-triggered-based consensus control protocol is designed,and the Lyapunov function is used.The stability of the ODE-heat equation cascade system is verified under the event-triggered condition.Finally,the simulation results of the multi-agent system composed offive ODE-heat equation cascades are given,which verifies the effectiveness of the event-triggered controller.Key words:ODE-heat equation cascade system;directed topology;multi-agent system;Lyapunov function;event-triggered controllerCitation:YANG Hui,ZONG Xiju,ZHENG Zeyang,et al.Event-triggered control of ode-heat equation cascade system. Control Theory&Applications,2023,40(8):1349–13561引言随着传感器技术、人工智能技术和分布式网络的迅速崛起,多智能体系统(multi-agent systems,MAS)成为控制科学和人工智能等领域的研究热点,引起了广大学者的关注[1].智能体之间的信息交互通过网络拓扑结构进行,相对于单个个体(智能体)而言,多智能体系统具有更强的控制能力和协调能力,从而能够解决单个个体无法实现的功能,因此被广泛应用于电网经济调度优化、无人机编队联合侦查与搜索、卫星集群通信、智能交通与物流等领域.多智能体系统的协调控制研究包括多个方面,如编队控制、同步稳定、蜂拥控制等,而其中最基本的问题是多智能体系统的一收稿日期:2022−04−17;录用日期:2022−11−18.†通信作者.E-mail:cse**************.cn;Tel.:+86531-89736515.本文责任编委:郭宝珠.山东省高等学校青年创新科技计划项目(2019KJN029),国家自然科学基金项目(12026215)资助.Supported by the Youth Innovation and Technology Program of Shandong Province(2019KJN029)and the National Natural Science Foundation of China(12026215).1350控制理论与应用第40卷致性问题[2–6].一致性问题的研究成为各类企业提高生产率的关键,蓝宝石生产工艺便是其中之一.工业蓝宝石是氧化铝的晶体,是国民经济、国防工业和科学技术发展必不可少的基础材料和重要的战略物资[7].在蓝宝石结晶初期,融融状态的蓝宝石引晶点处温度检测和控制对后续整个结晶过程起到至关重要的作用,由于工业蓝宝石的熔点温度为2050◦C,所以目前不存在有效的自动温度检测手段与检测设备来获得如此高温,工程中现行的检测方法是利用一根细长的、外部包裹了透明合金材料的晶体深入加热炉内,并置细晶体棒的一端于熔融状态的蓝宝石中心上方2∼3cm,通过人眼不定期地观察晶体棒端点来近似估计熔融状态蓝宝石中心的温度.很多蓝宝石企业,为了提高成产效率,引入了多智能体系统.在工业生产中,将多台加热炉联接成网络,通过控制其中部分加热,利用加热炉之间的信息传递,可以实现自动化与网络化同步控制,既能节约成本又能提高生产效率,这就是本文要研究的网络化系统的状态一致性控制问题.目前,一方面由于实际工程中许多系统模型均不能质点化,并且一、二阶常微分方程(ordinary differen-tial equation,ODE)建模的多智能体系统相对完善,但基于偏微分方程(partial different equation,PDE)建模的多智能体系统的研究没有得到同样程度的重视,所以在这方面存在很大的挖掘空间[8–10].一般来说,利用ODE或PDE对一些系统建模都不能完美的接近实际的模型,但ODE与PDE相互耦合的级联系统却能完美的逼近实际系统[11–13].其中,由于大部分实际工程的需要,如水利、钻井、电加热炉等常见工业生产模型,其分布参数控制系统往往需要在边界耦合集中参数控制系统.并且大部分都是通过对边界进行控制.正如文献[14]研究了麦克斯韦方程与热方程的耦合;文献[15]用一类ODE与KDV(korteweg-de vries equa-tion)方程边界级联的形式,来简化存在机械振动的潜水波模型;文献[16]利用反映–扩散–对流方程对冶金固定床内部颗粒发生化学反应的动力学行为进行建模.所以本文选择ODE–热方程级联的方式对蓝宝石加热炉进行建模.另一方面,由于实际传感器测量速度的限制,网络带宽限制以及系统处理速度等各类因素的限制,显然连续时间控制器很难满足控制要求,而离散信号是很容易获取的,并且连续时间控制器的离散和采样已成为有限维多智能体系统的研究热点[5,9].虽然出现了许多优秀的控制方案,但触发频率较高,仍然可能会造成计算资源和能量的不必要损耗.为了解决上述问题,受到文献[10,17–18]等文章的启发,针对ODE–热方程建模的加热炉多智能体系统,为降低控制器的要求,本文提出了事件触发控制方案,并利用Lyapunov 函数验证在事件触发条件下该系统的稳定性.本文所考虑的热方程左边界为Neumann边界条件,与ODE系统耦合,右边界为绝热边界条件,采用这种方式对系统进行建模,更加符合实际工程,并且所有智能体通过全联通有向拓扑进行通信.设计了ODE–热方程级联系统的同步控制器与事件触发的同步控制器,与之比较,事件触发控制值只在触发时刻进行更新,很大程度上,节约了计算资源,降低了控制器的负载.通过Lyapunov稳定性分析,证明了误差系统可以收敛到一致的值,选取5个智能体进行仿真验证,证明了事件触发控制器的有效性.2问题描述2.1代数图论为了便于研究多智能体系统,研究学者引入了图论知识G=(V,E,A),用于分析所有智能体之间的信息交换,其中节点集V={1,2,···,N},代表系统中的每个智能体;边集E=V×V,表示智能体之间的通信连接.N i={j∈V:(i,j)∈V},代表智能体i 的邻点集.邻接矩阵A=[a ij]∈R n×n表示节点之间的连接关系,其中a ij=1表示节点j能够获取节点i 的信息,否则a ij=0.度矩阵D用来描述与之连接的所有节点的连接度.定义节点V i的入度为deginV i= n∑j=1a ji,出度为degoutV i=n∑j=1a ij,那么在图G的度矩阵D=[D ij]中,D ij=0,∀i=j且D ii=deg out V i[8,18–19].2.2模型描述在竞争激烈的今天,每个细节都能决定企业的成功与否.其中制药工程、晶体结晶、发酵工艺等都对温度有严格的要求.正如蓝宝石工艺,在加热的过程中,会形成固体与液体交接的情况.蓝宝石的温度分布应该保证固体与液体交接点的变化满足工程实际需要,即固体与液体交接点的变化速度不能过快或者过慢,否则会导致蓝宝石结晶过程中晶体因受热不均而发生炸裂,或者与加热炉粘连,从而影响晶体质量.然而蓝宝石加热炉是通过给外部的钨棒网通电进行加热的,所以最终目的是通过改变钨棒网的电压来实现温度控制,从而使固液交接点处的温度分布均匀,其加热炉如图1所示.图1中:1表示CCD摄像机;2表示目镜;3表示旋转挡板驱动;4表示旋转挡板把手;5表示挡板;6表示隔热层;7表示孔洞;8表示提拉杆;9表示坩埚壁;10表示籽晶;11表示钨加热器;12表示炉壁;13表示熔融状蓝宝石.利用各向同性性质,归一化处理后,可以将熔融状态的蓝宝石温度分布用抽象的一维反应扩散方程近第8期杨辉等:ODE–热方程级联系统的事件触发控制1351似描述,因此系统模型可表示为˙z i(t)=u i(t),i=1,2,···,N,ωit(x,t)=ωixx(x,t),ωix(0,t)=0,ωix(1,t)=cz i(t),z i(0)=z i,ωi(x,0)=ωi(x),(1)其中:N为智能体的个数,i表示第i个智能体,z(t)表示电源控制器内部的状态变量和加热炉内钨棒网的温度,ω(x,t)为蓝宝石溶液在x位置t时刻的温度分布,其状态空间为H:=L2(0,1),x表示空间坐标.通过对电源z(t)的控制改变蓝宝石温度分布ω(x,t)以保证固体与液体交接点x的变化满足工程实际需要.钨棒网与溶液边界直接耦合,由于位置x的对称性,交接点两侧的温度近似相同,所以交接点不存在热交换,因此可以将另一侧边界假设为绝热条件.图1蓝宝石加热炉Fig.1Sapphire heating furnace根据图论知识,针对具有N个智能体的多智能体系统,第i个智能体的状态为ωi(x,t),若系统中每个智能体的状态都达到一致,需要满足limt→∞∥ωi(x,t)−ωj(x,t)∥H=0,i=j.本文目的是通过控制电源,最终使所有状态能够自发的达成一致,也就是说,液体热量最终能够在各个位置相同.接下来将设计通信交互协议,并证明该通信协议能够使系统稳定,并给出了事件触发控制方案,从而能够节约成本.假设1假设系统(1)的连接方式由全联通有向拓扑图G=(V,E)来描述.图G的拉普拉斯矩阵L可以表示为L=D−A,或常用L(A)=L(G)来表示图G的拉普拉斯矩阵.定义1设X是线性赋范空间,X上的单参数强连续有界线性算子族T(t)称为算子半群,简称C0半群[20].对任何t>0,T(t)都是线性有界算子,且满足T(0)=I,T(t+s)=T(t)T(s),limt→0∥T(t)x−x∥=0,∀x∈X.定义2在线性赋范空间X上满足∥T(t)∥ 1,∀t 0的C0半群称为压缩C0半群.定义3线性赋范空间X上一线性算子A称为耗散的,如果对任意x∈D(A),∃x∗∈D′(A),使Re⟨A x,x∗⟩ 0,若A还满足R(λ−A)=X,∀λ>0,则称A为耗散的[21].定理1设A是线性赋范空间X中的一稠定算子,则以下条件等价:若A是耗散的,且∃λ0>0使得R(λ0−A)=X,则A生成X上的压缩C0半群.若A生成X上的压缩C0半群,则A是耗散的,且R(λ−A)=X,∀λ>0,此外Re⟨A x,x∗⟩ 0,∀x∈D(A),x∗∈D′(A). 2.3一致性控制协议设计由于级联系统存在耦合的边界条件,传统的ODE 或PDE的多智能体一致性控制已不能满足需求,若继续使用传统的一阶多智能体控制器的设计形式,稳定性证明时则会产生不稳定的耦合项,因此本文根据级联系统特性重新设计一致性同步协议并予以证明.对于型如系统(1)的多智能体ODE–热方程级联系统,设计控制器u(t)=−c Lω(1,t)−kIz(t),(2)其中:c>0,k>0均是常数,L是拉普拉斯矩阵,I表示单位矩阵,ω(x,t)和z(t)均为N维向量,将控制器(2)代入系统(1),可以得到级联系统如下:˙z(t)=−c Lω(1,t)−kIz(t),ωt(x,t)=ωxx(x,t),ωx(0,t)=0,ωx(1,t)=cz(t),z(0)=z0,ω(x,0)=ω0(x).(3)引理1(文献[8]引理3.1)对于任意的z(t)∈L2loc(0,∞),ω0(x)∈H2(0,1),系统(3)存在唯一解ω(x,t),使ω(x,t)∈C1(0,∞;L2(0,1))∩C(0,∞; H2(0,1)).此外,通过H2(0,1)⊂C[0,1],那么ω(1,t)对于时间t>0是连续的、有界的.考虑状态空间H=(L2(0,1))N×R N.(4)1352控制理论与应用第40卷定义内积如下:⟨ϕ1,ϕ2⟩H =1ωT1(x,t )L ω2(x,t )d x +12z T1(t )z 2(t ),(5)其中∀ϕi =(ωTi (x,t ),z i (t )),i =1,2.定义算子A :D (A )→H :A (ω(x,t ),z (t ))=(ωxx (x,t ),−c L ω(1,t )−kz (t )),D (A )={(ω,z )∈(H 2(0,1))N ×R N |ωx (0)=0,ωx (1)=cz }.(6)将方程(3)写为发展方程形式如下:˙ϕ(t )=A ϕ(t ).(7)定理2算子A 在空间H 上生成压缩C 0半群.在式(6)中,计算可以得出Re ⟨A ϕ,ϕ⟩=−kz T(t )z (t )−1ωTx (x,t )ωx (x,t )d x 0.(8)因此得出算子A 在空间H 上是能量耗散的,由于初值条件给定,其具有唯一解,因此可以得出A −1存在.根据Sobolev 嵌入定理得出A −1在H 中是紧的.利用定理1(Lumer-Phillips)可以得出,算子A 在空间H 上生成压缩C 0半群.本文的目标是使系统同步,分析可知同步的一个充分条件是使边界无能量流动,同时使得所有状态趋近于0.又由于边界绝热条件的充分条件是使ODE 部分收敛到0,因此初步分析ODE 部分特征值需要为负,而热方程部分系统的特征值所在空间仅有一个零特征值,其余为负.根据以上思路设计的控制器(2).接下来证明在控制器(2)作用下系统的稳定性,定义Lyapunov 函数如下:V =12 10ωT (x,t )L ω(x,t )d x +12z T (t )z (t ).(9)对Lyapunov 函数求导得˙V = 10ωT (x,t )L ωt (x,t )d x +z T (t )z t (t )=10ωT (x,t )L ωxx (x,t )d x +z T(t )(−c L ω(1,t )−kz (t ))=ωT (x,t )L ωx (1,t )− 1ωT x (x,t )L ωx (x,t )d x +z T(t )(−c L ω(1,t )−kz (t ))=cωT (1,t )L z (t )− 1ωT x (x,t )L ωx (x,t )d x −cω(1,t )L z T (t )−kz T(t )z (t )=− 1ωTx (x,t )L ωx (x,t )d x −kz T (t )z (t ) 0.(10)通过LaSalle 不变集原理,可以找出有且仅有一个稳定解收敛,即系统状态最终可以达成同步∥(ω(·,t )),z (t ))∥H →0,t →∞.(11)以上是连续系统ODE–热方程级联系统的控制器及闭环系统的证明.下文将设计事件触发控制器的控制规则,并证明该系统依然保持收敛性能.3事件触发控制器设计上文提到的控制器是时间连续形式的,但是连续控制需要在时间尺度上,不间断的采集并获取信息,同时需要实时不间断的对信息进行处理.由于目前广泛应用的数字式执行器执行测量、运算或输出等操作均有最小时钟周期限制,因此数字式执行器无法做到无限小时刻采样并对信息进行处理.为解决数字式控制难以处理连续性控制的缺点,所以本文提出事件触发的ODE–热方程级联系统一致性控制协议,给出具体的触发条件,在达成触发条件时改变控制输入的值,而其余时刻则保持之前状态不变.这样不仅仅能够解决连续性控制的缺点,同时还可以节约控制器的计算资源.下面介绍事件触发控制器的设计,以及触发条件的确认.根据第2.3节得出的一致性同步协议可以假设ODE–热方程系统事件触发控制器如下:{u (t )=−c L ω(1,t )−kz (t ),t =t k ,u (t )=u (t k ),(12)其中:u (t )为ODE–热方程级联系统事件触发控制器,t ∈[t k ,t k +1),∀k =0,1,2,···且t 0为初始时刻,触发间隔时间点t k 满足t k =arg min t>t k −1{∥e (1,t )∥=σ1∥z (t )∥|c |∥L∥,∥ϵ(t )∥=σ2∥z (t )∥k},(13)其中:argmin 表示∥e (1,t )∥和∥ϵ(t )∥达到最小值时t 的取值,∀σ1,σ2∈R +满足条件∥e (1,t )∥ σ1∥z (t )∥|c |∥L∥,∥ε(t )∥ σ2∥z (t )∥k ,k −σ1−σ2<0.(14)为便于证明在事件触发控制器作用下系统仍保持稳定,首先引入误差系统{e (x,t )=ω(x,t k )−ω(x,t ),ϵ(t )=z (t i )−z (t ),(15)将误差状态(15)代入式(12)中,可以得到控制器在触发时刻的误差表示形式u (t )=−c L e (1,t )−c L ω(1,t )−kϵ(t )−kz (t ).(16)第8期杨辉等:ODE–热方程级联系统的事件触发控制1353为了证明控制器(16)能够使系统(1)的每个子系统保持稳定,并能够使各个子系统最终状态达成一致,利用Lyapunov 稳定性判据对事件触发系统进行稳定性判别.设计Lyapunov 函数如下:V (t )=12(z T(t )z (t )+ 10ωT (x,t )L ω(x,t )d x ).(17)对上式左右两边关于时间变量求导,可得˙V(t )=d d t 12(z T(t )z (t )+ 10ωT (x,t )L ω(x,t )d x )=z T (t )u (t )+ 10ωTt (x,t )L ω(x,t )d x =z T (t )u (t )+ 10ωT xx (x,t )L ω(x,t )d x =z T (t )u (t )+ωT x (x,t )L ω(x,t )|10−10ωT x (x,t )L ωx (x,t )d x =z T(t )u (t )+ωTx (1,t )L ω(1,t )− 1ωT x (x,t )L ωx (x,t )d x.(18)结合耦合边界条件cz (t )=ωx (1,t ),可以得出˙V(t )=−cz T (t )L [e (1,t )+ω(1,t )]−kz T (t )[ϵ(t )+z (t )]+ωT x (1,t )L ω(1,t )−1ωTx (x,t )L ωx (x,t )d x =−ωTx (1,t )L e (1,t )−kz T (t )ϵ(t )−kz t(t )z (t )− 1ω1x ωT x (x,t )L ωx (x,t )d x∥ωx (1,t )∥∥L∥∥e (1,t )∥+k ∥z (t )∥∥ϵ(t )∥−k ∥z (t )∥2−1ωT x (x,t )L ωx (x,t )d x.(19)设∃σ1,σ2>0,满足以下不等式组条件:∥e (1,t )∥ σ1∥z (t )∥|c |∥L∥,∥ε(t )∥ σ2∥z (t )∥k ,k −σ1−σ2<0.(20)事实上,对于∀σ1,σ2∈R +,总是至少存在着一组解满足不等式组(20),这是很容易得出的,因为前两个不等式组在出发时刻∥e (1,t )∥和∥ϵ(t )∥都等于0.所以σ1,σ2>0即可满足要求.并且由于设定参数k >0,所以必然存在σ1+σ2<k 满足第3个不等式.将假设的不等式组代入式(19),可以得出˙V(t ) (k −σ1−σ2)∥z (t )∥∥ϵ(t )∥−k ∥z (t )∥2− 1ωT x (x,t )L ωx (x,t )d x.(21)根据Lyapunov 稳定性判据可以得出,该系统是Ly-apunov 意义下稳定的,同时通过计算其稳定点所构成的不变集,容易得出最终有且仅有一个共同收敛的点,因此该ODE–热方程级联系统事件触发控制器最终能够使得系统(1)中的状态达成一致.根据不等式组(20)的条件,对于k =1,2,···,以及σ1,σ2满足式(20)条件,设触发时刻为t k =arg min t>t k −1{∥e (1,t )∥=σ1∥z (t )∥|c |∥L∥,∥ϵ(t )∥=σ2∥z (t )∥k}.(22)通过上述证明,可以得出控制器u (t )在式(12)的作用下能够使系统(1)最终状态达成一致.由于PDE 部分边界条件经由ODE 中的控制器引入了负实部极点,因此系统具有一定的鲁棒性,即存在一定的扰动的情况下,系统仍然可以按照预期的目标达成一致,下面针对上述事件触发一致性协议设计计算机仿真程序来进行验证.4数值仿真验证为验证ODE–热方程级联系统事件触发一致性控制协议的实际有效性,本文采用数字计算机平台进行仿真模拟验证.这里仿真离散格式中,对于空间采用中心差分法进行离散,时间采用前向差分方法进行离散化,ODE 部分采用前向差分离散化.选取仿真步长d t =0.001s,空间步长d x =0.05m,仿真总时长T =15s,PDE 选取长度为1m.设系统参数c =5,k =10/3.假设系统仿真的初值条件如下:ω(x,0)= 4+2sin(2πx +1)+0.7(x −0.5)−2+1.4sin(3πx +2)−0.4(x −0.7)9−6sin(1.5πx +3)−0.9(x −0.3)9−1.4sin(2πx +2)+0.9(x −0.4)4−2sin(1.5πx +1)+0.7(x −0.2),z (0)=[412−1−4]T ,考虑多智能体个数为5,且为全连通有向拓扑,假设权重均为1,其连接方式如图2.通过上述假设的参数进行仿真,能够得出仿真所用控制系统如下:˙z (t )=−5 1−100001−100001−100001−1−10001 ω(1,t )−103z (t ),ωt (x,t )=ωxx (x,t ),ωx (0,t )=0,ωx (1,t )=5z (t ).(23)1354控制理论与应用第40卷因此根据本文所给出的计算方法,设计控制器u(t)=˙z(t)=−51−100001−100001−100001−1−10001ω(1,t)−103z(t),u(t)=u(t k),t∈(t k,t k+1),t k=arg mint>t k−1{∥e(1,t)∥=σ1∥z(t)∥|c|∥L∥,∥ϵ(t)∥=σ2∥z(t)∥k}.(24)其中选取σ1=0.43,σ2=11.1.仿真结果如图3–10所示.图2多智能体连接拓扑图Fig.2Multi-agent connectiontopology图3多智能体系统ODE部分状态图Fig.3Partial ODE state diagram of multi-agentsystem图4多智能体系统PDE部分状态1Fig.4Multi-agent system PDE partial State1图5多智能体系统PDE部分状态2Fig.5Multi-agent system PDE partial State2图6多智能体系统PDE部分状态3Fig.6Multi-agent system PDE partial State3图7多智能体系统PDE部分状态4Fig.7Multi-agent system PDE partial State4图3描述了多智能体系统(24)中的ODE部分随时间趋向于0,其物理含义是为了最终使PDE系统能够稳定在一致温度下,热系统边界随着时间增加,其热流动逐渐停止.图4–8五个多智能体系统的PDE部分在边界耦合ODE系统的控制下,最终能够收敛到一致状态.图9–10表示了多智能体共同决策得出的触发条件,其中触发时刻用“*”着重标记.根据仿真结果可以看出,通过利用本文提出的基于事件触发的ODE–热方程级联系统多智能体一致性控制协议,能够使系统在大约12s左右通过较少的触发次数达到同步,表第8期杨辉等:ODE–热方程级联系统的事件触发控制1355明事件触发控制器具有优越的性能,能在很短的时间内让蓝宝石加热炉达到一致的工作状态.图8多智能体系统PDE部分状态5Fig.8Multi-agent system PDE partial State5图9多智能体系统事件触发条件1Fig.9Multi-agent system event trigger Condition1图10多智能体系统事件触发条件2Fig.10Multi-agent system event trigger Condition25结论与展望本文研究了基于事件触发的ODE–热方程级联系统多智能体一致性控制协议的设计,通过控制与PDE部分边界耦合的ODE系统的输入,使PDE部分的热系统最终能够稳定,快速的达成一致,进一步给出了事件触发控制的条件,通过仿真验证可以看出该同步协议具有一定的鲁棒性.相较于之前已有的成果来说,本文的创新在于采用不同的(Neumann)边界条件,控制输入和被控对象分别处于不同的系统,同步采用边界反馈,并证明了事件触发需要满足的条件及其稳定性,但因本文系统存在耦合项,Zeno现象的避免未能给出严格的证明,这将在后续的工作中进行.参考文献:[1]TIAN Yuan.Consensus control for multi-agent systems with impul-sive effects.Chongqing:Southwest University,2020.(田袁.脉冲作用下的多智能体系统一致性控制.重庆:西南大学, 2020.)[2]JI Lianghao,LIAO Xiaofeng.Consensus analysis of multi-agent sys-tem with multiple time delays.Journal of Physics,2012,61(15):8–16.(纪良浩,廖晓峰.具有不同延时的多智能体系统一致性分析.物理学报,2012,61(15):8–16.)[3]FU Q,YU P F,XU G Z,et al.Containment control for partial differ-ential multi-agent systems.Physica A:Statistical Mechanics and its Applications,2019,529:121549.[4]ZHOU Tuo,LIU Quanli,WANG Dong,et al.Leader-following con-sensus for linear multi-agent systems based on integral-type event-triggered strategy.Control and Decision,2022,37(5):1258–1266.(周托,刘全利,王东,等.积分事件触发策略下的线性多智能体系统领导跟随一致性.控制与决策,2022,37(5):1258–1266.)[5]OLFATI-SABER R,MURRAY R.Consensus problems in networksof agents with switching topology and time-delays.IEEE Transac-tions on Automatic Control,2004,49(9):15201533.[6]XIE Jun,CHEN Kaixuan,YUE Dong.Distributed economic dispatchbased on consensus algorithm of multi agent system for power sys-tem.Electric Power Automation Equipment,2016,36(2):112–117.(谢俊,陈凯旋,岳东.基于多智能体系统一致性算法的电力系统分布式经济调度策略.电力自动化设备,2016,36(2):112–117.)[7]LI L C,FENG J S.Current situation and development trend of sap-phire crystal growth technology in China.Journal of Synthetic Crys-tals,2012,41(S1):221–226.[8]MENG X Y,MENG Z Y,CHEN T W,et al.Pulse width modulationfor multi-agent systems.Automatica,2013,49(7):2125–2132.[9]XI J X,WANG C,YANG X J,et al.Limited-budget output consen-sus for descriptor multiagent systems with energy constraints.IEEE Transactions on Cybernetics,2020,50(11):4585–4598.[10]OLFATI-SABER R,ALEX F,MURRAY R M.Consensus and coop-eration in networked multi-agent systems.Proceedings of the IEEE, 2007,95(1):215–233.[11]CHRISTOFIDES P D.Nonlinear and robust control of PDE systems:Methods and applications to transport-reaction processes.Applied Mechanics Reviews,2002,55(2):29–30.[12]WANG J,KRSTIC M.Delay-compensated control of sandwichedode-pde-ode hyperbolic systems for oil drilling and disaster relief.Automatica,2020,120:109131.[13]JIN F F,GUO B Z.Performance boundary output tracking for one-dimensional heat equation with boundary unmatched disturbance.Automatica,2018,96:1–10.[14]ALAMT T M,PAQUET L.The coupled heat maxwell equations withtemperature-dependent permittivity.Journal of Mathematical Analy-sis and Applications,2022,505(1):125472.1356控制理论与应用第40卷[15]AY ADI H.Exponential stabilization of cascade ode-linearized KDVsystem by boundary dirichlet actuation.European Journal of Control, 2018,43:33–38.[16]XU Zenghe,ZHAI Yuchun,JI Zhiling.An analytical solution for cou-pled convection-diffusion and chemical reaction infixed-beds.The Chinese Journal of Nonferrous Metals,2004,14(11):1918–1925.(徐曾和,翟玉春,纪智玲.固定床中对流扩散与反应耦合问题的一个解析解.中国有色金属学报,2004,14(11):1918–1925.)[17]DIMAROGONAS D V,FRAZZOLI E,JOHANSSON K H.Dis-tributed event-triggered control for multi-agent systems.IEEE Trans-actions on Automatic Control,2012,57(5):1291–1297.[18]LIU T F,JIANG Z P.Distributed control of multi-agent systems withpulse-width-modulated controllers.Automatica,2020,119:109020.[19]LU Renwei.Consistency of nonlinear second-order multiagent withdirected topology and delay.Yangzhou:Yangzhou University,2012.(鲁仁伟.具有有向拓扑和时滞的非线性二阶多智能体的一致性.扬州:扬州大学,2012.)[20]SI Qin,LUO Cheng.Global attractors of operator semigroups ontopological space.Acta Analysis Functionalis Applicata,2017,19(4): 412–418.(斯琴,罗成.拓扑空间上算子半群的全局吸引子.应用泛函分析学报,2017,19(4):412–418.)[21]LIU Rui,ZHAO Huaxin,MA Qiangqiang.Generalized-semigroupsand dissipative operator.Journal of Shenyang Normal University (Natural Science Edition),2011,29(3):362–364.(刘瑞,赵华新,马强强.广义C0半群与耗散算子.沈阳师范大学学报(自然科学版),2011,29(3):362–364.)作者简介:杨辉硕士研究生,目前研究方向为分布参数控制系统理论与应用,E-mail:1104660379@;宗西举博士,教授,英国奥斯特大学兼职博士生导师,目前研究方向为分布参数控制系统理论、复杂系统控制理论、控制理论在电力系统中的应用,E-mail:cse**************.cn;郑泽阳硕士研究生,目前研究方向为分布参数控制系统理论与应用,E-mail:*****************;徐秀妮讲师,目前研究方向为分布参数控制系统理论与应用, E-mail:***************.。

外文翻译---基于离散混沌映射的图像加密并行算法

这种并行图像加密框架下,我们提出了一种新的算法,这是基于四个基本的转换。因此,我们将描述我们的算法之前,先介绍这些转换。
3.转换
3.1.A-转换
在A转换中,A代表加,能被形式化的定义如下:
a+b=c(1)
加法被定义为按位与操作
转换A有三个基本性质:
(2.1)a+a=0
(2.2)a+b=b+a(2)
(2.3)(a+b)+c=a+(b+c)
在并行模式计算时,许多的PE可以同时读取或写入相同的内存区域(即临界区),
这往往会导致意想不到的执行程序。因此,有必要在关键区域使用一些并行技术管理。
2.2.并行图像的加密框架
为了满足上述要求,我们提出了一个并行图像加密的框架,这是一个四个步骤的过程:
步骤1:整个图像被划分成若干块。
步骤2:每个PE负责确定数量块。一个区域内的像素可以充分使用有效的混乱和扩散进行操作加密。
附件C:译文
基于离散混沌映射的图像加密并行算法
摘要:
最近,针对图像加密提出了多种基于混沌的算法。然而,它们都无法在并行计算环境中有效工作。在本文中,我们提出了一个并行图像加密的框架。基于此框架内,一个使用离散柯尔莫哥洛夫流映射的新算法被提出。它符合所有并行图像加密算法的要求。此外,它是安全、快速的。这些特性使得它是一个很好的基于并行计算平台上的图像加密选择。
这个框架可以非常有效的实现整个图像的扩散。但是,它是不适合在并行计算环境中运行。这是因为当前像素的处理无法启动直到前一个像素已加密。即使有多个处理元素(PE),这种计算仍然是在一个串行模式下工作。此限制了其应用平台,因为许多基于FPGA / CPLD或者数字电路的设备可以支持并行处理。随着并行计算技术的应用,加密速度可以大大加快。

雷达地面检测算法开源模型

雷达地面检测算法开源模型
以下是几个常用的雷达地面检测算法的开源模型:
1. PointPillars: PointPillars是一种基于点云数据的3D目标检测算法,该算法使用激光雷达数据进行目标检测任务。

它提供C++和Python两种不同的实现版本,可在GitHub上找到相关的开源模型。

2. SECOND: SECOND(Sparsely Embedded Convolutional Detection)是一种基于激光雷达数据的3D目标检测算法,它采用了一个特殊的稀疏嵌入CNN结构,用于提取点云数据的特征。

SECOND算法提供了TensorFlow和PyTorch两种不同的实现版本,可以在GitHub 上找到相关的开源模型。

3. PIXOR: PIXOR(PI-XY-OR)是一种基于像素级点云投影的算法,用于雷达点云数据的2D目标检测。

PIXOR将雷达点云数据投影到平面上,并利用2D卷积神经网络进行目标检测。

该算法提供了TensorFlow和PyTorch两种不同的开源模型版本,可以在GitHub上找到相关的代码和模型。

4. yolocube: yolocube是一种基于YOLO(You Only Look Once)算法的3D目标检测器,采用单阶段的端到端训练,可用于雷达点云数据的目标检测任务。

yolocube提供了C++和Python两种不同的实现版本,可以在GitHub上找到相关的开源模型。

以上是一些常用的雷达地面检测算法的开源模型,您可以根据具体的需求选择适合您的算法。

这些模型都可以在GitHub上找到相关的代码和实现。

nftool 所用的激活函数

NFTool 激活函数介绍在深度学习中,激活函数是神经网络的重要组成部分之一。

它们通过引入非线性性质,为神经网络增加了表达能力,使其能够捕捉更复杂的模式和关系。

NFTool 是一种强大的激活函数,它在神经网络中表现出色,并为许多实际应用提供了帮助。

NFTool 的原理NFTool(Non-Linear Function Tool)是一种多功能的激活函数,它可以在神经网络中发挥重要作用。

与其他常用的激活函数相比,NFTool 具有更强大的非线性能力,并且可以通过调整参数来适应不同的数据和任务。

下面我们将详细介绍NFTool 的原理和功能。

NFTool 的非线性能力NFTool 通过引入非线性变换,增加了神经网络的表达能力。

它不仅能够学习线性模式和关系,还能够捕捉更复杂的非线性模式。

这使得神经网络可以处理各种各样的数据,包括图像、文本、语音等。

NFTool 的激活函数类型NFTool 是一系列不同类型的激活函数的集合,每种类型的激活函数都有不同的特点和应用场景。

下面是几种常见的 NFTool 激活函数类型:1. Sigmoid 函数Sigmoid 函数是 NFTool 中最常用的激活函数之一。

它将输入的范围映射到 0 到1 之间,适用于二分类任务和概率估计。

Sigmoid 函数的公式如下:f(x)=11+e−x其中,x是输入值,f(x)是 Sigmoid 函数的输出。

2. ReLU 函数ReLU(Rectified Linear Unit)函数是 NFTool 中的另一个常见激活函数。

它在正数输入时保持不变,在负数输入时输出为 0。

ReLU 函数的公式如下:f(x)=max(0,x)ReLU 函数的主要优点是计算简单、不会出现梯度消失问题,并且能够有效缓解过拟合现象。

3. Tanh 函数Tanh 函数是一种双曲正切函数,也是 NFTool 中常用的激活函数之一。

它将输入的范围映射到 -1 到 1 之间。

Hex-Rays.IDA.Professional.v6.1 1CD反汇编利器

VSG.Open.Inventor.v8.0.1.GCC.3.4.3.LINUX-TBE\
VSG.Open.Inventor.v8.0.1.GCC.4.1.1.LINUX.x64-TBE\
VSG.Open.Inventor.v8.0.1.GCC.4.1.1.LINUX-TBE\
.for.VS2k5.x64-TBE\
Intel.Biblioteka ntegrated.Performance.Primitives.v6.1.2.051.LINUX.ITANIUM-TBE\
Intel.Integrated.Performance.Primitives.v6.1.2.051.LINUX-TBE\
NetSupport.School.Professional.v10.50.2.Incl.Keygen.DUTCH-Lz0\
SynaptiCAD.Product.Suite.v14.11d-Lz0\
SynaptiCAD.Product.Suite.v14.11g.LINUX-Lz0\
ic.eBook-iNTENSiTY\
The.Return.of.Monte.Cristo.v1.0-TE\
ic.eBook-iNTENSiTY\
ic.eBook-iNTENSiTY\
Webstudio.v5.0.B11-ENGiNE\
ic.eBook-iNTENSiTY\
Treasures.of.The.Serengeti.v1.0.Cracked-F4CG\
Trillian.Astra.Pro.v4.0.0.119-TE\
Tropical.Farm.v1.0.Cracked-F4CG\
Ultra.Recall.Professional.v4.1.0.7.Cracked-DJiNN\
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :a s t r o -p h /0602563v 2 22 M a r 2006TO APPEAR IN THEA STROPHYSICAL J OURNAL ,L ETTERSPreprint typeset using L A T E X style emulateapj v.6/22/04PREDICTION OF SUPERSOFT X-RAY PHASE DURING THE 2006OUTBURST OF RS OPHIUCHII ZUMI H ACHISUDepartment of Earth Science and Astronomy,College of Arts and Sciences,University of Tokyo,Komaba 3-8-1,Meguro-ku,Tokyo 153-8902,JapanANDM ARIKO K ATODepartment of Astronomy,Keio University,Hiyoshi 4-1-1,Kouhoku-ku,Yokohama 223-8521,Japanto appear in the Astrophysical Journal,LettersABSTRACTRS Ophiuchi is one of the well-observed recurrent novae and also a candidate progenitor of Type Ia super-novae.Its sixth recorded outburst was discovered on 12February 2006.Detection of a supersoft X-ray phase will provide a firm confirmation of hydrogen shell-burning on the white dwarf and its turn-on/turn-off dates strongly constrain a mass range of the white dwarf,which clarify whether or not RS Oph becomes a Type Ia supernova.For a timely detection of its supersoft X-ray phase,we have calculated outburst evolution of RS Oph based on the optically thick wind theory and predicted a supersoft X-ray phase for the 2006outburst:it will most probably start on day 80−90and continue until day 110−120after the optical maximum.Its duration is so short as only a month or so.We strongly recommend multiple observations during April,May,and June of 2006to detect turn-on and turn-off times of the supersoft X-ray phase.Subject headings:binaries:close —binaries:symbiotic —novae,cataclysmic variables —stars:individual(RS Oph)—supernovae:general —white dwarfs1.INTRODUCTIONThe recurrent nova RS Ophiuchi has undergone its sixth recorded outburst on 12February 2006(Narumi et al.2006).The previous five outbursts occurred in 1898,1933,1958,1967,and 1985.One outburst may have been missed between 1898and 1933because RS Oph was not recognized as a recur-rent nova.These 10−20yr recurrence periods indicate both that the white dwarf (WD)mass is very close to the Chan-drasekhar mass and that its mass accretion rate is as large as ˙Macc ∼1×10−7M ⊙yr −1(see,e.g.,Fig.2of Hachisu &Kato 2001b).If the WD mass increases after every outburst,RS Oph will soon explode as a Type Ia supernova (e.g.,Nomoto 1982;Hachisu et al.1999a;Hachisu &Kato 2001b).It is,therefore,crucially important to know how close the WD mass is to the Chandrasekhar mass and how much mass is left on the WD after one cycle of nova outburst.We are able to constrain a mass range of the WD if turn-on/turn-off of su-persoft X-ray are detected,because it indicates the durations of wind mass loss (how much mass is ejected)and hydrogen shell-burning without wind mass loss (how much mass is left).In this Letter,we have calculated supersoft X-ray phases for RS Oph and predict turn-on and turn-off dates for its timely detection during the current outburst.In §2,we briefly describe our optically thick wind model for nova outbursts.The numerical results and predictions are shown in §3.Discussions follow in §4.2.OPTICALLY THICK WIND MODELAfter a thermonuclear runaway sets in on a mass-accreting WD,its photosphere expands greatly to R ph 100R ⊙and the WD envelope soon settles in a steady-state.The de-cay phase of novae can be followed by a sequence of steady state solutions (e.g.,Kato &Hachisu 1994).We have calcu-lated light curves for the 2006outburst of RS Oph,using the same method and numerical techniques as in Kato &HachisuElectronic address:hachisu@chianti.c.u-tokyo.ac.jp Electronic address:mariko@.keio.ac.jp(1994),We solve a set of equations,i.e.,the continuity,equation of motion,radiative diffusion,and conservation of energy,from the bottom of the hydrogen-rich envelope through the pho-tosphere.The winds are accelerated deep inside the photo-sphere so that they are called “optically thick winds.”We have used updated OPAL opacities (Iglesias &Rogers 1996).We simply assume that photons are emitted at the photosphere as a blackbody with the photospheric temperature of T ph .Physi-cal properties of these wind solutions have already been pub-lished (e.g.,Hachisu &Kato 2001a,b,2004;Hachisu et al.1996,1999a,b,2000,2003;Kato 1983,1997,1999).We have integratedd2Hachisu and KatoTABLE1S UPERSOFT X-RAY TURN-ON/TURN-OFF TIMEX Z M WD turn on a turn off a(M⊙)(days)(days)0.70.02 1.3756731.35781131.34891341.331011611.31412480.50.02 1.3743531.3566851.3470951.33871201.31161750.70.004 1.37776991.351241830.50.004 1.37763761.3686109a days from the optical maximumsupersoft X-ray.This causes the decrease in optical luminos-ity and the increase in UV.Then the UVflux reaches a maxi-mum.Finally the supersoft X-rayflux increases after the UV flux decays.Thus,we canfollow the development of super-soft X-ray light curves(e.g.,Hachisu&Kato2005).These timescales depend very sensitively on the WD mass if the WD mass is very close to the Chandrasekhar mass.This is because the WD radius is very sensitive to the increase in mass near the Chandrasekhar mass.The timescale also de-pends weakly on the chemical composition of envelopes.3.PREDICTION OF SUPERSOFT X-RAY PHASEBased on the observation of previous outbursts of RS Oph, Hachisu&Kato(2000,2001b)derived various physical pa-rameters of the star from visual and UV light curvefittings. They concluded that the WD mass is(1)1.35±0.01M⊙for the solar composition or(2)1.377±0.01M⊙for a low metal-licity of Z=0.004and X=0.7.Therefore,we have calculated two cases for the metallicity,i.e.,Z=0.02and Z=0.004. Once the unstable nuclear burning sets in,convection widely develops and mixes processed helium with unburned hydrogen.This process reduces the hydrogen content in the envelope by10−20%for massive WDs like in RS Oph.We calculated two cases for the hydrogen content,i.e.,X=0.5 (mixing)and X=0.7(no mixing).To summarize,we have calculated total of14light curves as tabulated in Table1. Figure1depicts our recommended model of RS Oph.Here we assume the response(∼0.1−10keV)of XRT onboard Swift,a WD mass of M WD=1.33M⊙,a chemical composition of X=0.5and Z=0.02,a distance of d=1.0kpc,and no interstellar absorption.We expect similarflux for EPIC CCD MOS and7times largerflux having a similar shape of light curve profile for a wider effective area of EPIC CCD pn both onboard XMM-Newton.After the optical maximum,the photosphere gradually shrinks with the envelope mass being lost in the wind.The temperature increases with time but is still lower than3.5×105K(∼30eV)until the wind stops on day87.Thus, in this wind phase,the expected supersoft X-rayflux is not so high as shown in Figure1(dotted part).Moreover,su-persoft X-rays are probably obscured by the optically thick wind itself because the wind mass loss rate is as large as 10−7−10−6M⊙yr−1.Supersoft X-rays are not observed orF IG.1.—Expected supersoft X-rayfluxes are plotted against time for our recommended1.33M⊙WD model with a chemical composition of X=0.5 and Z=0.02.We assume the response(∼0.1−10keV)of XRT onboard Swift(/docs/swift/),a distance of d=1.0kpc,and no interstellar absorption.We expect a similar response for EPIC CCD MOS and a7times larger response for EPIC CCD pn both onboard XMM-Newton.The optically thick wind continues until day87and the hydrogen shell-burning ends on day120.Visual magnitudes of the2006outburst are taken from VSOLJ(asterisks)and from IAU Circulars,No.8671,No.8673,No.8681, and No.8688(open squares).Visual data of the previous1985outburst are taken from AA VSO(small circles).X-rayflux by accretion given in eq.(2) is indicated by a short horizontal line(labeled by L x,acc).F IG.2.—Same as those in Fig.1,but for the solar composition(X=0.7 and Z=0.02)of the envelope.WD mass is attached to each curve.itsflux is very low during the wind phase.Therefore,we de-fine turn-on time of supersoft X-ray as the time when the wind stops.It is87days after the optical maximum in the case of Figure1.On that day the photospheric temperature is as low as log T ph(K)=5.55but quickly increases to reach the maxi-mum temperature of log T ph(K)=6.07on day116.Stable hydrogen shell-burning ends on day120,where the photospheric temperature is log T ph(K)=6.05.After that,the supersoft X-rayflux as well as the total luminosity quickly decays.Then,we define the date of"supersoft X-ray turn-off"as the time when stable nuclear burning ends(see,e.g., Hachisu&Kato2005).Figure2shows supersoft X-rayfluxes for the WD masses of M WD=1.37,1.35,1.33and1.3M⊙.Here,we assume X=0.7 and Z=0.02.The supersoft X-ray phase lasts107days for M WD=1.3M⊙but only17days for M WD=1.37M⊙. Figure3shows supersoft X-rayfluxes for lower hydrogen content of X=0.5and Z=0.02.Thisfigure shows four casesSupersoft X-ray Phase of RS Oph3 F IG.3.—Same as those inFig.2,but for X=0.5and Z=0.02.F IG.4.—Same as those in Fig.2,but for Z=0.004and X=0.5(thicksolid:1.377and1.36M⊙),or for Z=0.004and X=0.7(thin solid:1.377and1.35M⊙).of the WD mass.The duration of supersoft X-ray phase be-comes shorter than those in Figure2.Low metallicities have been suggested for the giant com-panion of RS Oph(Scott et al.1994;Contini et al.1995;Smith et al.1996).Figure4shows supersoft X-rayfluxesfor a low metallicity of Z=0.004.The development of outburst depends both on the WD massand on the chemical composition.(1)Less massive WDsevolve more slowly because of a large envelope mass on theWD.(2)Less hydrogen contents of envelopes make nova evo-lution more quickly because of earlier consumption of hydro-gen.(3)Lower metallicities of envelopes slow down novaevolution because of less amount of catalyst in the CNO-cycleand less acceleration of the winds(optically thick winds aredriven by an opacity peak that is due to iron lines).4.DISCUSSIONIn the present2006outburst,strong X-rays were alreadydetected3days after the discovery with XRT onboard Swift(Bode et al.2006).Mason et al.fitted the X-ray spec-trum with a high-temperature thermal bremsstrahlung model.Ness et al.(2006)reported high-resolution X-ray spectra ofthe2006outburst,obtained on Feb.26(two weeks after theoutburst).Their Chandra X-ray observation indicates highplasma temperatures of T=(3−60)×106K.In the1985outburst,RS Oph became a strong X-raysource with characteristic temperature of a few times106K(Mason et al.1987).Mason et al.made six separate obser-vations with EXOSAT,55,62,74,83,93,and251days afterthe optical maximum.The source became very weak on andafter day83in the medium-energy proportional counter array(ME)and only upper limits were derived.They interpretedthese early X-rayfluxes in terms of emissions from the pre-outburst M-giant’s wind that had been shock-heated by theoutburst ejecta(see also Bode&Kahn1985;Itoh&Hachisu1990;O’Brien,Bode,&Kahn1992).In the later stage,there was still some residual X-ray emis-sion detected only with the low-energy imaging telescope(LE)onboard EXOSAT even on day251.Mason et al.(1987)interpreted this late X-ray emission in terms of hydrogenshell-burning that still continues on top of the WD.This is notconsistent with our model calculation because the steady hy-drogen shell-burning ended long before day251,i.e.,on day∼110−120(see Hachisu&Kato2001b,for more detaileddiscussion).Instead,Hachisu&Kato(2001b)assumed anaccretion disk remaining even during the outburst and inter-preted this soft X-ray emission as accretion luminosity ratherthan nuclear burning luminosity,mainly because the observedflux is too low to be compatible with that for hydrogen burn-ing.The accretion luminosity is estimated asL x,acc=1R WD∼3×1036erg s−1,(2)for an appropriate mass accretion rate of˙M acc∼1×10−7M⊙yr−1(Hachisu&Kato2001b).This accretion X-rayflux is∼300times smaller than that for nuclear burning asindicated in Figure1.If X-ray satellites will frequently observe RS Oph,we areable to distinguish X-ray of nuclear burning from that of ac-cretion.It is because,as shown in Figures1−4,we can rec-ognize from the shape of light curves whether it is originatedfrom nuclear burning or not.The light curve shape itself isindependent of the distance or absorption.We have assumed no interstellar(or circum-binary matter)absorption in our predicted X-rayfluxes.Here we discussabsorption effects due to interstellar or circum-binary mat-ter.Mason et al.(1987)referred to a column density of∼(3−4)×1021cm−2toward RS Oph(see also Hjellming et al.1986).Although we do not present here how much theflux isreduced due to absorption by this amount of column density,it is worth noting that a luminous supersoft X-ray phase wasdetected with BeppoSAX in the1999outburst of the recur-rent nova U Sco(Kahabka et al.1999).Kahabka et al.esti-mated a column density of(1.8−2.6)×1021cm−2for a black-body model,or(3.1−4.8)×1021cm−2for a WD atmospheremodel.The WD mass was estimated to be1.37±0.01M⊙by Hachisu et al.(2000),which is similar to that for RSOph.Moreover,the distance to U Sco is much more far away(6−14kpc)than that to RS Oph(0.6−1.6kpc).If the esti-mated column densities both for RS Oph and U Sco are cor-rect,we expect a luminous supersoft X-ray phase also in RSOph.However,the cool giant’s wind may obscure supersoft X-rays.Orio(1993)observed RS Oph with ROSAT in the qui-escent phase7yrs after the outburst.The observedflux of(3−20)×1031erg s−1is too low to be compatible with the ac-cretion luminosity given in equation(2).One possible expla-nation is an absorption by the cool giant’s wind as suggestedby Anupama&Mikołajewska(1999).If the cool wind obscures the WD,supersoft X-rays of nu-clear burning may not be observable until the cool giant’s4Hachisu and Katowind is swept away.In the1985outburst,X-ray rapidly de-cayed from day70–80.Mason et al.(1987)interpreted this decay as that the blast shock had broken out of the cool giant’s wind on day∼70.We regard day70–80as the time when the cool giant’s wind is swept away.If the WD wind stops before day70–80,accurate turn-on time of supersoft X-ray may be missed.However,we are still able to determine the WD mass only from the turn-off time if it is detected.The cool giant’s wind,once swept away by the hot WD ejecta,will againfill its Roche lobe and accrete onto the hot component in a timescale of∆t=a/v∼300R⊙/10km s−1= 300days.When accretion onto the WD resumes,the ac-cretion disk brightens up,which is roughly consistent with the recovery of the quiescent V magnitude from12to11 mag on day∼400of the previous outburst(see,e.g.,Fig.1 of Evans et al.1988).Once the cool wind covers the hot WD,supersoft X-rays are absorbed.Therefore,a luminous supersoft X-ray phase may be observable only during day ∼80−400.Another good indicator of WD mass is a UV1455Åband of continuumflux proposed by Cassatella et al.(2002). Hachisu&Kato(2005)and Kato&Hachisu(2005)showed that their optically thick wind model well reproduces simulta-neously both the supersoft X-ray and UV1455Ålight curves of the classical nova V1974Cyg.They estimated the WD mass as∼1.05M⊙.Thus we are able to determine the WD mass using the UV1455Ålight curve when the chemical composition of ejecta is accurately given.Determination of chemical composition is definitely required for RS Oph.We thank VSOLJ and AA VSO for the visual data on RS Oph.We are also grateful to the anonymous referee for useful comments to improve the manuscript.This research has been supported in part by the Grant-in-Aid for Scientific Research (16540211,16540219)of the Japan Society for the Promotion of Science.REFERENCESAnupama,G.C.,&Mikołajewska,J.1999,A&A,344,177Bode,M.F.,et al.2006,IAU Circ.,8675,1Bode,M.F.,&Kahn,F.D.,1985,MNRAS,217,205Cassatella,A.,Altamore,A.,&González-Riestra,R.2002,A&A,384,1023 Contini,M.,Orio,M.,&Prialnik,D.1995,MNRAS,275,195Evans,A.,Callus,C.M.,Albinson,J.S.,Whitelock,P.A.,Glass,I.S.,Carter, B.,&Roberts,G.1988,MNRAS,234,755Hachisu,I.,&Kato,M.2000,ApJ,536,L93Hachisu,I.,&Kato,M.2001a,ApJ,553,L161Hachisu,I.,&Kato,M.2001b,ApJ,558,323Hachisu,I.,&Kato,M.2004,ApJ,612,L57Hachisu,I.,&Kato,M.2005,ApJ,631,1094Hachisu,I.,Kato,M.,Kato,T.,&Matsumoto,K.2000,ApJ,528,L97 Hachisu,I.,Kato,M.,&Nomoto,K.1996,ApJ,470,L97Hachisu,I.,Kato,M.,&Nomoto,K.1999a,ApJ,522,487Hachisu,I.,Kato,M.,Nomoto,K.,&Umeda,H.1999b,ApJ,519,314 Hachisu,I.,Kato,M.,&Schaefer,B.E.2003,ApJ,584,1008 Hjellming,R.M.,van Gorkom,J.H.,Seaquist,E.R.,Taylor,A.R.,Padin, S.,Davis,R.J.,&Bode,M.F.1986,ApJ,305,L71Iglesias,C.A.,&Rogers,F.J.1996,ApJ,464,943Itoh,H.,&Hachisu,I.1990,ApJ,358,551Kahabka,P.,Hartmann,H.W.,Parmar,A.N.,&Negueruela,I.1999,A&A, 374,L43Kato,M.1983,PASJ,35,507Kato,M.1990,ApJ,355,277Kato,M.1997,ApJS,113,121Kato,M.1999,PASJ,51,525Kato,M.,&Hachisu,I.,1994,ApJ,437,802Kato,M.,&Hachisu,I.,2005,ApJ,633,L117Krautter,J.,Ögelman,H.,Starrfield,S.,Wichmann,R.,&Pfeffermann,E. 1996,ApJ,.456,788Mason,K.O.,Córdova,F.A.,Bode,M.F.,Barr,P.1987,RS Ophiuchi(1985) and the Recurrent Novae Phenomenon,ed.M.F.Bode(VNU Science Press,Utrecht),167Narumi,H.,Hirosawa,K.,Kanai,K.,Renz,W.,Pereira,A.,Nakano,S., Nakamura,Y.,&Pojmanski,G.2006,IAU Circ.,8671,2Ness,J.-U.et al.2006,IAU Circ.,8683,2Nomoto,K.1982,ApJ,253,798O’Brien,T.J.,Bode,M.F.,&Kahn,F.D.1992,MNRAS,255,683Orio,M.1993,A&A,274,L41Scott,A.D.,Rawlings,J.M.C.,Krautter,J.,&Evans,A.1994,MNRAS, 268,749Smith,V.V.,Cunha,K.,Jorissen,A.,&Boffin,H.M.J.1996,A&A,315, 179。

相关文档
最新文档