七年级下册平面直角坐标系教案

合集下载

《平面直角坐标系》优秀教案(精选12篇)

《平面直角坐标系》优秀教案(精选12篇)

《平面直角坐标系》优秀教案《平面直角坐标系》优秀教案(精选12篇)教案是教师为顺利而有效地开展教学活动, 根据课程标准, 教学大纲和教科书要求及学生的实际情况, 以课时或课题为单位, 对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。

下面是小编为大家整理的《平面直角坐标系》优秀教案, 仅供参考, 欢迎大家阅读。

《平面直角坐标系》优秀教案篇1教材分析1、教材的地位与作用本节课的教学内容是义务教育课程标准实验教科书, 七年级下册第6.1.2节平面直角坐标系又称笛卡儿坐标。

平面直角坐标系是图形与数量之间的桥梁, 有了它我们便可以把几何问题转化为代数问题, 也可以把代数问题转化为几何问题。

本章内容从数的角度刻画了第五章有关平移的内容, 对学生以后的学习起到铺垫作用, 6.1.2节平面坐标系主要是介绍如何建立平面坐标系, 如何确定点的坐标和由点的坐标寻找点的位置, 以及平面坐标系中特殊部位点的坐标特征, 根据学生的接受能力, 我把本内容分为2课时, 这是第一课时, 主要介绍如何建立坐标系和在给定的坐标系中确定点的坐标。

2、教学目标根据新课标要求, 数学的教学不仅要传授知识, 更要注重学生在学习中所表现出来的情感态度, 帮助学生认识自我、建立信心。

知识能力:①认识平面直角坐标系, 了解点与坐标的对应系;②在给定的直角坐标系中, 能由点的位置写出点坐标。

数学思考:①通过寻找确定位置, 发展初步的空间观念;②通过学习用坐标的位置, 渗透数形结合思想解决问题:通过运用确定点坐标, 发展学生的应用意识。

情感态度:①通过建立平面直角坐标系和确定坐标系中点的坐标, 培养学生合作交流与探索精神;②通过介绍数学家的故事, 渗透理想和情感的教育。

3、重难点根据本章知识内容以及学生对坐标横纵坐标书写易出错误, 确定本节重难点为:重点: 认识平面坐标系难点: 根据点的位置写出点的坐标一、教法分析针对学初一学生的年龄特点和心理特征, 以及他们现有知识水平, 通过科学家发现点的坐标形成的经过启迪学生思维, 通过小组合作与交流及尝试练习, 促进学生共同进步, 并用肯定和激励的言语鼓舞、激励学生。

平面直角坐标教案5篇

平面直角坐标教案5篇

平面直角坐标教案5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如工作总结、工作计划、作文大全、心得体会、申请书、演讲稿、教案大全、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as work summaries, work plans, essays, experiences, application forms, speeches, lesson plans, and other sample articles. If you want to learn about different data formats and writing methods, please pay attention!平面直角坐标教案5篇一个教案使教师更好地在教学中应对学生的学习差异和特殊需求,老师在编写教案时需要充分考虑学生的学习需求和兴趣点,以下是本店铺精心为您推荐的平面直角坐标教案5篇,供大家参考。

人教版七年级下册第七章平面直角坐标系7.1.1有序数对优秀教学案例

人教版七年级下册第七章平面直角坐标系7.1.1有序数对优秀教学案例
4.鼓励学生提出自己的问题,培养他们独立思考和解决问题的能力。
(三)小组合作
1.将学生分成若干小组,鼓励他们相互讨论、交流,共同解决问题。
2.设计小组合作任务,让学生通过合作完成任务,培养他们的团队合作意识。
3.在小组合作过程中,教师要关注每个学生的参与程度,及时给予指导和鼓励。
4.鼓励学生分享自己的解题思路和方法,培养他们的表达能力和倾听能力。
5.多元化的教学评价:本节课注重对学生的全面评价,不仅关注他们的学习成果,还注重他们的学习过程和团队合作能力。教师通过观察、提问、作业批改等方式,及时给予学生反馈和指导,帮助他们纠正错误和提高解题能力。同时,鼓励学生自主学习和思考,培养他们的创新能力和实践能力。
本节课的教学目标是让学生理解有序数对的含义,掌握用有序数对表示点的方法,并能够利用坐标轴来表示和理解实际问题中的点。在教学过程中,我将以实际问题为导入,引导学生通过观察和分析来发现有序数对与坐标系之间的关系,通过小组合作和讨论来加深对知识的理解,培养学生的合作意识和解决问题的能力。在教学方法上,我将采用问题驱动的教学模式,让学生在解决问题的过程中自主探索和学习,提高学生的主动学习和思考的能力。同时,我还将注重对学生的个别辅导,帮助他们在学习过程中解决遇到的问题,提高他们的学习效果。
5.创设丰富的教学情境,引导学生运用所学知识解决实际问题,培养学生的创新能力和实践能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热情,使他们愿意主动参与到数学学习中。
2.培养学生克服困难的勇气和信心,使他们能够面对挑战,积极解决问题。
3.培养学生良好的学习习惯,使他们能够独立思考,自主学习。
3.设计有趣的数学游戏,让学生在游戏中自然而然地接触到有序数对和平面直角坐标系。

七年级数学下册《建立适合的平面直角坐标系确定点的坐标》教案、教学设计

七年级数学下册《建立适合的平面直角坐标系确定点的坐标》教案、教学设计
2.应用实践题:
-设计一张教室座位图,用坐标系表示出你所在位置及几位同学的位置。
-选择一个日常生活中的场景,如商场、公园等,建立坐标系,并标注出其中几个感兴趣点的坐标。
3.提高拓展题:
-在坐标系中绘制一个正方形,然后通过平移、旋转等变换,用坐标表示出变换后的正方形。
-研究坐标的对称性,找出一些关于原点、坐标轴对称的点,并说明它们之间的关系。
注意事项:
-请同学们认真完成作业,注意书写规范,保持解答过程的简洁。
-对于应用实践题和提高拓展题,鼓励同学们发挥想象力和创造力,将所学知识应用到实际情境中。
-家长在监督孩子完成作业时,注意引导孩子思考,激发他们的学习兴趣,而不是直接给出答案。
4.反馈指导:教师针对学生的练习情况进行反馈,针对共性问题进行讲解,对个别问题进行指导。
(五)总结归纳
1.学生总结:让学生回顾本节课所学内容,分享自己的收获和理解。
2.教师点评:教师对学生的总结进行点评,强调坐标系和坐标的重要性,以及它们在解决实际问题中的应用。
3.知识拓展:介绍坐标系在数学和其他学科领域的拓展应用,激发学生的学习兴趣。
三、教学重难点和教学设想
(一)教学重难点
1.建立正确的平面直角坐标系概念,理解坐标轴、原点、网格的含义。
-对于坐标系的理解是本章节的核心,学生需要能够不仅在视觉上识别坐标系,还要在抽象层面理解其构成和作用。
-教学中应重点关注学生对坐标轴上正负方向的判断,以及如何从坐标系中读取和确定点的坐标。
2.掌握坐标的确定方法,能够将实际问题转化为坐标系中的点。
4.操作说明:介绍如何使用直尺、圆规等工具在纸上建立平面直角坐标系,并确定点的坐标。
(三)学生小组讨论
1.分组讨论:将学生分成小组,讨论以下问题:

河北省平泉四海中学七年级数学下册:第七章平面直角坐标系(教案)

河北省平泉四海中学七年级数学下册:第七章平面直角坐标系(教案)
-对称点坐标的确定,尤其是斜对称和旋转对称的情况。
-在实际问题中运用坐标系,包括从实际问题中抽象出坐标系模型。
举例解释:
-难点1:学生往往难以理解不同象限内点的坐标符号规律,需要通过直观图示和实际操作来加强理解。
-难点2:对称点坐标的确定需要学生具备一定的空间想象能力,教师需提供多个示例,帮助学生建立直观感受。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平面直角坐标系》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要确定位置的情况?”(例如:在地图上找到某个地方的位置)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平面直角坐标系的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调坐标系的基本性质和坐标运算这两个重点。对于难点部分,如对称点的坐标确定,我会通过图示和实际操作来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平面直角坐标系相关的实际问题,如如何在坐标系中表示物体的移动。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用坐标系来测量教室中物体的位置。
-难点3:教师需要引导学生如何将实际问题转化为坐标系中的数学问题,例如在地图上标定地点时,如何确定坐标。
在教学过程中,教师应针对上述重点和难点内容,采用多样化的教学手段和方法,如实物演示、互动讨论、动态软件模拟等,以确保学生能够深刻理解并掌握平面直角坐标系的相关知识。同时,通过分层设计的练习题,逐步引导学生从基础概念学习到复杂问题解决的能力提升。
五、教学反思
在今天的教学中,我尝试了多种方法来帮助学生理解平面直角坐标系的概念和应用。我发现,通过生活中的实际例子引入,确实能够激发学生的兴趣,让他们意识到数学知识在现实世界的实用性。然而,我也注意到,对于坐标系的理解,尤其是坐标符号和对称点的问题,学生们的掌握程度并不均衡。

七年级数学《平面直角坐标系》教案

七年级数学《平面直角坐标系》教案

“三部五环”教学模式设计《6.1.2平面直角坐标系》教学设计问题4、如图是旬阳各学校示意图。

(1)你是如何确定各个学校的位置的?(2)如果以“中心广场”为原点作两条相互垂直的数轴,分别取向右和向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,那么你能表示“旬阳中学”的位置吗?“旬阳一中”的位置呢?(3)平面直角坐标系如何建立,怎样确定点的坐标,在坐标系中怎样描点,象限如何划分?(1)根据学生活动进程出示问题4。

(2)根据学生口述,板书问题结果,重点关注全体学生是否能用有序数对表示。

(3)发动学生评价矫正问题4过程,引导学生将结论用文字语言表述出来,并加以板书。

(4)强调平面直角坐标系的概念,如何建立平面直角坐标系,并详细介绍平面直角坐标系中点的坐标如何确定。

(5)细讲平面直角坐标系中象限的划分,强调坐标轴上的点不属于任何象限。

【学生活动】(1)思考问题4的解答过程。

(2)3名学生回答问题4。

(3)讨论问题4结论,其余学生参与纠正补充。

(4)认真听教师讲解平面直角坐标系的建立方法,点的坐标的确定以及象限的划分。

(5)学生思考四个象限内的点的坐(1)出示幻灯片旬阳各学校示意图。

(2)出示幻灯片“平面直角坐标系”。

【设计意图】1、从学生比较熟悉的例子引入,容易引起学生的注意,简单的几个问题,唤起学生的共鸣,使他们能很快地投入到学习的情境中。

2、通过一个实际问题的分析,使学生更加明确在现实生活中有序数对的作用,为后面建立平面直角坐标系做铺垫。

3、平面直角坐标系的建立以及象限的划分采用教师讲解的方法,学生更容易理解。

4、通过学生自己探究,既有利于对四个象限概念的理解,又有利于对点的坐标的理解,特别是横坐标、纵坐标的符号规律。

标的符号有什么规律。

活动三变式练习,巩固新知问题1、如图,写出图中A,B,C,D,E,F各点的坐标。

2、在如图的直角坐标系中描出下列各组点A(2,1),B(0,2),C(0,0),D(4,0)并将各点用线段依次连接起来。

最新人教版七年级数学下册第7章平面直角坐标系复习教学设计

最新人教版七年级数学下册第7章平面直角坐标系复习教学设计

平面直角坐标系复习教学目标:1.能准确画出平面直角坐标系,由点的位置写出坐标,由点的坐标确定点的位置.掌握特殊位置点的坐标特征,并能用坐标表示平移变换.2.会建立适当的平面直角坐标系,用坐标表示地理位置.3.通过观察、尝试、交流,提高学生数形结合思想,培养学生归纳,整理所学知识和应用数学的意识.教学重点:1.准确确定平面内点的位置和坐标,并能进行综合应用.2.根据实际问题建立适当的平面直角坐标系,并解决实际问题教学难点:1.正确运用坐标特征解决实际问题.2.平面直角坐标系的实际应用.教学方法:启发、讨论、交流.教具准备:多媒体课件.教学过程:一、创设情景,导入新课这是一张某市旅游景点示意图,我们以中心广场所在水平线为横轴,以中心广场所在铅垂线为纵轴建立平面直角坐标系,你们能说出各景点的坐标吗?平面直角坐标系是确定平面内点的坐标的重要工具,用它可以解决很多实际问题,本节课我们大家一起来复习“平面直角坐标系”这一章.(由一个具体实例引出课题,可激发学生的兴趣,创造积极的求知氛围)二、师生互动,构建知识框架1.有序数对:有序数对是指______的两个数组成的数对,它的表示形式是(a,b).2.平面直角坐标系的意义:在平面内,两条具有、并且______的数轴所构成的图形叫做平面直角坐标系,其中水平的数轴叫做______或_______,取向______方向为正方向,竖直的数轴叫做______或_______,取向______方向为正方向,横轴与纵轴的交点叫做平面直角坐标系的______,平面直角坐标系的两条数轴把坐标平面分成四个象限,这两条数轴的正方向的所夹的象限叫做第______象限,其它三个象限按逆时针方向依次叫做第______、______、______象限,坐标轴不属于任何象限.注意:(1)组成平面直角坐标系的四个要素:①在同一平面内;②两条数轴;③互相垂直;④有公共原点.(2)两个规定:①正方向的规定:横轴取向右为正方向,纵轴取向上为正方向;②两条数轴单位长度规定:一般情况下,横轴与纵轴单位长度相同,为了实际需要有时横轴与纵轴单位长度可以不同.3.坐标平面内点的坐标的符号特征(填“+”或“-”):4.特殊点的坐标性质:(1)平行于坐标轴直线上的点的坐标:平行于x轴的直线上的各点的________相同,_______不同;平行于y轴的直线上的各点的_________相同,__________不同;(2)点P(x,y)在第一、三象限的角平分线上,则,P(x,y)在第二、四象限的角平分线上,则;(3)对称点的坐标:点P(a,b)关于x轴对称的点为_________,点P(a,b)关于y轴对称的点为__________;(4)点到两轴的距离的意义:点P(x,y)到x轴的距离为_____,到y轴的距离为____;(5)点的坐标与图形平移的关系:一个图形在平面直角坐标系中进行平移,其坐标就要发生相应的变化,可以简单地理解为:左、右平移纵坐标,横坐标,变化规律是,上下平移横坐标,纵坐标,变化规律是.5.用坐标表示地理位置的一般过程:(1);(2);(3).(学生独立思考后与同伴交流各自的答案,学生代表发言,教师纠正学生出现的问题.)评析:复习时以点的坐标特征为主线,把全章知识系统化,条理化,全面化,以便于应用,同时也培养了学生的归纳概括能力.三、运用知识,进行基础训练例1在已给的平面直角坐标系中描出下列各点,并指出各点所在的象限或坐标轴.A(2,3),B(-2,-3),C(4,-3),D(1.5,0),E(-1,5),F(0,-2),G(0,0).练习1:1.点A(-3,4)在第象限,点B(2,-5)在第象限;2.如果点A( a,b)在第四象限,那么点B(b,-a)在第象限;若C(x,y)满足xy=0,则点C一定在;(根据点的坐标特征确定点的位置)(学生通过描点,加深了对平面直角坐标系和坐标的认识,为解决后面的问题作好铺垫)3.已知点P(1+2a,3-a)在x轴上,则点P的坐标为;4.已知线段AB∥y 轴,且A(-2,3),AB =5,那么点B的坐标是;5.若点P( 2a+5,4a-3)在第一、三象限的角平分线上,则点P的坐标为;6.已知点P( a-4,2-3a)在二、四象限的角平分线上,则点P的坐标为;(根据特殊位置点的坐标特征确定点的坐标)7.在平面直角坐标系中,若点P在第二象限,点P到x轴的距离是3,到y轴的距离是2,则点P的坐标是;(根据点的坐标的几何意义确定点的坐标)8.已知点P(2,-3)先向左平移3个单位长度,再向上平移5个单位长度得到点P′,则点P′坐标为;(根据点的平移变换与坐标变化规律确定点的坐标)9.点P(3,-2)关于y 轴对称点的坐标是.(根据对称点坐标的规律确定点的坐标)评析:这些题型不仅对所学知识能进一步理解和应用,而且也提高了学生用数学知识解决问题的能力.例2如图是某市部分平面简图(图中小正方形的边长代表100 m长),请建立适当的平面直角坐标系,并写出各地的坐标.(学生在自己设计的活动中体验怎样建立平面直角坐标系,训练学生数学表达能力,也给学生极大的创造空间,有利于学生个性发展)四、拓宽知识,实现知识迁移师:平面直角坐标系是建立图形和数量关系的桥梁,反映了数学中重要的思想方法——数形结合,下面我们以图形面积为例说明怎样用数形结合思想、转化思想解决有关问题.例3在平面直角坐标系中,△ABC的顶点都在网格点上.(1)平移△ABC,使得点C与坐标原点O重合,请画出平移后的△A′B′C′;(2)写出A、B两点对应点A′、B′的坐标;(3)求△A′B′C′的面积.(学生自己动手画图,作适当的辅助线,将所求图形的面积转化为规则图形的面积差来求,然后同伴相互交流)评析:学生在做数学的过程中掌握了一些数学思想方法,积累了数学解题经验,感受到了数学的应用价值.练习21.在平面直角坐标系中,点P(m2+1,-4)在象限.2.已知点A(a,-5),B(8,b),根据下列要求,确定a,b的值:(1)A,B两点关于y轴对称;(2)A,B两点关于原点对称;(3)AB∥x轴;(4)A,B两点在第一,三象限的平分线上.3.在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为.4.如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A(2,1),图书馆位置坐标为B(﹣1,﹣2),解答以下问题:(1)在图中试找出坐标系的原点,并建立直角坐标系;(2)若体育馆位置坐标为C(1,﹣3),请在坐标系中标出体育馆的位置;(3)顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.五、师生小结,概括本章内容通过本节复习课,你对本章知识是否有了更深的认识呢?谈谈你的体会.(通过学生自己总结,加强学生对复习课的认识和学习方法的掌握)六、布置作业,拓展思维空间1.书本P84第1,2,4题;2.请你绘制一幅学校平面分布图,并用坐标表示.(强化用坐标表示地理位置的实际应用).。

新人教版七年级下册第七章《平面直角坐标系》全章教案(共6份)

新人教版七年级下册第七章《平面直角坐标系》全章教案(共6份)

7.1.1有序数对问题与情境游戏“找朋友”问题:(1)只给一个数据如“第3列”你能确定好朋友的位置吗?(2)给两个数据如“第3列第2排”你能确定好朋友的位置吗?为什么?(3)你认为需要几个数据能确定一个位置?1. 【提出问题】请在教室找到如下表用数对表示的同学位置:发现:在教室里排数与列数的先后顺序没有约定的情况下,不能确定参加数学问题讨论的同学假设约定“列数在前,排数在后”,你能找到参加数学问题讨论的同学的座位吗?情景引入合作探究二次备课思考:(1) ( 2, 4)和(4, 2)在同一个位置吗?(2) 如果约定“排数在前,列数在后”,刚才那些同学对应的有序 数对会变化吗?2. 【师生归纳】有序数对:我们把有顺序的两个数 a 与b 组成的数对,叫做有序数对。

记作(a ,b )思考:在生活中还有用有序数对表示一个位置的例子吗?3. 【例题讲解】例1:如图,甲处表示 2街与5巷的十字路口,乙处表示5街5巷的十字路口,如果用(2,5 )表示甲处的位置,那么(2,5 ) T (3,5 ) 7( 4,5 )T ( 5,5 )T ( 5,4 )T ( 5,3 )T ( 5,2 )表示从甲处到乙 处的一种路线,请你用有序数对写出几种从甲处到乙处的路线。

例2 :请同学们说出以下各个地点所表示的有序数对。

—1 逼 族(6 T 8 11____d斟9-------d呻(&5)办___ 1 服(:学忙(:挣閒]7^I 23 弓5£ T &? I U例3: 图中五角星五个顶点的位置如何表示?已知 A (0,0 ) B(2,1 )合 作 探 究甲乙5 4 3 21街例5:右图:若黑马的位置用(3, 7)表示,请你用有序数对表示 黑马可以走到的哪几个位置。

例6:如右图,方块中有 25个汉字,用(C,3)表示“天”那么按下 列要求排列会组成一句什么话,把它读出来。

(1) (A,5 ) (A,3) (C,4 ) (E,5 ) (B,1) (C,2) (B,4)(2) (B,4) (C,2) (D,4) (C,5) (A,1) (D,3) (E,1)例7:台风“麦莎” 2005年7月31日生成,8月6日凌晨3点40 分在玉环干江登陆即:东经 121.8度,北纬28.6度,你能找到具体 登落点吗?合 作探 究例4:“怪兽吃豆豆”是一种计算机游戏,图中的•标志表示“怪 兽”先后经过的几个位置,如果用 (1,2)表示“怪兽”经过的第 2个 位置,那么你能用同样的方式表示出图中“怪兽”经过的其他几个5 可 明 个 万 女 4 中 我 的 -一- 学 3 爱 英 天 帅 活 2 球 里 是 生 大 1小孩打习哥AB C D E7.1.2平面直角坐标系(第一课时)II1.在平面直角坐标系内,下列各点在第四象限的是 A.(2,1) B.(-2,1) C.(-3,-5) D.(3,-5)2.已知坐标平面内点 A(m,n)在第四象限,那么点B(n,m)在(3.设点M( a , b )为平面直角坐标系中的点当a>0,b<0时点M 位于第几象限? 当ab>0时,点M 位于第几象限?当a 为任意数时,且b<0时,点M 直角坐标系中的位置是什么?象限;点(-1.5,-1)1•点(3,-2 )在第C.第三象限D.第四象限0 --A.第一象限B.第二象限点的位胃在第PM 彖阳在正半轴上 衣r 轴匕金员拿抽上/ 纽在亟丰粧上 ' 住力半眦上7.1.2平面直角坐标系(第二课时)教学过程设计问题与情境二次备课【复习旧知】1•什么是平面直角坐标系?什么是横轴,纵轴,坐标原点?坐标平面被两条坐标轴分成了哪些象限?2. 平面直角坐标系内点与坐标之间有什么关系?3. 象限内的点和坐标轴上的点有什么特征?入■~~【提出问题】合作探探究一究如图,正方形ABCD勺边长6.(1 )如果以点A为原点,AB所在的直线为x轴建立平面直角坐标系,那么y轴在什么位置?写出正方形的顶点A B, C, D的坐标.(2)另建立一个平面直角坐标系,此时正方形的顶点A, B, C, D 的坐标又分别是什么?(3)以点A为原点,AB所在的直线为x轴建立平面直角坐标系中,点C到x轴、y轴的距离是多少?(4 )观察:点E和点C坐标之间有什么联系?点E和点D坐标之间呢?【师生归纳】设P点坐标为(a,b ),则点P到x轴的距离是____________________ ;点P到y平行于横轴的直线上的点的纵坐标相同;平行于纵轴的直线上的点的横坐标相同探究二:分别写出图中点A、B、C的坐标.观察图形,回答下列问题:合作探究7.2.1用坐标表示地理位置(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称教师继续出示问题:你认为利用平面直角坐标系描述地理位置时应注意哪些问题?(1)注意选择适当的位置为坐标原点,这里所说的适当,通常是比较明显的地点或是所要绘制的区域内较居中的位置.(2 )坐标轴的方向通常是以正北为纵轴的正方向,这样可以使东西南北的方向与地理位置的方向一致.(3 )要注意标明适当的单位长度.(4)有时,由于地点比较集中,坐标平面又较小,各地点的名称在图上可以用代号标出,在图外另附名称. (同学可举例说明)尝试应用施的位置如何表示?1、如图,一艘船在A处遇险后向相距35 n mile 位于B处的救生船报警.补充提高(1)如何用方向和距离描述救生船相对于遇险船的位置?(2)救生船接到报警后准备前往救援,如何用方向和距离描述遇险船相对于救生船的位置?722用坐标表示平移第六章小结与复习3. 平面直角坐标系的有关概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.2平面直角坐标系
(一)预习提示:
1、什么是数轴?什么是平面直角坐标系?
2、两条坐标轴如何称呼,方向如何确定?
3、坐标轴分平面为四个部分,分别叫做什?
4、什么是点的坐标?平面内点的坐标有几部分组成?
5、各个象限内的点的坐标有何特点?坐标轴上的点的坐标有何特点?
6、坐标轴上的点属于什么象限?
教学目标:
【知识目标】1、理解平面直角坐标系以及横轴、纵轴、原点、坐标等的概念。

2、认识并能画出平面直角坐标系。

3、能在给定的直角坐标系中,由点的位置写出它的坐标。

【能力目标】1、通过画坐标系,由点找坐标等过程,发展学生的数形结合意识,合作交流意识。

2、通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识和能力。

【情感目标】由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。

教学重点:
1、理解平面直角坐标系的有关知识。

2、在给定的平面直角坐标系中,会根据点的位置写出它的坐标。

3、由点的坐标观察,
纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,说明坐标轴上点的坐标有什么特点。

教学难点:
1、横(或纵)坐标相同的点的连线与坐标轴的关系的探究。

2、坐标轴上点的坐标有什么特点的总结。

教学方法:讨论式学习法
教学过程设计:
一、导入新课
『师』:同学们,你们喜欢旅游吗?
假如你到了某一个城市旅游,那么你应怎
样确定旅游景点的位置呢?下面给出一张某市
旅游景点的示意图,根据示意图,回答以下问
题:(图5-6)
(1)你是怎样确定各个景点位置的?
(2)“大成殿”在“中心广场”南、西各多
少个格?“碑林”在“中心广场”北、
东各多少个格?
(3)如果以“中心广场”为原点作两条互相
垂直的数轴、分别取向右、向上的方向为数轴的正方向,一个方格的边长看做一个
单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?
在上一节课,我们已经学习了许多确定位置的方法,主要学习用反映极坐标思想的定位
方式,和用反映直角坐标思想的定位方式。

在这个问题中大家看用哪种方法比较合适?
『生』 :用反映直角坐标思想的定位方式。

『师』 :在上一节课中我们已经做过这方面的练习,现在应怎样表示呢?这就是本节课
的任务。

二、新课学习
1、平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分。

『师』 :看书,倒数第二段P130 ~P131第一段。

(三分钟后)请一位同学加以叙述。

『生』 :在平面内,两条互相垂直用公共原点的数轴组成平面直角坐标系。

通常,……
有序实数对(a,b )叫做点P 的坐标。

『师』 :在了解有关直角坐标系的知识后,我们再返回刚才讨论的问题中,请大家思
考后回答。

『生』 :(2)“大成殿”在“中心广场”南两格,西两格。

“碑林”在“中心广场”北
一格,东三格。

(3)如果以“中心广场”为原点作两条互相垂直的数轴、分别取向右、向上的方向为
数轴的正方向,一个方格的边长看做一个单位长度,则 “碑林”的位置是(3,1)。

“大成
殿”的位置是(-2,-2)。

『师』 :很好,在(3)的条件下,你能把其他景点的位置表示出来吗?
『生』 :能,钟楼的位置是(-2,1),雁塔的位置是(0,3),影月湖的位置是(0,
-5),科技大学的位置是(-5,-7)。

2、
例题讲解 (出示投影)例1 书P131。

例1 写出图中的多边形ABCDEF 各各顶点的坐标。

让学生回答。

『师』 :上图中各顶点的坐标是否永远不变? 『生甲』 :是。

『生乙』 :不是。

当坐标轴的位置发生变动时,各点的坐标相应地变化。

『师』 :你能举个例子吗?
『生』 :可以,若以线段BC 所在的直线为x 轴,纵轴(y 轴位置不变,则六个顶点的坐标分别为:A (-2,3),B (0,3),C (3,0),D (4,3),E (3,6),F (0,6)
:那大家再思考这位同学的结论是否是永恒的呢?
:不是。

还能再改变坐标轴的位置,得出不同的坐标。

:请大家在课后继续进行坐标轴的变换,总结以一下
、想一想
在例1中,
A B C D E F
O 11
x y
A B C D
E F 1y x
(1)点B 与点C 的纵坐标相同,线段BC 的位置有什么特点?
(2)线段测定位置有什么特点?
(3)坐标轴上点的坐标有什么特点?
『师』 :由B (0,-3),C (3,-3)可以看出它们的纵坐标相同,即B 、C 两点到X 轴的距离相等,所以线段BC 平行于横轴(x 轴),垂直于纵轴(y 轴)。

请大家讨论第(2)题。

『生』 :由C (3,-3),E (3,3)可知,他们的横坐标相同,即C 、E 两点到y 轴的距离相等,所以线段CE 平行于纵轴(y 轴),垂直于横轴(x 轴)
『师』 :请大家找出坐标轴上的点。

『生』 :B (0,-3),A (-2,0),D (4,0),F (0,3)
『师』 :这些点的坐标中由什么特点呢?
『生』 :坐标中都有一个数字是0。

『师』 :从刚才的分析中可知,在坐标中只要有一个数字为0,则这个点一定在坐标轴上。

当两个数字为0时,这个点是否在坐标轴上?
『生』 :当两个数字都为0时,就是坐标原点(0,0),原点既在x 轴上,又在y 轴上。

『师』 :那如何确定在哪个坐标轴上呢?
『生 』 :A (-2,0),D (4,0)在x 轴上,可以看出这两个点的纵坐标为0,横坐标不为0;B (0,-3),F (0,3)在y 轴上,可知它们的横坐标为0,纵坐标不为0。

『师』 :经过大家的共同探讨,我们可以总结出:坐标轴上的点的坐标中至少又一个是0;横轴上的点的纵坐标为0,纵轴上的点的横坐标为0。

『师』 :刚才已知x 轴、y 轴把坐标平面分成四个象限,但是坐标轴上的点不属于任何一个象限。

各个象限内的点的坐标特征是怎样的?
『生』 :第一象限(+,+), 第二象限(-,+),
第三象限(-,-), 第四象限(+,-)。

4、做一做
(出示投影) 书P131
『师』 :请大家先独立思考,然后再进行交流。

『生』 :A (-3,4),B (-6,-2),C (6,-2),D (9,4)
A 与D 两点的纵坐标,
B 与
C 两点的纵坐标相同,因为A
D 、BC 分别平行于横轴,A 与B ,C 与D 的横坐标不同,因为AB 与CD 是与x 轴斜交,他们向横轴作垂线,垂足不同。

三、课堂检测
补充:1、在下图中,确定A 、B 、C 、D 、E 、F 、G 的坐标。

x
y 1F E D C B A
(第1题)(第2题)
2、如右图,求出A、B、C、D、E、F的坐标。

四、本课小结
1、认识并能画出平面直角坐标系。

2、在给定的直角坐标系中,由点的位置写出它的坐标。

3、能适当建立直角坐标系,写出直角坐标系中有关点的坐标。

4、横(纵)坐标相同的点的直线平行于y轴,垂直于x轴;连接纵坐标相同的点的直
线平行于x轴,垂直于y轴。

5、坐标轴上点的纵坐标为0;纵坐标轴上点的坐标为0。

6、各个象限内的点的坐标特征是:第一象限(+,+),第二象限(-,+),
第三象限(-,-),第四象限(+,-)。

撰稿人:灵宝市第一初级中学许引丽李永平
审验人:灵宝市第一初级中学何康锋。

相关文档
最新文档