恒压恒流自动转换开关电源研制
开关电源恒压恒流控制回路的工作原理和参数计算

开关电源恒压恒流控制回路的工作原理和参数计算1.电压控制环的设计恒压源的输出电压由下式确定U O=U Z+U F+U R1=U Z+U F+I R1R1其中,U Z=6.2V(即稳压管VD1的稳定电压),光耦合器PC817A中红外 LED的正向压降U F=1.2V (典型值),需要确定的只是R1上的压降U R1。
令R1上的电流为I R1,VT2的集电极电流为I C2,光耦合器输入电流(即LED工作电流)为I F,显然I R1=I C2=I F,并且它们随u、I C和光耦合器的电流传输比CTR值而变化。
已知单片LED 驱动电源的控制端电流I C变化范围是2.5mA(对应于最大占空比D MAX)~6.5mA(对应于最小占空比D MIN),现取中间值I C=4.5mA。
因I C是从光敏三极管的发射极流入控制端的,故有关系式I R1=I C CTR采用线性光耦合器时,要求CTR=80%~160%,可取中间值:120%。
在I C和CTR 值确定之后,很容易求出I R1。
将I C=4.5mA,CTR=120%代入式中得到,I R1=3.75mA。
令R=39R时,U R1=0.146V。
最后计算出U O=U Z+U F+U R1=6.2V+1.2V+0.146V=7.546V=7.5V2.电流控制环的设计电流控制环由VT1、VT2、R1~R6、C1和PC817A等构成。
下面要最终计算出恒定输出电流I OH 的期望值。
R2为VT1的基极偏置电阻,因基极电流很小,而R3上的电流很大,故可认为VT1的发射结压降U BE1全部降落在R3上。
有公式I OH=U BE1 R3利用下面两式可估算出VT1、VT2的发射结压降U BE1=kTqln(I C1I S)U BE2=kTqln(I C2I S)式中:k为玻尔兹曼常数;T为环境温度(用热力学温度表示);q是电子电量;当T A=25℃时,T=298K,kTq=0.0262(V);I C1、I C2分别为VT1、VT2的集电极电流;I S为晶体管的反向饱和电流,对于小功率管,I S=4×10−14A。
基于FSEZ1317A的恒压-恒流开关电源设计

× 50kH = 2.22mH
在输出功率最大的 A 点处, I DS 及 MOSFET 导通时间达到最大值,即:
I DS _ PK =
2 × PIN _T @ A = LP × fS
2 × 8.53 A = 392mA
2.22m × 50k
tON @ A
= I DS _ PK
× LP VMIN @ A
图 6 EE16 磁芯规格参数
图 7 PC40 锰锌铁氧体 B-H 曲线
为了防止磁芯出现饱和,通常将最大磁通密度设为 2500~3000 高斯。取最大磁通密度为 3000 高斯注,则可以计算出一次绕组匝数:
NP
=
LP × I DS _ PK B × Ae
×108
=
2.22m × 392m 3000× 0.192
tON @C
=
LP
×
2 × PIN _T @C LP × fS
VMIN @C
2.22m × 2× 2.62
=
2.22m × 33k s = 2.2us
269.6
tOFF @C
=
1 fS
− tON @C
× ⎜⎜⎝⎛1+
NS NP
× VMIN @C VO _ min + VF
⎟⎞ ⎟⎠
= 1 − 2.2u × ⎜⎛1+ 1 × 269.6 ⎟⎞s
= 4.8×1.4 W = 8.53W 0.788
为了使 FSEZ1317A 准确检测输出参数以实现恒流输出,必须保证电源在所有情况下都 处于非连续工作状态(DCM)。如图 1 所示,当输出电压降到额定电压的 70%时,FSEZ1317A
会主动将开关频率 fS 从 50kHz 降到 33kHz,以防止电源进入连续工作状态(CCM),因此 B
用LM317制作恒压恒流充电器,LM317 Battery charger

用LM317制作恒压恒流充电器,LM317 Battery
charger
用LM317制作恒压恒流充电器,LM317 Battery charger
LM317制作简易恒压恒流充电器,调整不同的参数就可对镍氢、镍镉、锂电、磷酸铁锂电池进行充电。
本想做一台高级而复杂的全功能智能充电器,最后发现简单可靠实用才是真理,怎样实现简单可靠?串联充电比并联充电简单,缺点是电池要求容量比较一致,线性降压比开关降压简单,缺点是效率比较低发热大,大电流充电节约时间但是发热大电池寿命影响也不小,负斜率或者零增量侦测电池是否充满的缺点是电路复杂并且因为电池性能的关系并不可靠,目前电池的充电方式大多数推荐是恒流。
一台简单可靠的充电器要完成的功能特点应该有:能充多节电池,有恒流充电功能,有防止过充功能。
实现方法其实很简单:串联,恒压,恒流。
如果用稳压电源来充电的话,初期电流太大,若串入限流电阻的话,当电池电压升高后电阻就限制了充电电流使充电时间过长。
恒流恒压只是相对的,具体来说应该是前期恒流后期恒压,顺便说一下,这种方式非常适合给锂电池。
详细教程:手把手教你DIY数控恒压恒流电源

详细教程:手把手教你DIY数控恒压恒流电源作为电子爱好者,直流稳压电源是我们不可缺少的部分,一般我们需要一个电源,要么就是购买一台现成的,要么就是自己制作一个。
购买的话就是省事,但是很糟钱哦。
这里小编分享一个直流稳压电源的详细教程,从工作原理讲到如何自己制作数控恒压恒流电源,下面就随着小编来一一学习吧!直流稳压电源是任何电子电路试验中不可缺少的基础仪器设备,基本在所有的跟电有关的实验室都可以见到。
对于一个电子爱好者来说,直流稳压电源也是必不可少的。
要得到一个电源,一般有两种方法:一是购买一台成品电源,这样最为省事:二是自己制作一台电源(因为你是电子爱好者),当然相比于第一种方法会麻烦很多。
很显然这篇文章不是教你如何去选购一台直流稳压电源……基本的恒压恒流电源结构框图如图1所示。
由电压基准源、调整管、误差放大、电压取样以及电流取样组成。
电压基准源的作用是为误差放大器提供一个参考电压,要求电压准确且长时间稳定并且受温度影响要小。
取样电路、误差放大和调整管三者组成了闭环回路以稳定输出电压。
这样的结构中电压基准源是固定的,电压和电流的取样电路也是固定的,所以输出电压和最高的输出电流就是固定的。
而一般的可变恒压恒流电源是采用改变取样电路的分压比例来实现输出电压以及最高限制电流的调节。
图1 基本恒压恒流电源框图图2 基本稳压电源简图图2中所示的是一个基本输出电压可变的稳压电源简图,可以很明显地看出这个电路就是一个由运算放大器构成的同相放大器,输出端加上了一个由三极管组成的射极跟随器以提高输出能力,因为射极跟随器的放大倍数趋近于1,所以计算放大倍数时不予考虑。
输入电压V+通过R1和稳压二极管VD产生基准电压Vref,然后将Vref放大1+R3/R2倍,即在负载RL上的得到的电压为Vref(1+R3/R2),因为R3可调范围是0~R3max,所以输出电压范围为Vref~Vref (1+R3max/R2)。
这不就和我们常用的LM317之类的可调稳压芯片一样了,只是像LM317之类的芯片内部还集成了过热保护等功能,功能更加完善,但是也有它的弊端,主要因为它是将电压基准、调整管、误差放大电路都集成在了一个芯片上,因此在负载变化较大时芯片的温度也会有很大的变化,而影响半导体特性的主要因素之一就是温度,所以使用这种集成的稳压芯片不太容易得到稳定的电压输出,这也正是高性能的电压基准都是采用恒温措施的原因,比如LM399、LTZ1000等。
lnk303p小功率acdc恒压恒流开关电源控制芯片

LNK303P恒压/恒流原边控制功率开关SOP8 v1.6LNK303P内部功能简单框图封装示意图DRAINCOMP CS FB HVDD GNDGND DRAIN管脚说明名称 管脚序号 功能说明DRAIN 7、8 内置高压MOS 管的DRAIN ,同时芯片启动时,也做芯片的启动CS 1 电流检测输入FB 2 反馈输入,反映系统的输出电压,PWM 占空比变化取决于FB 误差放大和SENSE 脚的输入电压 COMP 3 恒压环路补偿管脚 VDD 4 芯片电源 GND5、6芯片地极限参数(极限参数(TA= 25℃)符号说明范围单位V DS(max)芯片DRAIN脚最高耐压-0.3~730 VVDD 芯片工作电压-0.3~34.0 VIDD clamp芯片钳位电流10.0 mAV FB FB输入电压-0.3~7.0 VV COMP COMP输入电压-0.3~7.0 VV CS CS输入电压-0.3~7.0 VT A工作温度-20~85 ℃T stg存储温度-40~150 ℃V ESD人体放电模式>4000 VRθja热阻SOP8 65 ℃/W电气工作参数(除非特殊说明,下列条件均为T A=25℃)符号参数测试条件最小值典型值最大值单位芯片VDD工作部分I DDstart启动充电电流VDD=5V - 200 - μA I DDop工作电流FB=2V,CS=0V,VDD=20V - 1.5 - mA V DDOFF VDD关闭电压7.0 8.0 9.0 VV DDON VDD启动电压13.5 14.5 16.0 VV DDclamp VDD钳位电压I DD=5mA - 34 - VV DDOVP VDD过压保护电压- 32 - V CS电流检测测输入部分T LEB LEB时间- 500 - ns Vth_oc 过流阈值870 900 930 mV T_ss 软启动时间- 10 - ms 频率部分Freq_Nom 开关频率- 63 - KHz Freq_startup 待机频率FB=0V,COMP=5V - 18 - KHz Δf/Freq 抖频范围- 4 - % FB误差放大器部分V ref_EA EA参考电压 1.97 2.00 2.03 VI COMP_MAX最大补偿电流FB=2V,COMP=0V - 42 - μA 功率管部分BVds MOS击穿电压730 -- - V Rdson MOSFET导通电阻- 30 - Ω功能表述◆ 芯片是应用于离线式小功率AC/DC 开关电源的高性能原边反馈控制功率开关芯片,全电压输入范围内,恒压恒流输出精度均小于±3%。
恒流恒压充电器的原理与设计

恒流恒压充电器的原理与设计随着高新电子技术的发展各类充电电子产品不断上升,为此云峰电子为朋友们提供些相关恒流充电器的制作与原理分析,请仔细阅读!第一类、lm317恒流源电路图图1、图2分别是用78××和LM317构成的恒流充电电路,两种电路构成形式一致。
对于图1的电路,输出电流Io=Vxx/R+IQ,式中Vxx是标称输出电压,IQ是从GND端流出的电流,通常IQ≤5mA。
当VI、Vxx及环境温度变化时,IQ的变化较大,被充电电池电压变化也会引起IQ的变化。
IQ是Io的一部分,要流过电池,IQ的值与Io相比不可忽略,因而这种电路的恒流效果比较差。
对于图2的电路,输出电流Io=VREF/R+IADJ,式中VREF是基准电压,为1.25V,IADJ是从调整端ADJ流出的电流,通常IADJ≤50μA。
虽然IADJ也随VI及环境条件的变化而变化,且也是Io的一部分,但由于IADJ仅为78××的IQ的1%,与Io相比,IQ可以忽略。
可见LM317的恒流效果较好。
对可充电电池进行恒流充电,用三端稳压集成电路构成恒流充电电路具有元件易购、电路简单的特点。
有些读者在设计电路时采用78××稳压块,如《电子报》2001年第2期第十一版刊登的《简单可靠的恒流充电器》及今年第6期第十版的《恒流充电器的改良》一文,均采用7805。
78××虽然可接成恒流电路,但恒流效果不如LM317,前者是固定输出稳压IC,后者是可调输出稳压IC,两种芯片的售价又相近,采用LM317才是更为合理的改良。
LM317采用T0-3金属气密封装的耗散功率为20W,采用TO-220塑封结构的耗散功率为15W,负载电流均可达1.5A,使用时需配适当面积的散热器。
由于LM317的VREF=1.25V,其最小压差为3V,因此输入电压VI达4.25V就能正常工作。
但应注意输出电流Io调得较大时,输入电压VI的范围将减小,超出范围会进入安全保护区工作状态,使用时可从图3的安全工作区保护曲线上查明输入—输出压差〔VI-Vo〕的范围。
采用KIS-3R33,S模块制作的恒压恒流,电源

采用KIS-3R33S模块制作的恒压恒流电源一、原理尽管DC-DC降压的原理不是很简单,但可以把这个模块看成是一个黑匣子:这个图也就是一个三端,因此功能类似LM317这样的三端稳压器。
输入电压4.75V到23V都可以,输出-输入有个最小压差,大约1.0到2.0V(电流小的时候压差小),输出是0.925V到20V可调。
压差大一些其实没有太大关系,顶多影响点效率。
由于是开关型的同步IC,因此效率很高:这三根曲线都是输出=3.3V情况下的,红色是5V输入下,0.25A输出下效率可达95%。
绿色是12V输入,由于压差大,因此效率低了点,但在0.8A输出下仍然有91%。
所谓95%的效率,就是比如5V、2A输出的场合下,输入10V时仅仅需要1.05A(理想1.00A)。
官方电路KIS-3R33S模块采用了MPS的MP2307为核心器件的降压式DC-DC,典型电路为:输入4.75V起,最高23V(有人试验到30V没烧,但不建议这样做);输出可以从那个0.925V起调,一直到20V,电流可达3A,短时4A,有人试验到6A没烧,但不建议这样,电感也受不了。
采用两个内置的MOSFET进行同步整流,效率可达95%。
固定的340kHz振荡频率,算比较高的了,因此电感和滤波电容可以用的比较小。
从原理上看,就是IN和SW的MOS管首先导通,对电感储能,然后上面的管子断开、下面的闭合,电感的电流继续通过下面的MOS管流动。
根据输出的大小,反过来控制开关的占空比,达到可控输出的目的。
所谓同步整流,就是用MOS管替代肖特基管,在需要输出的时候控制MOS管闭合或断开,续流也是用MOS管。
由于MOS管的导通电阻非常小,速度也快,因此整流压降进一步减少,效率进一步提高,尤其是对低压输出的场合。
成品照片成品模块的体积很小,21.8mm×20.9mm,厚度7.5mm。
以下照片,是5个模块在不同拆解阶段放在一起拍的,点击可见大图:成品电路可以看到,与厂家典型电路基本一样,黑色本底就是厂家的,红色是模块不同的地方。
YDS-512制作恒流恒压电源

用YDS-512制作恒流恒压电源YDS-512是大家常用的一种电源模块,前一段时间本人对它的内部电路进行了研究,发现它的限流部分设计的很独特(也可能是我少见多怪),并且很容易改成可调的,做成很简单但高效率的恒流恒压电压,可用于做实验电源或充电电源。
下面的电路图是我根据印刷板绘制的,无关的元件没有画出来,为了便于理解加上了标号。
R是检测电流用的电阻,是用厚膜技术直接做在基板上的,通过计算得出电阻约37毫欧。
研究发现,R8的下端接在了5V电源上(由集成电路提供),这时限流值为5A左右,改变这个电压就可以改变限流值,因此采用了运放做了个模拟可变电源加在R8的下端,调节VR2就可以使输出电流在30毫安到5A间变化。
大家可能在使用中发现了YDS-512输出电压不是线性变化的,这其实是因为R4太小造成的,可以把R4去掉,R3去掉或为200K左右(为防电位器接触不良输出高电压),那么输出的线性就会比较好了。
图中的红X是需要断开的地方。
注意事项:1.运放一定要选“轨到轨”的,我用的是LMV358(印字是MV358),LM358是不能胜任的,因为它做不到满幅输出。
2.该电路输出短路有保护作用,但用于电池充电时,不能防止由于电池反接对电路的损坏。
3.YDS-512是瓷基板的,散热非常好,所以也很难焊,要用大功率烙铁或热风枪。
KIC的集成电路和YDS的不同,YDS的开关管是N管的,内阻小,带自举升压电路。
据说YDS系列是工业用的;KIC是民用的,开关管是P型的。
TL594和MB3759内部电路是一样,所以KIC-125的电路和YDS-512也有很多相似之处,不同的地方是YDS-512中是用15脚和16脚来检测电流,1脚和2脚来调压,在KIC-125中正好相反。
轨到轨(rail-to-rail):从输入来说, 其共模输入电压范围可以从负电源到正电源电压; 从输出来看, 其输出电压范围可以从负电源到正电源电压。
Rail to Rail翻译成汉语即“轨到轨”,指器件的输入输出电压范围可以达到电源电压。